1
|
Fan Q, Zhang J, Fan S, Xi B, Gao Z, Guo X, Duan Z, Zheng X, Liu Y, Xiong S. Advances in Functional Organosulfur-Based Mediators for Regulating Performance of Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409521. [PMID: 39246200 DOI: 10.1002/adma.202409521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Rechargeable lithium metal batteries (LMBs) are promising next-generation energy storage systems due to their high theoretical energy density. However, their practical applications are hindered by lithium dendrite growth and various intricate issues associated with the cathodes. These challenges can be mitigated by using organosulfur-based mediators (OSMs), which offer the advantages of abundance, tailorable structures, and unique functional adaptability. These features enable the rational design of targeted functionalities, enhance the interfacial stability of the lithium anode and cathode, and accelerate the redox kinetics of electrodes via alternative reaction pathways, thereby effectively improving the performance of LMBs. Unlike the extensively explored field of organosulfur cathode materials, OSMs have garnered little attention. This review systematically summarizes recent advancements in OSMs for various LMB systems, including lithium-sulfur, lithium-selenium, lithium-oxygen, lithium-intercalation cathode batteries, and other LMB systems. It briefly elucidates the operating principles of these LMB systems, the regulatory mechanisms of the corresponding OSMs, and the fundamentals of OSMs activity. Ultimately, strategic optimizations are proposed for designing novel OSMs, advanced mechanism investigation, expanded applications, and the development of safe battery systems, thereby providing directions to narrow the gap between rational modulation of organosulfur compounds and their practical implementation in batteries.
Collapse
Affiliation(s)
- Qianqian Fan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Junhao Zhang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Siying Fan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Baojuan Xi
- College of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhiyuan Gao
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xingmei Guo
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Zhongyao Duan
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiangjun Zheng
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Yuanjun Liu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Shenglin Xiong
- College of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Pierini A, Petrongari A, Piacentini V, Brutti S, Bodo E. A Computational Study on Halogen/Halide Redox Mediators and Their Role in 1O 2 Release in Aprotic Li-O 2 Batteries. J Phys Chem A 2023; 127:9229-9235. [PMID: 37885210 PMCID: PMC10641837 DOI: 10.1021/acs.jpca.3c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
We present a computational study on the redox reactions of small clusters of Li superoxide and peroxide in the presence of halogen/halide redox mediators. The study is based on DFT calculations with a double hybrid functional and an implicit solvent model. It shows that iodine is less effective than bromine in the oxidation of Li2O2 to oxygen. On the basis of our thermodynamic data, in solvents with a low dielectric constant, iodine does not spontaneously promote either the oxidation of Li2O2 or the release of singlet oxygen, while bromine could spontaneously trigger both events. When a solvent with a large dielectric constant is used, both halogens appear to be able, at least on the basis of thermodynamics, to react spontaneously with the oxides, and the ensuing reaction sequence turned out to be strongly exoergic, thereby providing a route for the release of significant amounts of singlet oxygen. The role of spin-orbit coupling in providing a mechanism for singlet-triplet intersystem crossing has also been assessed.
Collapse
Affiliation(s)
- Adriano Pierini
- Chemistry
Department, University of Rome “La
Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| | - Angelica Petrongari
- Chemistry
Department, University of Rome “La
Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| | - Vanessa Piacentini
- Chemistry
Department, University of Rome “La
Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| | - Sergio Brutti
- Chemistry
Department, University of Rome “La
Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| | - Enrico Bodo
- Chemistry
Department, University of Rome “La
Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Yu W, Yoshii T, Aziz A, Tang R, Pan Z, Inoue K, Kotani M, Tanaka H, Scholtzová E, Tunega D, Nishina Y, Nishioka K, Nakanishi S, Zhou Y, Terasaki O, Nishihara H. Edge-Site-Free and Topological-Defect-Rich Carbon Cathode for High-Performance Lithium-Oxygen Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300268. [PMID: 37029464 PMCID: PMC10238210 DOI: 10.1002/advs.202300268] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Indexed: 06/04/2023]
Abstract
The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (LiO2 ) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 °C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g-1 ). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2 O2 , which may be decomposed at low potential (∼ 3.6 V versus Li/Li+ ) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries.
Collapse
Affiliation(s)
- Wei Yu
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai9808577Japan
| | - Alex Aziz
- JSPS International Research Fellow (Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
| | - Rui Tang
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
| | - Zheng‐Ze Pan
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
| | - Kazutoshi Inoue
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
| | - Motoko Kotani
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
| | - Hideki Tanaka
- Research Initiative for Supra‐Materials (RISM)Shinshu UniversityNagano3808553Japan
| | - Eva Scholtzová
- Institute of Inorganic Chemistry of Slovak Academy of SciencesDúbravská cesta 9Bratislava84536Slovakia
| | - Daniel Tunega
- Institute of Soil ResearchUniversity of Natural Resources and Life SciencesPeter‐Jordan‐Strasse 82Wien1190Austria
| | - Yuta Nishina
- Research Core for Interdisciplinary SciencesOkayama University3‐1‐1 Tsushima‐NakaKita‐kuOkayama7008530Japan
| | - Kiho Nishioka
- Research Center for Solar Energy ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka5608531Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka5608531Japan
- Innovative Catalysis Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (ICS‐OTRI)Osaka UniversitySuitaOsaka5650871Japan
| | - Yi Zhou
- Centre for High‐Resolution Electron Microscopy (CℏEM)School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- Shanghai Key Laboratory of High‐Resolution Electron MicroscopyShanghaiTech UniversityShanghai201210China
| | - Osamu Terasaki
- Centre for High‐Resolution Electron Microscopy (CℏEM)School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- Shanghai Key Laboratory of High‐Resolution Electron MicroscopyShanghaiTech UniversityShanghai201210China
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai9808577Japan
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai9808577Japan
| |
Collapse
|
4
|
Li YN, Sun Z, Zhang T. Single-Atomic Zn/Co-N x Sites Boost Solid-Soluble Synergistic Catalysis for Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1432-1441. [PMID: 36579821 DOI: 10.1021/acsami.2c20241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium-oxygen batteries have attracted widespread attention owing to their superior theoretical energy density. However, they are obstructed by sluggish oxygen reduction (ORR) and evolution reaction (OER) kinetics at air cathodes. Herein, different from using single solid or soluble catalysts, solid-soluble synergistic catalysis is proposed to conjointly enhance ORR/OER performances. During discharge, single-atomic zinc/cobalt embedded in nitrogen-doped carbon (Zn, Co-N/C) is judiciously engineered as a solid catalyst to regulate the growth pathway of Li2O2 and promote ORR kinetics. During charge, a typical redox mediator (RM, LiI) is added as a soluble catalyst to permit efficient oxidation of Li2O2. Of note is that the atomic Zn/Co-Nx sites can chemically adsorb oxidized iodine (I2) and accelerate OER kinetics, which plays a decisive role in eliminating the shuttle effect of I3-/I2 to the Li anode. Coupling a single-atomic catalyst with restricted oxidized iodine offers an exceptional discharge capacity, remarkably low polarization, and superior long-term cycling stability.
Collapse
Affiliation(s)
- Yan-Ni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P.R. China
| | - Zhuang Sun
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, P.R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P.R. China
| |
Collapse
|
5
|
Badam R, Shibuya M, Mantripragada BS, Ohira M, Zhou L, Matsumi N. BIAN-based durable polymer metal complex as a cathode material for Li–O2 battery applications. Polym J 2022. [DOI: 10.1038/s41428-022-00699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Semi-solid lithium/oxygen flow battery: an emerging, high-energy technology. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wang J, Zheng J, Liu X. The key to improving the performance of Li-air batteries: Recent progress and challenges of the catalysts. Phys Chem Chem Phys 2022; 24:17920-17940. [DOI: 10.1039/d2cp02212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-air batteries are considered to be one of the most promising energy storage devices due to their high energy density and large specific capacity. But the high overpotential, the sluggish...
Collapse
|
8
|
Dou Y, Xie Z, Wei Y, Peng Z, Zhou Z. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac040. [PMID: 35548381 PMCID: PMC9084180 DOI: 10.1093/nsr/nwac040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Aprotic lithium–oxygen (Li–O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li–O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li–O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li–O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li–O2 batteries.
Collapse
Affiliation(s)
- Yaying Dou
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaojun Xie
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | | | | | |
Collapse
|
9
|
Kwon G, Ko Y, Kim Y, Kim K, Kang K. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Acc Chem Res 2021; 54:4423-4433. [PMID: 34793126 DOI: 10.1021/acs.accounts.1c00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the ever-increasing demand on energy storage systems and subsequent mass production, there is an urgent need for the development of batteries with not only improved electrochemical performance but also better sustainability-related features such as environmental friendliness and low production cost. To date, transition metals that are sparse have been centrally employed in energy storage devices ranging from portable lithium ion batteries (e.g., cobalt and nickel) to large-scale redox flow batteries (e.g., vanadium). Toward the sustainable battery chemistry, there are ongoing efforts to replace the transition metal-based electrode materials in these systems to redox-active organic materials (ROMs). Most ROMs are composed of the earth abundant elements (e.g., carbon, nitrogen, oxygen, sulfur), thus are less restrained by the resource, and their production does not require high-energy consuming processes. Furthermore, the structural diversity and chemical tunability of organic compounds make them more attractive for the versatile design of future energy storage systems. Accordingly, the timely development of high-performance ROM-based electrodes would expedite the shift from the current resource-limited battery chemistry to more sustainable energy solutions.In this Account, we provide an overview of the endeavors to employ and develop ROMs as high-performance active materials for various battery systems. Diverse approaches will be introduced starting from the new ROM design mimicking the energy carrying molecules in biological metabolism to the chemical modifications to tailor the properties for specific battery systems. The molecular redesign of ROM, for example, can be carried out by substituting heteroatoms in the redox center, which leads to the enhancement of the redox potential by the inductive effect. Or, tailoring the ROM molecule by removing redox-inactive functionals results in a reduced molecular weight, thereby an increased specific capacity. The intrinsic limitations of ROMs, such as the low electrical conductivity and the dissolving nature, have been under extensive scrutiny; however, they can be partly addressed through efforts including intermolecular fusion and/or nanoscale hybridization with a conducting scaffold. On the other hand, this problematic dissolving nature of ROMs makes them appealing for some new battery configurations such as redox flow batteries that employ the liquid-state active materials. The high solubility and the stability of the ROM were found to be beneficial in attaining the enhanced energy density and the cycle stability of flow batteries, which could be further optimized by the chemical modifications of ROMs. Besides the role of active materials, the redox activity of ROMs has also enabled their use as catalysts to promote the electrode reaction in metal-air batteries. The redox capability of the ROM was often proven to be effective in the solution-based redox mediation that facilitates both the charging and discharging reaction in metal-air batteries. Finally, we conclude this account by proposing the future research directions regarding the fundamental electrochemistry and the further practical development of ROMs for the sustainable rechargeable energy storage.
Collapse
|
10
|
Lin Y, Yang Q, Geng F, Feng H, Chen M, Hu B. Suppressing Singlet Oxygen Formation during the Charge Process of Li-O 2 Batteries with a Co 3O 4 Solid Catalyst Revealed by Operando Electron Paramagnetic Resonance. J Phys Chem Lett 2021; 12:10346-10352. [PMID: 34665633 DOI: 10.1021/acs.jpclett.1c02928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries promise high energy, but the cycle life has been plagued by two major obstacles, the insulating products and highly reactive singlet oxygen (1O2), which cause higher overpotential and parasitic reactions, respectively. A solid-state catalyst is known to reduce overpotential; however, it is unclear whether it affects 1O2 generation. Herein, Co3O4 was employed as the representative catalyst in Li-O2 batteries, and 1O2 generation was investigated by ex-situ and operando electron paramagnetic resonance (EPR) spectroscopy. By comparing a carbon nanotube (CNT) cathode with a Co3O4/CNT cathode, we find that 1O2 generation in the charge process can be suppressed by the Co3O4 catalyst. After carefully studying the discharge products on the two electrodes and the corresponding decomposition processes, we conclude that a LiO2-like species is responsible for the 1O2 generation during the early charge stage. The Co3O4 catalyst reduces the amount of LiO2-like species in discharge products, and thus the 1O2 formation is suppressed.
Collapse
Affiliation(s)
- Yang Lin
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Qi Yang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Fushan Geng
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Hui Feng
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Mengdi Chen
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
11
|
Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat Chem 2021; 13:465-471. [PMID: 33723377 DOI: 10.1038/s41557-021-00643-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Aprotic alkali metal-O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.
Collapse
|
12
|
Li YN, Jiang FL, Sun Z, Yamamoto O, Imanishi N, Zhang T. Bifunctional 1-Boc-3-Iodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16437-16444. [PMID: 33788529 DOI: 10.1021/acsami.1c02192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium anode protection is an effective strategy to prohibit the continuous loss of redox mediators (RMs) resulting from the unfavorable "shuttle effect" in lithium-oxygen batteries. In this work, an in situ Li anode protection method is designed by utilizing an organic compound, 1-Boc-3-iodoazetidine (BIA), as both a RM and an additive, to form a lithium anode protective layer. The reaction between Li metal and BIA can form lithium iodide (LiI) and lithium-based organometallic. LiI can effectively reduce the charging overpotential. Meanwhile, the in situ-formed anode protection layer (lithium-based organometallic) can not only effectively prevent RMs from being reduced by the lithium metal, but also inhibit the growth of lithium dendrites. As a result, the lithium-oxygen battery with BIA shows a long cycle life of 260 cycles with a notably reduced charging potential. In particular, the battery with BIA achieves an excellent lifespan of 160 cycles at a large current density of 2000 mA g-1.
Collapse
Affiliation(s)
- Yan-Ni Li
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang-Ling Jiang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Zhuang Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Osamu Yamamoto
- Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Nobuyuki Imanishi
- Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Tao Zhang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Cremasco LF, Anchieta CG, Nepel TCM, Miranda AN, Sousa BP, Rodella CB, Filho RM, Doubek G. Operando Synchrotron XRD of Bromide Mediated Li-O 2 Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13123-13131. [PMID: 33689260 DOI: 10.1021/acsami.0c21791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Li-O2 battery technology offers large theoretical energy density, considered a promising alternative energy storage technology for a variety of applications. One of the main advances made in recent years is the use of soluble catalysts, known as redox mediators (RM), decreasing the charge overpotential and improving cyclability. Despite its potential, much is still unknown regarding its dynamic, especially over higher loading electrodes, where mass transport may be an issue and the interplay with common impurities in the electrolyte, like residual water. Here we perform for the first time an operando XRD characterization of a DMSO-based LiBr mediated Li-O2 battery with a high loading electrode based on CNTs aiming to reveal these dynamics and track chemical changes in the electrode. Our results show that, depending on the electrode architecture, the system's issue can move from catalytic to a mass transfer. We also assess the effect of residual water in the system to better understand the reaction routes. As a result, we observed that with DMSO, the system is even more sensitive to water contamination compared to glyme-based studies reported in the literature. Despite the activity of LiBr on the Li-peroxide oxidation and its contribution to cyclability, with the system and electrode configuration used in this study, we verified that a mass transfer limitation caused a cell "sudden death" caused by clogging after cycling.
Collapse
Affiliation(s)
- Leticia F Cremasco
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| | - Chayene G Anchieta
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| | - Thayane C M Nepel
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| | - André N Miranda
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| | - Bianca P Sousa
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| | - Cristiane B Rodella
- Brazilian Center for Research in Energy and Materials (CNPEM)/Brazilian Synchrotron Light Laboratory (LNLS), Campinas, São Paulo 13083-100, Brazil
| | - Rubens M Filho
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| | - Gustavo Doubek
- Advanced Energy Storage Division, Laboratory of Advanced Batteries (LAB), Center for Innovation on New Energies, School of Chemical Engineering, University of Campinas (Unicamp), Campinas, São Paulo 13083-852, Brazil
| |
Collapse
|
14
|
Ahn SM, Kim DY, Suk J, Kang Y, Kim HK, Kim DW. Mechanism for Preserving Volatile Nitrogen Dioxide and Sustainable Redox Mediation in the Nonaqueous Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8159-8168. [PMID: 33586947 DOI: 10.1021/acsami.0c17960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excessive overpotential during charging is a major hurdle in lithium-oxygen (Li-O2) battery technology. NO2-/NO2 redox mediation is an efficient way to substantially reduce the overpotential and to enhance oxygen efficiency and cycle life by suppressing parasitic reactions. Considering that nitrogen dioxide (NO2) is a gas, it is quite surprising that NO2-/NO2 redox reactions can be sustained for a long cycle life in Li-O2 batteries with such an open structure. A detailed study with in situ differential electrochemical mass spectrometry (DEMS) elucidated that NO2 could follow three reaction pathways during charging: (1) oxidation of Li2O2 to evolve oxygen, (2) vaporization, and (3) conversion into NO3-. Among the pathways, Li2O2 oxidation occurs exclusively in the presence of Li2O2, which suggests that NO2 has high reactivity to Li2O2. At the end of the charging process, most of the volatile oxidized couple (NO2) is stored by conversion to a stable third species (NO3-), which is then reused for producing the reduced couple (NO2-) in the next cycle. The dominant reaction of Li2O2 oxidation involves the temporary storage of NO2 as a stable third species during charging, which is an innovative way for preserving the volatile redox couple, resulting in a sustainable redox mediation for a high-performance Li-O2 battery.
Collapse
Affiliation(s)
- Su Mi Ahn
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Korea
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Jochiwon, Sejong 30019, Korea
| | - Do Youb Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Korea
| | - Jungdon Suk
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Korea
| | - Yongku Kang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Korea
| | - Hwan Kyu Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Jochiwon, Sejong 30019, Korea
| | - Dong Wook Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Korea
| |
Collapse
|
15
|
|
16
|
Lee B, Yoo J, Kang K. Predicting the chemical reactivity of organic materials using a machine-learning approach. Chem Sci 2020; 11:7813-7822. [PMID: 34094154 PMCID: PMC8163198 DOI: 10.1039/d0sc01328e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stability and compatibility between chemical components are essential parameters that need to be considered in the selection of functional materials in configuring a system. In configuring devices such as batteries or solar cells, not only the functionality of individual constituting materials such as electrodes or electrolyte but also an appropriate combination of materials which do not undergo unwanted side reactions is critical in ensuring their reliable performance in long-term operation. While the universal theory that can predict the general chemical reactivity between materials is long awaited and has been the subject of studies with a rich history, traditional ways proposed to date have been mostly based on simple electronic properties of materials such as electronegativity, ionization energy, electron affinity and hardness/softness, and could be applied to only a small group of materials. Moreover, prediction has often been far from accurate and has failed to offer general implications; thus it was practically inadequate as a selection criterion from a large material database, i.e. data-driven material discovery. Herein, we propose a new model for predicting the general reactivity and chemical compatibility among a large number of organic materials, realized by a machine-learning approach. As a showcase, we demonstrate that our new implemented model successfully reproduces previous experimental results reported on side-reactions occurring in lithium–oxygen electrochemical cells. Furthermore, the mapping of chemical stability among more than 90 available electrolyte solvents and the representative redox mediators is realized by this approach, presenting an important guideline in the development of stable electrolyte/redox mediator couples for lithium–oxygen batteries. Stability and compatibility between chemical components are essential parameters that need to be considered in the selection of functional materials in configuring a system.![]()
Collapse
Affiliation(s)
- Byungju Lee
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 151-742 Republic of Korea .,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Jaekyun Yoo
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 151-742 Republic of Korea
| | - Kisuk Kang
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 151-742 Republic of Korea .,Institute of Engineering Research, College of Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 151-742 Republic of Korea.,Center for Nanoparticle Research, Institute of Basic Science, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 151-742 Republic of Korea
| |
Collapse
|
17
|
Ko Y, Park H, Lee K, Kim SJ, Park H, Bae Y, Kim J, Park SY, Kwon JE, Kang K. Anchored Mediator Enabling Shuttle‐Free Redox Mediation in Lithium‐Oxygen Batteries. Angew Chem Int Ed Engl 2020; 59:5376-5380. [DOI: 10.1002/anie.201916682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Youngmin Ko
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Hyunji Park
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Kyunam Lee
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Sung Joo Kim
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Hyeokjun Park
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Youngjoon Bae
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Jihyeon Kim
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Soo Young Park
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Ji Eon Kwon
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Institute of Engineering ResearchCollege of EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Center for Nanoparticle ResearchInstitute of Basic ScienceSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
18
|
Kwak WJ, Rosy, Sharon D, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem Rev 2020; 120:6626-6683. [PMID: 32134255 DOI: 10.1021/acs.chemrev.9b00609] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal-air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li-O2 cells but include Na-O2, K-O2, and Mg-O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li-O2 cells.
Collapse
Affiliation(s)
- Won-Jin Kwak
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.,Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - Rosy
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Daniel Sharon
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chun Xia
- Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hun Kim
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Lee R Johnson
- School of Chemistry and GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K
| | - Peter G Bruce
- Departments of Materials and Chemistry, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Linda F Nazar
- Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Aryeh A Frimer
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Malachi Noked
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Stefan A Freunberger
- Institute for Chemistry and Technology of Materials, Graz University of Technology, 8010 Graz, Austria.,Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Doron Aurbach
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Ko Y, Park H, Lee K, Kim SJ, Park H, Bae Y, Kim J, Park SY, Kwon JE, Kang K. Anchored Mediator Enabling Shuttle‐Free Redox Mediation in Lithium‐Oxygen Batteries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Youngmin Ko
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Hyunji Park
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Kyunam Lee
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Sung Joo Kim
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Hyeokjun Park
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Youngjoon Bae
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Jihyeon Kim
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Soo Young Park
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Ji Eon Kwon
- Center for Supramolecular Optoelectronic Materials (CSOM)Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM)Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Institute of Engineering ResearchCollege of EngineeringSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- Center for Nanoparticle ResearchInstitute of Basic ScienceSeoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
20
|
Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 2020; 49:1569-1614. [DOI: 10.1039/c7cs00863e] [Citation(s) in RCA: 788] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review article summarizes the current trends and provides guidelines towards next-generation rechargeable lithium and lithium-ion battery chemistries.
Collapse
Affiliation(s)
- Feixiang Wu
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- China
| | - Joachim Maier
- Max Planck Institute for Solid State Research
- Stuttgart 70569
- Germany
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Materials Science and Engineering
- CAS Key Laboratory of Materials for Energy Conversion
- University of Science and Technology of China
- Hefei
| |
Collapse
|
21
|
Lai J, Xing Y, Chen N, Li L, Wu F, Chen R. Elektrolyte für wiederaufladbare Lithium‐Luft‐Batterien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jingning Lai
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
| | - Yi Xing
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
| | - Nan Chen
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
- Collaborative Innovation Center of Electric Vehicles in Beijing Peking 100081 China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
- Collaborative Innovation Center of Electric Vehicles in Beijing Peking 100081 China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
- Collaborative Innovation Center of Electric Vehicles in Beijing Peking 100081 China
| |
Collapse
|
22
|
Lai J, Xing Y, Chen N, Li L, Wu F, Chen R. Electrolytes for Rechargeable Lithium-Air Batteries. Angew Chem Int Ed Engl 2019; 59:2974-2997. [PMID: 31124264 DOI: 10.1002/anie.201903459] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 01/08/2023]
Abstract
Lithium-air batteries are promising devices for electrochemical energy storage because of their ultrahigh energy density. However, it is still challenging to achieve practical Li-air batteries because of their severe capacity fading and poor rate capability. Electrolytes are the prime suspects for cell failure. In this Review, we focus on the opportunities and challenges of electrolytes for rechargeable Li-air batteries. A detailed summary of the reaction mechanisms, internal compositions, instability factors, selection criteria, and design ideas of the considered electrolytes is provided to obtain appropriate strategies to meet the battery requirements. In particular, ionic liquid (IL) electrolytes and solid-state electrolytes show exciting opportunities to control both the high energy density and safety.
Collapse
Affiliation(s)
- Jingning Lai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi Xing
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nan Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|