1
|
Yasir M, Hu B, Lin TC, Matyjaszewski K. Synergistic Combination of Living Ring-Opening Metathesis Polymerization and Atom Transfer Radical Polymerization to Synthesize Structurally Tailored and Engineered Macromolecular Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39739964 DOI: 10.1021/acs.langmuir.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes. On the other hand, living ring-opening metathesis polymerization (ROMP) can produce a polymeric network with latent ATRP initiator sites in high selectivity. Herein, for the first time, we report the syntheses of STEM zero-generation (STEM-0) networks using a monomer, a cross-linker, and an ATRP/ROMP inimer via living ROMP, followed by their modification using a second monomer via ATRP to synthesize STEM first-generation (STEM-1) networks. The mechanical property and swelling capacity analyses of these networks were carried out. A change in mechanical properties and swelling capacity of these networks was observed due to their structural modification.
Collapse
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 1400 Lynch Street, Jackson, Mississippi 39217, United States
| | - Brian Hu
- Department of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ting-Chih Lin
- Department of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
3
|
Kapil K, Jazani AM, Sobieski J, Madureira LP, Szczepaniak G, Martinez MR, Gorczyński A, Murata H, Kowalewski T, Matyjaszewski K. Hydrophilic Poly(meth)acrylates by Controlled Radical Branching Polymerization: Hyperbranching and Fragmentation. Macromolecules 2024; 57:5368-5379. [PMID: 38882197 PMCID: PMC11171460 DOI: 10.1021/acs.macromol.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Topology significantly impacts polymer properties and applications. Hyperbranched polymers (HBPs) synthesized via atom transfer radical polymerization (ATRP) using inimers typically exhibit broad molecular weight distributions and limited control over branching. Alternatively, copolymerization of inibramers (IB), such as α-chloro/bromo acrylates with vinyl monomers, yields HBPs with precise and uniform branching. Herein, we described the synthesis of hydrophilic HB polyacrylates in water by copolymerizing a water-soluble IB, oligo(ethylene oxide) methyl ether 2-bromoacrylate (OEOBA), with various hydrophilic acrylate comonomers. Visible-light-mediated controlled radical branching polymerization (CRBP) with dual catalysis using eosin Y (EY) and copper complexes resulted in HBPs with various molecular weights (M n = 38 000 to 170 000) and degrees of branching (2%-24%). Furthermore, the optimized conditions enabled the successful application of the OEOBA to synthesize linear-hyperbranched block copolymers and hyperbranched polymer protein hybrids (HB-PPH), demonstrating its potential to advance the synthesis of complex macromolecular architecture under environmentally benign conditions. Copolymerization of hydrophilic methacrylate monomer, oligo(ethylene oxide) methyl ether methacrylate (OEOMA500), and inibramer OEOBA was accompanied by fragmentation via β-carbon C-C bond scission and subsequent growth of polymer chains from the fragments. Furthermore, computational studies investigating the fragmentation depending on the IB and comonomer structure supported the experimental observations. This work expands the toolkit of water-soluble inibramers for CRBP and highlights the critical influence of the inibramer structure on reaction outcomes.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Leticia P Madureira
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- PPG Industries, Inc., 4325 Rosanna Drive, Allison Park, Pennysylvania 15101, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
5
|
Bari GAKMR, Jeong JH. Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels 2024; 10:63. [PMID: 38247786 PMCID: PMC10815738 DOI: 10.3390/gels10010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Continuous worldwide demands for more clean energy urge researchers and engineers to seek various energy applications, including electrocatalytic processes. Traditional energy-active materials, when combined with conducting materials and non-active polymeric materials, inadvertently leading to reduced interaction between their active and conducting components. This results in a drop in active catalytic sites, sluggish kinetics, and compromised mass and electronic transport properties. Furthermore, interaction between these materials could increase degradation products, impeding the efficiency of the catalytic process. Gels appears to be promising candidates to solve these challenges due to their larger specific surface area, three-dimensional hierarchical accommodative porous frameworks for active particles, self-catalytic properties, tunable electronic and electrochemical properties, as well as their inherent stability and cost-effectiveness. This review delves into the strategic design of catalytic gel materials, focusing on their potential in advanced energy conversion and storage technologies. Specific attention is given to catalytic gel material design strategies, exploring fundamental catalytic approaches for energy conversion processes such as the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and more. This comprehensive review not only addresses current developments but also outlines future research strategies and challenges in the field. Moreover, it provides guidance on overcoming these challenges, ensuring a holistic understanding of catalytic gel materials and their role in advancing energy conversion and storage technologies.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
7
|
Zhao B, Li J, Li G, Yang X, Lu S, Pan X, Zhu J. Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207637. [PMID: 36707417 DOI: 10.1002/smll.202207637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The application of reversible deactivation radical polymerization techniques in 3D printing is emerging as a powerful method to build "living" polymer networks, which can be easily postmodified with various functionalities. However, the building speed of these systems is still limited compared to commercial systems. Herein, a digital light processing (DLP)-based 3D printing system via photoinduced free radical-promoted cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers, which can build "living" objects by a commercial DLP 3D printer at a relatively fast building speed (12.99 cm h-1 ), is reported. The polymerization behavior and printing conditions are studied in detail. The livingness of the printed objects is demonstrated by spatially controlled postmodification with a fluorescent monomer.
Collapse
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangliang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinrui Yang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shaopu Lu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Anderson Bainbridge CW, Hye Lee CE, Broderick N, Jin J. Mechanical modification of RAFT-based living polymer networks by photo-growth with crosslinker. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
In this work we present a study into the usage of crosslinker growth of Reversible addition-fragmentation chain-transfer polymerization (RAFT)-based Living Polymer Networks (LPNs) for the purpose of mechanical strengthening. Previous work with LPNs has thoroughly covered growth with monomers for various goals, and has touched on using a small amount of crosslinker during growth to retain mechanical strength after growth. Herein, we demonstrate growth with both purely crosslinker and purely monomer for the sake of comparison. We also show this across both symmetries of RAFT agent to see how their different growth behaviors affect the results. The asymmetric RAFT underwent a mesh-filling process during growth which resulted in both crosslinker and monomer strengthening the parent network to a similar degree. However, with the symmetric RAFT agent we saw that the crosslinker and monomer growth caused opposite effects due to their impact on the average crosslinking density; while monomer growth lowered it, growth with crosslinker increased it and strengthened the gel accordingly.
Collapse
Affiliation(s)
- Chris William Anderson Bainbridge
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| | - Chloe Eun Hye Lee
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| | - Neil Broderick
- Department of Physics , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| | - Jianyong Jin
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| |
Collapse
|
9
|
Li Z, Li J, Zhao B, Pan X, Pan X, Zhu J. Photoinduced
RAFT Step‐Growth
Polymerization toward Degradable Living Polymer Networks. CHINESE J CHEM 2023. [DOI: 10.1002/cjoc.202200620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhuang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Bowen Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaofeng Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
10
|
Zhao B, Li J, Li Z, Lin X, Pan X, Zhang Z, Zhu J. Photoinduced 3D Printing through a Combination of Cationic and Radical RAFT Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Zhuang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xia Lin
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Zhengbiao Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
11
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
12
|
Dookhith AZ, Lynd NA, Creton C, Sanoja GE. Controlling Architecture and Mechanical Properties of Polyether Networks with Organoaluminum Catalysts. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaliyah Z. Dookhith
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS UMR 7615, Sorbonne Université, 75005 Paris, France
| | - Gabriel E. Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Xiong XH, Xue LL, Wang S, Zhao SF, Guo X, Li M, Cui JX. In Situ Variation of Interpenetrating Polymer Network Topology using a Photolabile Connector. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Qiao L, Zhou M, Shi G, Cui Z, Zhang X, Fu P, Liu M, Qiao X, He Y, Pang X. Ultrafast Visible-Light-Induced ATRP in Aqueous Media with Carbon Quantum Dots as the Catalyst and Its Application for 3D Printing. J Am Chem Soc 2022; 144:9817-9826. [PMID: 35617524 DOI: 10.1021/jacs.2c02303] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoinduced atom transfer radical polymerization (ATRP) has been proved to be a versatile technique for polymer network formation. However, the slow polymerization rates of typical ATRP limited its application in the field of additive manufacturing (3D printing). In this work, we introduced carbon quantum dots (CQDs) for the first time to the ATRP in aqueous media and developed an ultrafast visible-light-induced polymerization system. After optimization, the polymerization could achieve a high monomer conversion (>90%) within 1 min, and the polydispersity index (PDI) of the polymer was lower than 1.25. This system was then applied as the first example of ATRP for the 3D printing of hydrogel through digital light processing (DLP), and the printed object exhibited good dimensional accuracy. Additionally, the excellent and stable optical properties of CQDs also provided interesting photoluminescence capabilities to the printed objects. We deduce this ATRP mediated 3D printing process would provide a new platform for the preparation of functional and stimuli-responsive hydrogel materials.
Collapse
Affiliation(s)
- Liang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengjie Zhou
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.,College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
A Photoinduced Dual‐Wavelength Approach for 3D Printing and Self‐Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Martinez MR, Zhuang Z, Treichel M, Cuthbert J, Sun M, Pietrasik J, Matyjaszewski K. Thermally Degradable Poly( n-butyl acrylate) Model Networks Prepared by PhotoATRP and Radical Trap-Assisted Atom Transfer Radical Coupling. Polymers (Basel) 2022; 14:713. [PMID: 35215627 PMCID: PMC8880605 DOI: 10.3390/polym14040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polymer topology after thermal treatment.
Collapse
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; (M.R.M.); (Z.Z.); (M.T.); (J.C.); (M.S.)
| | - Ziye Zhuang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; (M.R.M.); (Z.Z.); (M.T.); (J.C.); (M.S.)
| | - Megan Treichel
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; (M.R.M.); (Z.Z.); (M.T.); (J.C.); (M.S.)
| | - Julia Cuthbert
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; (M.R.M.); (Z.Z.); (M.T.); (J.C.); (M.S.)
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; (M.R.M.); (Z.Z.); (M.T.); (J.C.); (M.S.)
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; (M.R.M.); (Z.Z.); (M.T.); (J.C.); (M.S.)
| |
Collapse
|
17
|
Abstract
The careful mapping of photoinduced reversible-deactivation radical polymerizations (RDRP) is a prerequisite for their applications in soft matter materials design. Here, we probe the wavelength-dependent behavior of photochemically induced atom transfer radical polymerization (ATRP) using nanosecond pulsed-laser polymerization (PLP). The photochemical reactivities at identical photon fluxes of methyl acrylate in terms of conversion, number-average molecular weight, and dispersity of the resulting polymers are mapped against the absorption spectrum of the copper(II) catalyst in the range of 305-550 nm. We observe a red shift of the action spectrum relative to the absorption spectrum of the copper(II) catalyst. Both the number-average molecular weight and the dispersity show a wavelength dependence, while the molecular weight and conversion remain linearly correlated. The reported data allow the judicious selection of optimum wavelengths for photoATRP.
Collapse
Affiliation(s)
- Martina Nardi
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Organic Chemistry Institute and Centre for Advanced Materials, University of Heidelberg, In Neuenheimer Feld 270 and 225, 69219 Heidelberg, Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
18
|
Shi X, Zhang J, Corrigan N, Boyer C. Controlling mechanical properties of 3D printed polymer composites through photoinduced reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01283e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has been exploited to design silica-nanoparticle-incorporated photocurable resins for 3D printing of materials with enhanced mechanical properties and complex structures.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Bainbridge CWA, Wangsadijaya A, Broderick N, Jin J. Living Polymer Networks Prepared by Controlled Radical Polymerization Techniques. Polym Chem 2022. [DOI: 10.1039/d1py01692j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled radical polymerization (CRP) techniques have become widely accepted and used in polymer research and development. While much has been done towards their traditional usage in linear and branched systems,...
Collapse
|
20
|
Zhang Z, Corrigan N, Boyer C. A Photoinduced Dual-Wavelength Approach for 3D Printing and Self-Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2021; 61:e202114111. [PMID: 34859952 DOI: 10.1002/anie.202114111] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Vat photopolymerization-based 3D printing techniques have been widely used to produce high-resolution 3D thermosetting materials. However, the lack of repairability of these thermosets leads to the production of waste. In this study, reversible addition fragmentation chain transfer (RAFT) agents are incorporated into resin formulations to allow visible light (405 nm) mediated 3D printing of materials with self-healing capabilities. The self-healing process is based on the reactivation of RAFT agent embedded in the thermosets under UV light (365 nm), which enables reformation of the polymeric network. The self-healing process can be performed at room temperature without prior deoxygenation. The impact of the type and concentration of RAFT agents in the polymer network on the healing efficiency is explored. Resins containing RAFT agents enable 3D printing of thermosets with self-healing properties, broadening the scope of future applications for polymeric thermosets in various fields.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Kütahya C, Meckbach N, Strehmel V, Strehmel B. Cyanines comprising barbiturate group facilitate
NIR‐light
assisted
ATRP
under anaerobic and aerobic conditions at two wavelengths using Fe(
III
) catalyst. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ceren Kütahya
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Nicolai Meckbach
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Veronika Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Bernd Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| |
Collapse
|
22
|
Bagheri A, Fellows CM, Boyer C. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003701. [PMID: 33717856 PMCID: PMC7927619 DOI: 10.1002/advs.202003701] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Indexed: 05/04/2023]
Abstract
3D printing has changed the fabrication of advanced materials as it can provide customized and on-demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization-based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP-based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable-polymer networks. Herein, the advantages of RDRP-based networks over irreversibly formed conventional networks are discussed.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
| | - Christopher M. Fellows
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
- Desalination Technologies Research InstituteAl Jubail31951Kingdom of Saudi Arabia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
23
|
Zhang Y, Xu Y, Simon-Masseron A, Lalevée J. Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chem Soc Rev 2021; 50:3824-3841. [PMID: 33523055 DOI: 10.1039/d0cs01411g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radical initiation upon LED light irradiation is discussed herein as well as its application in additive manufacturing. The ability of manufacturing complex structures, freedom of design, low energy consumption, fast prototyping, and excellent spatial resolution are the main benefits of the 3D printing technology by photopolymerization. Therefore, the 3D printing of composites through photopolymerization processes is developing rapidly in the academia and industry, and has been a turning point of additive manufacturing (AM). In the present review, an overview of radical initiation with LEDs (i.e., the photopolymerization LED technology, the photoinitiating systems, and the polymerizable media) and of the main 3D printing methods by photopolymerization, materials, and their applications in different fields has been carried out. As a challenging topic, the issue of light penetration in a filled matrix for the access to composites is discussed, including the light transmittance of the composite, the mismatch of the refractive index between the filler and the monomer, the factors of the filler, and the adverse influence of low light penetration on the 3D printing process. In particular, the popular applications of 3D printing by photopolymerization in biomedical science, electronic industry, materials for adsorption, and 4D printing are discussed. Overall, this review gives an overview of the 3D printing of polymer matrix composites through photopolymerization processes as a benchmark for future research and development.
Collapse
Affiliation(s)
- Yijun Zhang
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.
| | | | | | | |
Collapse
|
24
|
St Thomas C, Elizalde LE, Regalado EJ, De Jesús-Téllez MA, Festag G, Schubert US, Guerrero-Sánchez C. Understanding the influence of chemical structure and length of hydrophobic blocks on the rheological properties of associative copolymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Understanding the origin of softness in structurally tailored and engineered macromolecular (STEM) gels: A DPD study. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Patrickios CS, Matyjaszewski K. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. POLYM INT 2020. [DOI: 10.1002/pi.6138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
28
|
|