1
|
Qin H, Liu R, Wang Z, Xu F, Li X, Shi C, Chen J, Shan W, Liu C, Xing P, Zhu J, Li X, Shi D. Photoinduced Bartoli Indole Synthesis by the Oxidative Cleavage of Alkenes with Nitro(hetero)arenes. Angew Chem Int Ed Engl 2025; 64:e202416923. [PMID: 39497520 DOI: 10.1002/anie.202416923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Given the unique charm of dipole chemistry, intercepting N-O=C dipoles precisely generated by designed processes to develop novel reactivity has become a seminal challenge. The polar fragmentation of 1,3,2-dioxazolidine species generated through the radical addition of excited nitro(hetero)arenes to alkenes represents a significantly underappreciated mechanism for generating N-O=C dipoles. Herein, we present a photoinduced Bartoli indole synthesis by the oxidative cleavage of alkenes with nitro(hetero)arenes. Various indoles and azaindoles are constructed through the multi-step spontaneous rearrangement of carbonyl imine intermediates generated by the polar fragmentation of 1,3,2-dioxazolidine species. Mechanism studies and DFT calculations support that the reaction involves radical cycloaddition, ozonolysis-type cycloreversion, intramolecular H-shift of carbonyl imines, and 3,3-sigmatropic shift of O-Alkenyl hydroxylamines, etc. The implementation of continuous- flow photochemistry, in particular, significantly enhances efficiency, thereby overcoming obstacles to the commercialization process.
Collapse
Affiliation(s)
- Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Feng Xu
- The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Chao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Jiqiang Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, P. R. China
| |
Collapse
|
2
|
Xu D, Wang XN, Wang L, Dai L, Yang C. Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes. Molecules 2024; 29:5661. [PMID: 39683819 DOI: 10.3390/molecules29235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts. In this short review, we aim to provide an overview of the structures of chiral ionic-liquid-supported ligands and the synthetic pathways for these ligands and catalysts. Various synthetic methodologies are demonstrated based on the conceptual frameworks of diverse chiral ionic-liquid-supported ligands. We systematically present the structures and comprehensive synthetic pathways of the chiral ionic-liquid-supported ligands and the typical corresponding transition-metal complexes that have been readily applied to asymmetric processes, categorized by their parent ligand framework. Notably, the crucial experimental procedures are delineated in exhaustive detail, with the objective of enhancing comprehension of the pivotal aspects involved in constructing chiral ionic-liquid-tagged ligands and compounds for both scholars and readers. Considering the current limitations of such ligands and catalysts, we conclude with remarks on several potential research directions for future breakthroughs in the synthesis and application of these intriguing ligands.
Collapse
Affiliation(s)
- Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Ning Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
3
|
Burke AJ, Carreiro EP. 5th International Symposium on Synthesis and Catalysis (ISySyCat2023). Beilstein J Org Chem 2024; 20:2704-2707. [PMID: 39498448 PMCID: PMC11533119 DOI: 10.3762/bjoc.20.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Affiliation(s)
- Anthony J Burke
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| |
Collapse
|
4
|
Kim KE, Comber JR, Pursel AJ, Hobby GC, McCormick CJ, Fisher MF, Marasa K, Perry B. Modular and divergent synthesis of 2, N3-disubstituted 4-quinazolinones facilitated by regioselective N-alkylation. Org Biomol Chem 2024; 22:4940-4949. [PMID: 38809109 DOI: 10.1039/d4ob00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The synthesis of a biologically relevant 2-amino-N3-alkylamido 4-quinazolinone has been accomplished in four steps from commercially available materials using design principles from both modular and divergent synthesis. N3-Alkylation of 2-chloro-4(3H)-quinazolinone using methyl bromoacetate, followed by C2-amination produced a suitable scaffold for introducing molecular diversity. Optimization of alkylation conditions afforded full regioselectivity, enabling exclusive access to the N-alkylated isomer. Subsequent C2-amination using piperidine, pyrrolidine, or diethylamine, followed by amide bond formation using variously substituted phenethylamines, generated fifteen unique 4-quinazolinones bearing C2-amino and N3-alkylamido substituents. These efforts highlight the reciprocal influence of C2 and N3 substitution on functionalization at either position, establish an effective synthetic pathway toward 2,N3-disubstituted 4-quinazolinones, and enable preliminary bioactivity studies while providing an experiential learning opportunity for undergraduate student researchers.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Jason R Comber
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Alexander J Pursel
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Grant C Hobby
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Matthew F Fisher
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Kyle Marasa
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative, Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Bu A, Gao JN, Chen Y, Xiao H, Li H, Tung CH, Wu LZ, Cong H. Modular Synthesis of Improbable Rotaxanes with All-Benzene Scaffolds. Angew Chem Int Ed Engl 2024; 63:e202401838. [PMID: 38404165 DOI: 10.1002/anie.202401838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
"Improbable" rotaxanes consisting of interlocked conjugated components represent non-trivial synthetic targets, not to mention those with all-benzene scaffolds. Herein, a modular synthetic strategy has been established using an isolable azo-linked pre-rotaxane as the core module, in which the azo group functions as a tracelessly removable template to direct mechanical bond formations. Through versatile connections of the pre-rotaxane and other customizable modules, [2]- and [3]rotaxanes derived from all-benzene scaffolds have been accomplished, demonstrating the utility and potential of the synthetic design for all-benzene interlocked supramolecules.
Collapse
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiming Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Shenvi RA. Natural Product Synthesis in the 21st Century: Beyond the Mountain Top. ACS CENTRAL SCIENCE 2024; 10:519-528. [PMID: 38559299 PMCID: PMC10979479 DOI: 10.1021/acscentsci.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
Research into natural products emerged from humanity's curiosity about the nature of matter and its role in the materia medica of diverse civilizations. Plants and fungi, in particular, supplied materials that altered behavior, perception, and well-being profoundly. Many active principles remain well-known today: strychnine, morphine, psilocybin, ephedrine. The potential to circumvent the constraints of natural supply and explore the properties of these materials led to the field of natural product synthesis. This research delivered new molecules with new properties, but also led to fundamental insights into the chemistry of the nonmetal elements H, C, N, O, P, S, Se, and their combinations, i.e., organic chemistry. It also led to a potent culture focused on bigger molecules and races to the finish line, perhaps at the expense of actionable next steps. About 20 years ago, the field began to contract in the United States. Research that focused solely on chemical reaction development, especially catalysis, filled the void. After all, new reactions and mechanistic insight could be immediately implemented by the chemistry community, so it became hard to justify the lengthy procurement of a complex molecule that sat in the freezer unused. This shift coincided with a divestment of natural product portfolios by pharmaceutical companies and an emphasis in academic organic chemistry on applications-driven research, perhaps at the expense of more fundamental science. However, as bioassays and the tools of chemical biology become widespread, synthesis finds a new and powerful ally that allows us to better deliver on the premise of the field. And the hard-won insights of complex synthesis can be better encoded digitally, mined by data science, and applied to new challenges, as chemists perturb and even surpass the properties of complex natural products. The 21st century promises powerful developments, both in fundamental organic chemistry and at the interface of synthesis and biology, if the community of scientists fosters its growth. This essay tries to contextualize natural product synthesis for a broad audience, looks ahead to its transformation in the coming years, and expects the future to be bright.
Collapse
Affiliation(s)
- Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
8
|
Wang H, Wang S, George V, Llorente G, König B. Photo‐Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angew Chem Int Ed Engl 2022; 61:e202211578. [PMID: 36226924 PMCID: PMC10099875 DOI: 10.1002/anie.202211578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/12/2022]
Abstract
We describe a photo-induced reaction for the in situ generation of highly reactive alkyl diazo species from carbonyl precursors via photo-excitation of N-tosylhydrazone anions. The diazo intermediates undergo efficient C-H insertion of aldehydes, leading to the productive synthesis of aldehydes and ketones. The method is applicable to the iterative synthesis of densely functionalized carbonyl compounds through sequential trapping of the diazo species with various aldehydes. The reaction proceeds without the need of any catalyst by light irradiation and features high functional group tolerance. More than 70 examples, some performed on a gram-scale, demonstrate the broad applicability of this reaction sequence in synthesis.
Collapse
Affiliation(s)
- Hua Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
- Department of Chemistry, School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Shun Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Vincent George
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Galder Llorente
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| |
Collapse
|
9
|
Wang B, Ren H, Cao HJ, Lu C, Yan H. A switchable redox annulation of 2-nitroarylethanols affording N-heterocycles: photoexcited nitro as a multifunctional handle. Chem Sci 2022; 13:11074-11082. [PMID: 36320483 PMCID: PMC9516892 DOI: 10.1039/d2sc03590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 09/09/2023] Open
Abstract
The efficient transformation of nitroaromatics to functional molecules such as N-heterocycles has been an attractive and significant topic in synthesis chemistry. Herein, a photoexcited nitro-induced strategy for switchable annulations of 2-nitroarylethanols was developed to construct N-heterocycles including indoles, N-hydroxyl oxindoles and N-H oxindoles. The metal- and photocatalyst-free reaction proceeds through intramolecular redox C-N coupling of branched hydroxyalkyl and nitro units, which is initiated by a double hydrogen atom abstraction (d-HAA) process. The key to the switchable reaction outcomes is the mediation of a diboron reagent by its favorable oxy-transfer reactivity to in situ generated nitroso species. The utility of this protocol was well demonstrated by broad substrate scope, excellent yields, functional group tolerance and wide applications. Finally, detailed mechanistic studies were performed, and kinetic isotope effect (KIE) experiments indicate that the homolysis of the C-H bond is involved in the rate-determining step.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University XinXiang Henan 453007 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
10
|
Tharra PR, Mikhaylov AA, Švejkar J, Gysin M, Hobbie SN, Švenda J. Short Synthesis of (+)‐Actinobolin: Simple Entry to Complex Small‐Molecule Inhibitors of Protein Synthesis. Angew Chem Int Ed Engl 2022; 61:e202116520. [DOI: 10.1002/anie.202116520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Prabhakara R. Tharra
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Andrey A. Mikhaylov
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Jiří Švejkar
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
| | - Marina Gysin
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Jakub Švenda
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| |
Collapse
|
11
|
Tharra PR, Mikhaylov AA, Švejkar J, Gysin M, Hobbie SN, Švenda J. Short Synthesis of (+)‐Actinobolin: Simple Entry to Complex Small‐Molecule Inhibitors of Protein Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prabhakara R. Tharra
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Andrey A. Mikhaylov
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Jiří Švejkar
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
| | - Marina Gysin
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology University of Zürich Gloriastrasse 30 Zürich 8006 Switzerland
| | - Jakub Švenda
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research Center St. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| |
Collapse
|
12
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
13
|
Kanoh N, Terajima Y, Tanaka S, Terashima R, Nishiyama H, Nagasawa S, Sasano Y, Iwabuchi Y, Nishimura S, Kakeya H. Toward the Creation of Induced Pluripotent Small (iPS) Molecules: Establishment of a Modular Synthetic Strategy for the Heronamide C-type Polyene Macrolactams and Their Conformational and Reactivity Analysis. J Org Chem 2021; 86:16231-16248. [PMID: 34797655 DOI: 10.1021/acs.joc.1c01760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly modular synthetic strategy for the heronamide C-type polyene macrolactams was established by synthesizing 8-deoxyheronamide C (2). The developed strategy enabled not only the total synthesis of 8-deoxyheronamide C (2) but also the unified synthesis of four heronamide-like molecules named "heronamidoids" (5-8). Conformational and reactivity analysis of the heronamidoids clarified that (1) the C19 stereochemistry mainly affected the conformation of the amide linkage, resulting in the change of alignment of two polyene units and reactivity toward photochemical [6π + 6π] cycloaddition, and (2) the C8,C9-diol moiety is important for the conversion to the heronamide A-type skeleton from the heronamide C skeleton.
Collapse
Affiliation(s)
- Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.,Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuta Terajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Suguru Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Ryusei Terashima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiromichi Nishiyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimo-Adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Kim KE, Kim AN, McCormick CJ, Stoltz BM. Late-Stage Diversification: A Motivating Force in Organic Synthesis. J Am Chem Soc 2021; 143:16890-16901. [PMID: 34614361 PMCID: PMC9285880 DOI: 10.1021/jacs.1c08920] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Alexia N Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Denton EH, Lee YH, Roediger S, Boehm P, Fellert M, Morandi B. Katalytische Carbochlorocarbonylierung von ungesättigten Kohlenwasserstoffen durch C‐COCl‐Bindungsspaltung**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elliott H. Denton
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Yong Ho Lee
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sven Roediger
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Philip Boehm
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Maximilian Fellert
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
16
|
Denton EH, Lee YH, Roediger S, Boehm P, Fellert M, Morandi B. Catalytic Carbochlorocarbonylation of Unsaturated Hydrocarbons via C-COCl Bond Cleavage*. Angew Chem Int Ed Engl 2021; 60:23435-23443. [PMID: 34432940 PMCID: PMC8596603 DOI: 10.1002/anie.202108818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/04/2022]
Abstract
Here we report a palladium‐catalysed difunctionalisation of unsaturated C−C bonds with acid chlorides. Formally, the C−COCl bond of an acid chloride is cleaved and added, with complete atom economy, across either strained alkenes or a tethered alkyne to generate new acid chlorides. The transformation does not require exogenous carbon monoxide, operates under mild conditions, shows a good functional group tolerance, and gives the isolated products with excellent stereoselectivity. The intermolecular reaction tolerates both aryl‐ and alkenyl‐substituted acid chlorides and is successful when carboxylic acids are transformed to the acid chloride in situ. The reaction also shows an example of temperature‐dependent stereodivergence which, together with plausible mechanistic pathways, is investigated by DFT calculations. Moreover, we show that benzofurans can be formed in an intramolecular variant of the reaction. Finally, derivatisation of the products from the intermolecular reaction provides a highly stereoselective approach for the synthesis of tetrasubstituted cyclopentanes.
Collapse
Affiliation(s)
- Elliott H Denton
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Yong Ho Lee
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland.,Max-Planck-Intitut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sven Roediger
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Maximilian Fellert
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland.,Max-Planck-Intitut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Synthesis and Evaluation of C2-Symmetric SPIROL-Based bis-Oxazoline Ligands. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This communication describes the synthesis of new bis-oxazoline chiral ligands (SPIROX) derived from the C2-symmetric spirocyclic scaffold (SPIROL). The readily available (R,R,R)-SPIROL (2) previously developed by our group was subjected to a three-step sequence that provided key diacid intermediate (R,R,R)-7 in 75% yield. This intermediate was subsequently coupled with (R)- and (S)-phenylglycinols to provide diastereomeric products, the cyclization of which led to two diastereomeric SPIROX ligands (R,R,R,R,R)-3a and (R,R,R,S,S)-3b in 85% and 79% yield, respectively. The complexation of (R,R,R,R,R)-3a and (R,R,R,S,S)-3b with CuCl and Cu(OTf)2 resulted in active catalysts that promoted the asymmetric reaction of α-diazopropionate and phenol. The resultant O–H insertion product was formed in 88% yield, and with excellent selectivity (97% ee) when ligand (R,R,R,R,R)-3a was used.
Collapse
|
18
|
Baudis S, Behl M. High-Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromol Rapid Commun 2021; 43:e2100400. [PMID: 34460146 DOI: 10.1002/marc.202100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Indexed: 01/22/2023]
Abstract
High-throughput (HT) development of new multifunctional polymers is accomplished by the combination of different HT tools established in polymer sciences in the last decade. Important advances are robotic/HT synthesis of polymer libraries, the HT characterization of polymers, and the application of spatially resolved polymer library formats, explicitly microarray and gradient libraries. HT polymer synthesis enables the generation of material libraries with combinatorial design motifs. Polymer composition, molecular weight, macromolecular architecture, etc. may be varied in a systematic, fine-graded manner to obtain libraries with high chemical diversity and sufficient compositional resolution as model systems for the screening of these materials for the functions aimed. HT characterization allows a fast assessment of complementary properties, which are employed to decipher quantitative structure-properties relationships. Moreover, these methods facilitate the HT determination of important surface parameters by spatially resolved characterization methods, including time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Here current methods for the high-throughput robotic synthesis of multifunctional polymers as well as their characterization are presented and advantages as well as present limitations are discussed.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Marc Behl
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| |
Collapse
|
19
|
Liu H, Ottosen RN, Jennet KM, Svenningsen EB, Kristensen TF, Biltoft M, Jakobsen MR, Poulsen TB. Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS‐STING Pathway. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Han Liu
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
- Current address: Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Rasmus N. Ottosen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kira M. Jennet
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Esben B. Svenningsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Tobias F. Kristensen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mette Biltoft
- STipe Therapeutics ApS, c/o The Kitchen Peter Sabroes Gade 7 8000 Aarhus C Denmark
| | - Martin R. Jakobsen
- STipe Therapeutics ApS, c/o The Kitchen Peter Sabroes Gade 7 8000 Aarhus C Denmark
- Department of Biomedicine Aarhus University Høegh-Guldbergs Gade 10 8000 Aarhus C Denmark
| | - Thomas B. Poulsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
20
|
Liu H, Ottosen RN, Jennet KM, Svenningsen EB, Kristensen TF, Biltoft M, Jakobsen MR, Poulsen TB. Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS-STING Pathway. Angew Chem Int Ed Engl 2021; 60:18734-18741. [PMID: 34124819 DOI: 10.1002/anie.202105793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/02/2023]
Abstract
The development of new immunomodulatory agents can impact various areas of medicine. In particular, compounds with the ability to modulate innate immunological pathways hold significant unexplored potential. Herein, we report a modular synthetic approach to the macrodiolide natural product (-)-vermiculine, an agent previously shown to possess diverse biological effects, including cytotoxic and immunosuppressive activity. The synthesis allows for a high degree of flexibility in modifying the macrocyclic framework, including the formation of all possible stereoisomers. In total, 18 analogues were prepared. Two analogues with minor structural modifications showed clearly enhanced cancer cell line selectivity and reduced toxicity. Moreover, these compounds possessed broad inhibitory activity against innate immunological pathways in human PBMCs, including the DNA-sensing cGAS-STING pathway. Initial mechanistic characterization suggests a surprising impairment of the STING-TBK1 interaction.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.,Current address: Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kira M Jennet
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Esben B Svenningsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Tobias F Kristensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Mette Biltoft
- STipe Therapeutics ApS, c/o The Kitchen, Peter Sabroes Gade 7, 8000, Aarhus C, Denmark
| | - Martin R Jakobsen
- STipe Therapeutics ApS, c/o The Kitchen, Peter Sabroes Gade 7, 8000, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
21
|
Massaro NP, Pierce JG. Rapid synthesis of the core scaffold of crinane and haemanthamine through a multi-component approach. Tetrahedron Lett 2021; 75. [PMID: 34176982 DOI: 10.1016/j.tetlet.2021.153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A rapid synthesis of the core structures of crinane and haemanthamine has been developed, enabled by a multicomponent approach. This work constitutes a formal synthesis of crinane and sets the stage for access to both families of natural products and key analogues. A key highlight of the approach is the modularity of the core synthesis, overcoming existing challenges for these scaffolds and providing a path to explore site-selective oxidation to expand the scope of molecules accessible from common intermediates.
Collapse
Affiliation(s)
- Nicholas P Massaro
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| | - Joshua G Pierce
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, NC 27695, USA
| |
Collapse
|
22
|
Fuwa H. Synthesis-Driven Stereochemical Assignment of Marine Polycyclic Ether Natural Products. Mar Drugs 2021; 19:257. [PMID: 33947080 PMCID: PMC8145320 DOI: 10.3390/md19050257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/11/2023] Open
Abstract
Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of "difficult" stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
23
|
Delayre B, Wang Q, Zhu J. Natural Product Synthesis Enabled by Domino Processes Incorporating a 1,2-Rearrangement Step. ACS CENTRAL SCIENCE 2021; 7:559-569. [PMID: 34056086 PMCID: PMC8155462 DOI: 10.1021/acscentsci.1c00075] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 05/07/2023]
Abstract
The art of natural product total synthesis is closely associated with two major determinants: the development/application of novel chemical reactions and the innovation in strategic use of classic organic reactions. While purposely seeking/applying a new synthetic methodology allowing nonconventional bond disconnections could shorten the synthetic route, the development of domino processes composed of a series of well-established reactions could also lead to a concise, practical, and aesthetically appealing synthesis. As an important class of textbook reactions, the 1,2-anionotropic rearrangements discovered at the dawn of modern organic chemistry have important bearings not only on chemical synthesis but also on the conceptual breakthroughs in the field. In its basic form, the 1,2-shift affords nothing but a constitutional isomer of the starting material and is therefore not a complexity-generating transformation. However, such a simple 1,2-shift could in fact change the molecular topology if the precursor is cleverly designed. More dramatically, it can metamorphosize the structure of the substrate when it is combined with other transformations in a domino sequence. In this Outlook, we highlight recent examples of natural product synthesis featuring a key domino process incorporating a 1,2-anionotropic rearrangement. Specifically, domino reactions integrating Wagner-Meerwein, pinacol, α-ketol, α-aminoketone, α-iminol, or benzilic acid rearrangements will be discussed.
Collapse
|
24
|
Pharande SG. The Merger of Isocyanide‐Based Multicomponent Reaction and Ring‐Closing Metathesis (IMCR/RCM). ChemistrySelect 2021. [DOI: 10.1002/slct.202004131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Pak G, Park E, Park S, Kim J. Synthesis of (+)-Hypoxylactone through Allenoate γ-Addition: Revision of Stereochemistry. J Org Chem 2020; 85:14246-14252. [PMID: 33113328 DOI: 10.1021/acs.joc.0c02194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A synthesis of (+)-hypoxylactone has been accomplished in four steps starting from the allenoate γ-addition of threo-3-chloro-2-silyoxybutanals, leading to the revision of stereochemistry. The key was the discovery of control elements required to matching/mismatching cases in the allenoate γ-addition to provide the desired adducts as a single isomer. The utility of the γ-adduct was demonstrated with the Au(I)-catalyzed cyclization to afford (+)-xylogiblactone A. Use of Ag2O was the key to epoxidation for preventing epimerization of the γ-lactone ring.
Collapse
Affiliation(s)
- Gyungah Pak
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Euijin Park
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Saehansaem Park
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jimin Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
26
|
Abstract
Daphnezomines A and B are structurally unusual Daphniphyllum alkaloids that contain a unique aza-adamantane core skeleton. Herein, a modular approach to these alkaloids is presented that exploits a diverse array of reaction strategies. Commencing from a chiral pool terpene-(S)-carvone, the azabicyclo[3.3.1]nonane backbone, which occurs widely in Daphniphyllum alkaloids, was easily accessed through a Sharpless allylic amination and a palladium-catalyzed oxidative cyclization. A protecting group enabled a stereoselective B-alkyl Suzuki-Miyaura coupling sequence and an Fe-mediated hydrogen atom transfer (HAT)-based radical cyclization were then applied to construct C6 and C8 stereocenters. A final epimer locking strategy enabled the assembly of the highly congested aza-adamantane core, thereby achieving the first total synthesis of (-)-daphnezomines A and B in 14 steps.
Collapse
Affiliation(s)
- Guangpeng Xu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yunan Lu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Kelly AM, Chen PJ, Klubnick J, Blair DJ, Burke MD. A Mild Method for Making MIDA Boronates. Org Lett 2020; 22:9408-9414. [DOI: 10.1021/acs.orglett.0c02449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aidan M. Kelly
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Peng-Jui Chen
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jenna Klubnick
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, 807 South Wright Street, Urbana, Illinois 61820, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Dr., Urbana, Illinois 61801, United States
- Arnold and Mabel Beckman Institute, University of Illinois at Urbana−Champaign, 405 North Mathews Ave., Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Kamanna K, Khatavi SY. Microwave-accelerated Carbon-carbon and Carbon-heteroatom Bond Formation via Multi-component Reactions: A Brief Overview. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218124147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry
for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in
which organic reactants react with domino in a single-step process. This has become an alternative
platform for the organic chemists, because of their simple operation, less purification methods, no side
product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon-
carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively
used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon-
carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation,
Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O,
and C-S bond are also found more important and present in various heterocyclic compounds, which
are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery
and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis
for sustainable production of diverse and structurally complex organic molecules. Reactions that
required hours to run completely in a conventional method can now be carried out within minutes.
Thus, the application of microwave (MW) radiation in organic synthesis has become more promising
considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted
organic synthesis (MAOS) has successfully been employed in various material syntheses,
such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis,
polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in
carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples
are discussed in this review.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide, and Medicinal Chemistry Research Laboratory, Rani Channamma University, P-B, NH-4, Belagavi-591156, Karnataka, India
| | - Santosh Y. Khatavi
- Department of Chemistry, Peptide, and Medicinal Chemistry Research Laboratory, Rani Channamma University, P-B, NH-4, Belagavi-591156, Karnataka, India
| |
Collapse
|
29
|
Massaro NP, Pierce JG. Stereoselective, Multicomponent Approach to Quaternary Substituted Hydroindole Scaffolds. Org Lett 2020; 22:5079-5084. [PMID: 32610919 DOI: 10.1021/acs.orglett.0c01650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Amaryllidaceae alkaloids have been a target of synthesis for decades due to their complex architectures and biological activity. A central feature of these natural product cores is a quaternary substituted hydroindole heterocycle. Building off the foundation of our previous multicomponent approach to highly functionalized pyrrolidinones, herein we report a highly convergent, diastereoselective, multicomponent approach to access the hydroindole cores present within crinine, haemanthamine, pretazettine, and various other bioactive alkaloids. These scaffolds are additionally useful as building blocks for druglike molecules and natural product like library generation.
Collapse
Affiliation(s)
- Nicholas P Massaro
- Department of Chemistry, College of Sciences, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
30
|
Kim MJ, Lee S, Kang T, Baik MH, Lee HY. Unexpected Selectivity of Intramolecular [3+2] Cycloaddition of Trimethylenemethane (TMM) Diyl toward Total Synthesis of Conidiogenone B. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Myungjo J. Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 34141 Daejeon Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); 34141 Daejeon Republic of Korea
| | - Sanghyeon Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 34141 Daejeon Republic of Korea
| | - Taek Kang
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 34141 Daejeon Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); 34141 Daejeon Republic of Korea
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 34141 Daejeon Republic of Korea
| | - Hee-Yoon Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 34141 Daejeon Republic of Korea
| |
Collapse
|
31
|
Phillips D, Brodie G, Memarzadeh S, Tang GL, France DJ. MIDA boronate allylation – synthesis of ibuprofen. RSC Adv 2020; 10:30624-30630. [PMID: 35516040 PMCID: PMC9056333 DOI: 10.1039/d0ra03338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/25/2020] [Indexed: 12/01/2022] Open
Abstract
MIDA boronates are among the most useful reagents for the Suzuki–Miyaura reaction. This chemistry typically generates new bonds between two aromatic rings, thereby restricting access to important areas of chemical space. Here we demonstrate the coupling of MIDA boronates to allylic electrophiles, including a new synthesis of the well-known COX inhibitor ibuprofen. Here we demonstrate the coupling of MIDA boronates to allylic electrophiles, including a new synthesis of the well-known COX inhibitor ibuprofen.![]()
Collapse
Affiliation(s)
| | - Glen Brodie
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | | | - Gi Lum Tang
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | | |
Collapse
|