1
|
Li S, Gao C, Yu H, Wang Y, Wang S, Ding W, Zhang L, Yu J. Vinylene-Linked Donor-π-Acceptor Metal-Covalent Organic Framework for Enhanced Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202409925. [PMID: 39225195 DOI: 10.1002/anie.202409925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Intramolecular charge separation driving force and linkage chemistry between building blocks are critical factors for enhancing the photocatalytic performance of metal-covalent organic framework (MCOF) based photocatalyst. However, robust achieving both simultaneously has yet to be challenging despite ongoing efforts. Here we develop a fully π-conjugated vinylene-linked multivariate donor-π-acceptor MCOF (D-π-A, termed UJN-1) by integrating benzyl cyanides linker with multiple functional building blocks of electron-rich triphenylamine and electron-deficient copper-cyclic trinuclear units (Cu-CTUs) moieties, featuring with strong intramolecular charge separation driving force, extended conjugation degree of skeleton, and abundant active sites. The incorporation of Cu-CTUs acceptor with electron-withdrawing ability and concomitantly giant charge separation driving force can efficiently accelerate the photogenerated electrons transfer from triphenylamine to Cu-CTUs, revealing by experiments and theoretical calculations. Benefiting from the synergistically effect of D-π-A configuration and vinylene linkage, the highly-efficient charge spatial separation is achieved. Consequently, UJN-1 exhibits an excellent CO formation rate of 114.8 μmol g-1 in 4 h without any co-catalysts or sacrificial reagents under visible light, outperforming those analogous MCOFs with imine-linked (UJN-2, 28.9 μmol g-1) and vinylene-linked COF without Cu-CTU active sites (UJN-3, 50.0 μmol g-1), emphasizing the role of charge separation driving force and linkage chemistry in designing novel COFs-based photocatalyst.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuwen Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Wenwen Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
2
|
Chen Y, Jiang D. Photocatalysis with Covalent Organic Frameworks. Acc Chem Res 2024; 57:3182-3193. [PMID: 39370855 DOI: 10.1021/acs.accounts.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
ConspectusUtilizing light to enable chemical conversions presents a green and sustainable approach to produce fuels and chemicals, and photocatalysis is one of the key chemical technologies that needs to be well developed in this century. Despite continuous progress in the advancement of various photocatalysts based on small inorganic and organic compounds, polymers, and networks, designing and constructing photocatalysts that combine activity, selectivity, and reusability remains a challenging goal. For catalytic activity, the difficulty originates from the complexity of photochemical reactions, where the light-harvesting system, multielectron and multihole-involving processes, and pinpoint mass delivery simultaneously need to be established in the system. For selectivity, the difficulty stems from the elaborate design of catalytic sites and space, especially their orbital energy levels, spatial arrangement, and environment; developing a molecular strategy that enables an overall design and control of these factors of different aspects is necessary yet arduous. For reusability, the difficulty arises from the stability and recyclability of the photocatalysts upon continuous operation under photoredox reaction conditions. How to recover photocatalysts in an energy-saving way to enable their cyclic use while retaining activity and selectivity is at the core of this problem. These bottleneck issues reflect that molecular design of a photocatalyst is not a simple summation of the above requirements, but a systematic scheme that can organically interlock various aspects is needed.To enable such an elaborate design and precise control, a basic requirement of the scaffold for constructing a promising photocatalyst is that its primary and high-order structures should be molecularly predesignable and synthetically controllable. Such a molecular regime has successfully evolved in natural photosynthesis, where light-harvesting chlorophyll antennae and photocatalytic centers are spatially well-organized and energetically well-defined to build ways for exciton migration, photoinduced electron transfer and charge separation, electron and hole flows, and oxidation of water and reduction of carbon dioxide, thereby converting water into oxygen to release ATP and NADPH via the light reaction and carbon dioxide into glucose with ATP and NADPH through the dark reaction. Similarly, a predesignable polymeric scaffold would be promising for integrating these complex photochemical processes to construct photocatalysts.Covalent organic frameworks (COFs) are a class of extended yet polymeric materials that enable the organization of organic units or metallo-organic moieties into well-defined architectures. In principle, COFs are molecularly designable with topology diagrams and synthetically controllable through polymerization reactions, offering an irreplaceable platform for designing and synthesizing photocatalysts. This feature enticed researchers to develop various photocatalysts based on COFs and drove the rapid progress in this field over the past decade. In this Account, we summarize the recent advances in the molecular design and synthetic control of COF photocatalysts, by highlighting the key achievements in developing ways to enable light harvesting, trigger photoinduced electron transfer and charge separation, allow charge carrier transport and mass delivery, control energy level, catalytic space, and environmental engineering, and develop stability and recyclability with an aim to reveal a full picture of this field. By scrutinizing typical photocatalytic reactions, we show the key problems to be addressed for COFs and predict future directions.
Collapse
Affiliation(s)
- Yongzhi Chen
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
3
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
4
|
Cheng YZ, Yang DH, Ji W, Hao PY, Ma P, Wang J, Niu J, Ding X, Zhang L, Han BH. Restricted Growth of Vinylene-Linked Covalent Organic Frameworks along Two-Dimensional Plane Using Heterogeneous Catalysis. J Am Chem Soc 2024; 146:22959-22969. [PMID: 39106438 DOI: 10.1021/jacs.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The vinylene-linked covalent organic frameworks (viCOFs) have been generally synthesized in the presence of homogeneous catalysts such as KOH or trifluoroacetic acid. However, highly ordered viCOFs cannot always be obtained due to the uncommitted growth of viCOF layers in the homogeneous system with ubiquitous catalysts. Here, we propose a scalable protocol to restrict the growth of viCOFs along the two-dimensional (2D) plane by introducing a heterogeneous catalyst, polyoxometalates (POMs). With the unique Brønsted alkalinity and catalytic surface, POMs induce the growth of 2D viCOF layers along the surface of the catalytic substrate and restrain the generation of out-of-plane branches. Based on this protocol, six typical 2D viCOFs with high crystallinity and porosity were synthesized within a shorter reaction time as compared with the reported works using the common homogeneous catalysts for viCOF synthesis. On the basis of the density functional theory calculations and experimental results, a bottom intercalation growth pattern of viCOFs was revealed during the heterogeneous reaction. The unique growth pattern greatly promotes the orderly assembly of monomers, thus shortening the reaction time and improving the crystallinity of viCOFs. Furthermore, this heterogeneous catalysis strategy is suitable for the gram-scale preparation of 2D viCOFs. These results provide a novel avenue for the synthesis of high-quality viCOFs and may bring new insights into the synthetic methodology of COFs.
Collapse
Affiliation(s)
- Yuan-Zhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenyan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Peng-Yuan Hao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lizhi Zhang
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Mou K, Meng F, Zhang Z, Li X, Li M, Jiao Y, Wang Z, Bai X, Zhang F. Pyridazine-Promoted Construction of Vinylene-Linked Covalent Organic Frameworks with Exceptional Capability of Stepwise Water Harvesting. Angew Chem Int Ed Engl 2024; 63:e202402446. [PMID: 38859748 DOI: 10.1002/anie.202402446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
In this study, we successfully developed two novel vinylene-linked covalent organic frameworks (COFs) using 2-connected 3,6-dimethylpyridazine through Knoevenagel condensation. These COFs featured finely tailored micro-/nano-scale pore sizes, high surface areas and stable non-polar vinylene linkages. Finely resolved powder X-ray diffraction patterns demonstrated highly crystalline structures with a hexagonal lattice in the AA layer stacking. The resulting one-dimensional channels possess strong hydrogen-bond accepting sites arising from the decorated cis-azo/azine units with two pairs of fully exposed lone pair electrons, endowing the as-prepared COFs with exceptional water absorption properties. The g-DZPH-COF exhibited successive steep water uptake steps starting from low relative pressures (P/PSTA=0.1), with the remarkable water uptake capacity of 0.26 g/g at P/PSTA=0.2 (25 °C), which is the optimal value recorded among the reported COFs. Dynamic vapour sorption measurements revealed the fast kinetics of these COFs, even in the cluster formation process. Water uptake and release cycling tests demonstrated their outstanding hydrolytic stability, durability, and adsorption-desorption retention ability.
Collapse
Affiliation(s)
- Kaiwen Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiheng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xue Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
He T, On IKW, Bi S, Huang Z, Guo J, Wang Z, Zhao Y. Crystalline Olefin-Linked Chiral Covalent Organic Frameworks as a Platform for Asymmetric Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405769. [PMID: 38656752 DOI: 10.1002/anie.202405769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
The construction of olefin-linked chiral covalent organic frameworks (COFs) with high crystallinity is highly desirable while remains great challenge due to the poor reversibility of the formation reaction for the olefin linkages during the in situ structural self-healing process. Herein, we successfully synthesized two sets of enantiomeric olefin-linked COFs. The chiral catalytic groups are uniformly distributed on the pore walls of COFs, resulting in the full exposure of catalytic sites to the reactants in asymmetric catalysis. The as-prepared (R)/(S)-CCOF8 exhibits excellent catalytic performance with exceeding 99 % enantiomeric excess in the enantioselective electrophilic amination reaction. Moreover, the heterogeneous chiral catalysts are conveniently recycled and could maintain the performance after ten catalytic cycles. Our findings expand the scope to construct stable and crystalline chiral COFs for the asymmetric catalysis.
Collapse
Affiliation(s)
- Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ivan Keng Wee On
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shuai Bi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ziyue Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhifang Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Zhen D, Liu C, Deng Q, Li L, Grimes CA, Yang S, Cai Q, Liu Y. Novel Olefin-Linked Covalent Organic Framework with Multifunctional Group Modification for the Fluorescence/Smartphone Detection of Uranyl Ion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27804-27812. [PMID: 38756089 DOI: 10.1021/acsami.4c05522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Monitoring and purification of uranium contamination are of great importance for the rational utilization of uranium resources and maintaining the environment. In this work, an olefin-linked covalent organic framework (GC-TFPB) and its amidoxime-modified product (GC-TFPB-AO) are synthesized with 3-cyano-4,6-dimethyl-2-hydroxypyridine (GC) and 1,3,5-tris(4-formylphenyl) benzene (TFPB) by Knoevenagel condensation. GC-TFPB-AO results in specificity for rapid fluorescent/smartphone uranyl ion (UO22+) detection based on the synergistic effect of multifunctional groups (amidoxime, pyridine, and hydroxyl groups). GC-TFPB-AO features a rapid and highly sensitive detection and adsorption of UO22+ with a detection limit of 21.25 nM. In addition, it has a good recovery (100-111%) for fluorescence detection in real samples, demonstrating an excellent potential of predesigned olefin-linked fluorescent COFs in nuclear contaminated wastewater detection and removal.
Collapse
Affiliation(s)
- Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Chunlin Liu
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qiuhui Deng
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Craig A Grimes
- Flux Photon Corporation, 5950 Shiloh Road East, Alpharetta, Georgia 30005, United States
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yu Liu
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
8
|
Prieto T, Ponte C, Guntermann R, Medina DD, Salonen LM. Synthetic Strategies to Extended Aromatic Covalent Organic Frameworks. Chemistry 2024:e202401344. [PMID: 38771916 DOI: 10.1002/chem.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
π-Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis using large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF π-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.
Collapse
Affiliation(s)
- Tania Prieto
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
| | - Clara Ponte
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Laura M Salonen
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
| |
Collapse
|
9
|
Yang N, Yan W, Zhou ZJ, Tian C, Zhang P, Liu H, Wu XP, Xia C, Dai S, Zhu X. Synthetic Leaves Based on Crystalline Olefin-Linked Covalent Organic Frameworks for Efficient CO 2 Photoreduction with Water. NANO LETTERS 2024; 24:5444-5452. [PMID: 38639448 DOI: 10.1021/acs.nanolett.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We report, for the first time, a new synthetic strategy for the preparation of crystalline two-dimensional olefin-linked covalent organic frameworks (COFs) based on aldol condensation between benzodifurandione and aromatic aldehydes. Olefin-linked COFs can be facilely crystallized through either a pyridine-promoted solvothermal process or a benzoic anhydride-mediated organic flux synthesis. The resultant COF leaf with high in-plane π-conjugation exhibits efficient visible-light-driven photoreduction of carbon dioxide (CO2) with water (H2O) in the absence of any photosensitizer, sacrificial agents, or cocatalysts. The production rate of carbon monoxide (CO) reaches as high as 158.1 μmol g-1 h-1 with near 100% CO selectivity, which is accompanied by the oxidation of H2O to oxygen. Both theoretical and experimental results confirm that the key lies in achieving exceptional photoinduced charge separation and low exciton binding. We anticipate that our findings will facilitate new possibilities for the development of semiconducting COFs with structural diversity and functional variability.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenkai Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zi-Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Honglai Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
S S, Rajamohan N, S S, R A, M R. Sustainable remediation of pesticide pollutants using covalent organic framework - A review on material properties, synthesis methods and application. ENVIRONMENTAL RESEARCH 2024; 246:118018. [PMID: 38199472 DOI: 10.1016/j.envres.2023.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Covalent organic frameworks (COF) have emerged as a potential class of materials for a variety of applications in a wide number of sectors including power storage, environmental services, and biological applications due to their ordered and controllable porosity, large surface area, customizable structure, remarkable stability, and diverse electrical characteristics. COF have received a lot of attention in recent years in the field of environmental remediation, It also find its way to eliminate the emerging pollutant from the environment notably pesticide from polluted water. This review more concentrated on the application of COF in pesticide removal by modifying COF structure, COF synthesis and material properties. To increase the adsorption ability and selectivity of the material towards certain pesticides removal, the synthesis of COF involves organic linkers with various functional groups such as amine, carboxylic acid groups etc. The COF have a high degree of stability and endurance make them suitable for intermittent usage in water treatment applications. This review manifests the novel progress where modified COFs employed in a prominent manner to remove pesticides from polluted water. Some examples of COF application in the eradication of pesticides are triformyl phenylene framework functionalized with amine groups has capacity to remove up to 50 mg/l of Organophosphorus - chlorpyrifos. COF modified to improve their photocatalytic capacity to breakdown the pesticide under visible light irradiation. COF tetraphenyl ethylene linked with carboxylic acid group shows efficient photocatalytic degradation of 90% of organochlorine insecticide endosulfan when subjected to visible light. Atrazine and imidacloprid are reduced from 100 ppm to 1 ppm in aqueous solutions by COF based on high adsorption capacity. In addition, the strategies, technique, synthesis and functional group modification design of COF are discussed.
Collapse
Affiliation(s)
- Sujatha S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - Sanjay S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Abhishek R
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
12
|
Gu CC, Ni CQ, Wu RJ, Deng L, Zou J, Li H, Tong CY, Xu FH, Weng BC, Zhu RL. Donor-acceptor moiety functionalized covalent organic frameworks for boosting charge separation and H 2 photogeneration. J Colloid Interface Sci 2024; 658:450-458. [PMID: 38118191 DOI: 10.1016/j.jcis.2023.12.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/22/2023]
Abstract
Covalent organic frameworks (COFs) have a broad prospect to be used as a photocatalytic platform to convert solar energy into valuable chemicals due to their tunable structures and rich active catalytic sites. However, constructing COFs with tuned sp2-carbon donor-acceptor moiety remains an enormous challenge. Herein, we synthesized two new fully π-conjugated cyano-ethylene-linked COFs containing benzotrithiophene as functional group by Knoevenagel polycondensation reaction. The accetpor 2,2'-bipyridine unit in BTT-BpyDAN-COF skeleton favored the formation of a intermolecular specific electron transport pathway with the donor benzotrithiophene, and thereby promoted charge separation and transfer efficiency. Specifically, a donor-acceptor (D-A) type BTT-BpyDAN-COF exhibited high hydrogen evolution rate of 10.1 mmol g-1h-1 and an excellent apparent quantum efficiency of 4.83 % under visible light irradiation.
Collapse
Affiliation(s)
- Chang-Cheng Gu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chen-Quan Ni
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Run-Juan Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lu Deng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Zou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Li
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Yi Tong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng-Hua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bai-Cheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ri-Long Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
13
|
Cheng J, Wu Y, Zhang W, Zhang J, Wang L, Zhou M, Fan F, Wu X, Xu H. Fully Conjugated 2D sp 2 Carbon-Linked Covalent Organic Frameworks for Photocatalytic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305313. [PMID: 37818737 DOI: 10.1002/adma.202305313] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Indexed: 10/13/2023]
Abstract
Covalent organic frameworks (COFs) hold great promise for solar-driven hydrogen production. However, metal-free COFs for photocatalytic overall water splitting remain elusive, primarily due to challenges in simultaneously regulating their band structures and catalytic sites to enable concurrent half-reactions. Herein, two types of π-conjugated COFs containing the same donor-acceptor structure are constructed via Knoevenagel condensation and Schiff base reaction to afford cyanovinylene- and imine-bridged COFs, respectively. The difference in the linkage leads to a remarkable difference in their photocatalytic activity toward water splitting. The 2D sp2 carbon-linked COF exhibits notable activity for photocatalytic overall water splitting, which can reach an apparent quantum efficiency of 2.53% at 420 nm. In contrast, the 2D imine-linked COF cannot catalyze the overall water-splitting reaction. Mechanistic investigations reveal that the cyanovinylene linkage is essential in modulating the band structure and promoting charge separation in COFs, thereby enabling overall water splitting. Moreover, it is further shown that crystallinity substantially impacts the photocatalytic performance of COFs. This study represents the first successful example of developing metal-free COFs with high crystallinity for photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuting Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Chean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Chean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
14
|
Wei J, Shao X, Guo J, Zheng Y, Wang Y, Zhang Z, Chen Y, Li Y. Rapid and selective removal of aristolochic acid I in natural products by vinylene-linked iCOF resins. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132140. [PMID: 37734311 DOI: 10.1016/j.jhazmat.2023.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023]
Abstract
Rapid, efficient, and selective removal of toxicants such as aristolochic acid I (AAI) from complex natural product systems is of great significance for the safe use of herbal medicines or medicine-food plants. Addressing this challenge, we develop a high-performance separation approach based on ionic covalent organic frameworks (iCOFs) to separate and remove AAI. Two vinylene-linked iCOFs (NKCOF-46-Br- and NKCOF-55-Br-) with high crystallinity are fabricated in a green and scalable fashion via a melt polymerization synthesis method. The resulting materials exhibit a uniform morphology, high stability, fast equilibrium time, and superior affinity and selectivity for AAI. Compared to conventional separation media, NKCOF-46-Br- and NKCOF-55-Br- achieve the record high adsorption capacities of 246.0 mg g-1 and 178.4 mg g-1, respectively. Various investigations reveal that the positively charged framework and favorable pore microenvironment of iCOFs contribute to their high selectivity and adsorption efficiency. Moreover, the iCOFs exhibit excellent biocompatibility by in vivo toxicity assays. This study paves a new avenue for the rapid, selective and efficient removal of toxicants from complex natural systems.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanxue Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Fan Y, Kang DW, Labalme S, Lin W. A Spirobifluorene-Based Covalent Organic Framework for Dual Photoredox and Nickel Catalysis. J Am Chem Soc 2023; 145:25074-25079. [PMID: 37934955 DOI: 10.1021/jacs.3c09729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as tunable, crystalline, and porous functional organic materials, but their application in photocatalysis has been limited by rapid excited-state quenching. Herein, we report the first example of dual photoredox/nickel catalysis by an sp2 carbon-conjugated spirobifluorene-based COF. Constructed from spirobifluorene and nickel-bipyridine linkers, the NiSCN COF adopted a two-dimensional structure with staggered stacking. Under light irradiation, NiSCN catalyzed amination and etherification/esterification reactions of aryl halides through the photoredox mechanism, with a catalytic efficiency more than 23-fold higher than that of its homogeneous control. NiSCN was used in five consecutive reactions without a significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Li L, Yang H, Peng H, Lei Z, Xu Y. Covalent Organic Frameworks in Aqueous Zinc-Ion Batteries. Chemistry 2023; 29:e202302502. [PMID: 37621027 DOI: 10.1002/chem.202302502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
The development and utilization of green renewable energy are imperative with the aggravation of environmental pollution and energy crisis. In recent years, the exploration of electrochemical energy storage systems has gradually become a research hotspot in energy. Among them, aqueous zinc-ion batteries (ZIBs) have progressively developed into highly competitive and efficient energy storage devices owing to their inherent safety, natural abundance, and higher theoretical capacity. However, the practical application of ZIBs suffers from the limitation of challenges such as the absence of proper cathode materials and the unavoidable zinc dendrites and side reactions of Zn anode. Covalent organic frameworks (COFs) are an attractive class of electrode materials due to their inherent advantages, like structural designability, high stability, and ordered-open channels, bestowing them with great potential to overcome the problems of ZIBs. In this review, we concentrate on the discussion of designed strategies of COFs applied to ZIBs. Furthermore, the methods of using COFs to solve the challenging problems of cathode development, anode modification, and electrolyte optimization for ZIBs are summarized. Finally, the existing difficulties, solution measures, and prospects of COFs for ZIBs applications are discussed. Our commentary hopes to serve as a valuable reference for developing COFs-based ZIBs.
Collapse
Affiliation(s)
- Lihua Li
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Haohao Yang
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Hui Peng
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Yuxi Xu
- Institute of Advanced Technology, Westlake Institute for Advanced Study, School of Engineering, Westlake University, 310024, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
17
|
He T, Zhao Y. Covalent Organic Frameworks for Energy Conversion in Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202303086. [PMID: 37093128 DOI: 10.1002/anie.202303086] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/25/2023]
Abstract
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2 O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.
Collapse
Affiliation(s)
- Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
18
|
He T, Liu R, Wang S, On IKW, Wu Y, Xing Y, Yuan W, Guo J, Zhao Y. Bottom-Up Design of Photoactive Chiral Covalent Organic Frameworks for Visible-Light-Driven Asymmetric Catalysis. J Am Chem Soc 2023; 145:18015-18021. [PMID: 37551439 DOI: 10.1021/jacs.3c05732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The development of chiral covalentorganic framework catalysts (CCOFs) to synthesize enantiopure organic compounds is crucial and highly desirable in synthetic chemistry. Photocatalytic asymmetric reactions based on CCOFs are eco-friendly and sustainable while they are still elaborate. In this work, we report a general bottom-up strategy to successfully synthesize several photoactive CCOFX (X = 1-5 and 1-Boc). The photoactive porphyrin building blocks are selected as knots and various secondary-amine-based chiral catalytic centers are immobilized on the pore walls of CCOFX through a rational design of benzoimidazole linkers. The porphyrin units act as light-harvesting antennae to generate photo-induced charge carriers for the activation of bromide during the photocatalytic asymmetric alkylation of aldehydes. Meanwhile, various aldehydes are activated by the chiral secondary amine to form the target products with a high yield (up to 97%) and ee value (up to 93%). The results significantly expand the scope to predesign CCOF photocatalysts for visible-light-driven asymmetric catalysis.
Collapse
Affiliation(s)
- Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faulty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Ivan Keng Wee On
- Department of Chemistry, Faulty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yi Xing
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
19
|
Ji H, Qiao D, Yan G, Dong B, Feng Y, Qu X, Jiang Y, Zhang X. Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37845-37854. [PMID: 37489898 DOI: 10.1021/acsami.3c08250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 μmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
20
|
Ji H, Li M, Yan G, Qiao D, Dong B, Feng Y, Qu X, Shi J, Zhang X. Thiadiazole-Derived Covalent Organic Framework Macroscopic Ultralight Aerogel. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37487247 DOI: 10.1021/acsami.3c08351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Shaping covalent organic frameworks (COFs) into macroscopic objects for practical application remains a huge challenge. Herein, a new thiadiazole-derived COF macroscopic ultralight aerogel (NNS-VCOF) was prepared through acid-catalyzed aldol condensation between 2,5-dimethyl-1,3,4-thiadiazole and a tritopic aromatic aldehyde derivative. NNS-VCOF aerogel shows extremely low density (ca. 0.020 g cm-3), excellent mechanical properties (compression modulus of 16.65 kPa), thermal insulation properties (low thermal conductivity of 0.03270 W m-1 K-1 at 25 °C), and flame retardancy (quickly self-extinguishing after ignition) due to its three-dimensional sponge-like architecture and special nitrogen heterocyclic framework. To our delight, NNS-VCOF aerogel not only can be used as an outstanding macroscopic material but also shows efficient photocatalytic hydrogen evolution properties in a powder state because of the superhydrophilicity and appropriate optical properties.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
21
|
Haldar S, Schneemann A, Kaskel S. Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. J Am Chem Soc 2023. [PMID: 37307595 DOI: 10.1021/jacs.3c01131] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Redox-active covalent organic frameworks (COFs) have recently emerged as advanced electrodes in polymer batteries. COFs provide ideal molecular precision for understanding redox mechanisms and increasing the theoretical charge-storage capacities. Furthermore, the functional groups on the pore surface of COFs provide highly ordered and easily accessible interaction sites, which can be modeled to establish a synergy between ex situ/in situ mechanism studies and computational methods, permitting the creation of predesigned structure-property relationships. This perspective integrates and categorizes the redox functionalities of COFs, providing a deeper understanding of the mechanistic investigation of guest ion interactions in batteries. Additionally, it highlights the tunable electronic and structural properties that influence the activation of redox reactions in this promising organic electrode material.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Dresden 01277, Germany
| |
Collapse
|
22
|
Xu Y, Yu Z, Zhang Q, Luo F. Sulfonic-Pendent Vinylene-Linked Covalent Organic Frameworks Enabling Benchmark Potential in Advanced Energy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300408. [PMID: 36859764 PMCID: PMC10161031 DOI: 10.1002/advs.202300408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Both proton exchange membrane fuel cells and uranium-based nuclear techniques represent two green and advanced energies. However, both of them still face some intractable scientific and industrial problems. For the former, established proton-conduction materials always suffer one or another defect such as low proton conductivity, high activation energy, bad durability, or just small-scale product; while for the later, there still lacks available adsorbent to selectively recover of UO2 2+ from concentrated nitric acid (>1 M) during the spent fuel reprocessing due to the deactivation of the adsorption site or the decomposition of adsorbent under such rigorous conditions. It is found that the above two issues can be well solved by the construction of sulfonic-pendent vinylene-linked covalent organic frameworks (COFs), since these COFs contain abundant sulfonic units for both intrinsic proton conduction and UO2 2+ capture through strong coordination fixation and vinylene linkage that enhances the stability up to 12 M nitric acid (one of the best materials surviving in 12 M HNO3 ).
Collapse
Affiliation(s)
- Ying Xu
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhiwu Yu
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei, Anhui, 230031, China
| | - Qingyun Zhang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Feng Luo
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
23
|
Zhang Y, Liu H, Sun B. High-precision luminescent covalent organic frameworks with sp 2-carbon connection for visual detecting of nereistoxin-related insecticide. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130866. [PMID: 36753911 DOI: 10.1016/j.jhazmat.2023.130866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A new strategy for nereistoxin-related insecticide, cartap, detection in foodstuff and the environment is of great importance due to its poisoning of human beings through direct exposure or via biomagnification. Herein, a highly planar conjugated sp2 carbon-connected COF (F-Csp2-TT) was synthesized via Knoevenagel condensation reaction followed by the post-modification to develop a new platform for cartap visual detection in agricultural and food samples. The synergistic effect of highly planar conjugation and dense functional groups in the opened framework endowed F-Csp2-TT with a high-precision luminescence sensing performance. Meanwhile, the exquisitely designed F-Csp2-TT presented robust chemical stability, radiation stability, and good reproducibility. Benefiting from these advantages, high-precision luminescent F-Csp2-TT achieves a low detection limit of 0.51 μg/L to cartap over the range of 1-300 μg/L (R2=0.9938), and the recoveries percentage in food products was calculated as 95.90%- 119.3%. More significantly, the smartphone-based high-precision platform by F-Csp2-TT was established and successfully applied to portable monitoring of cartap and water content. Therefore, our work revealed the enormous potential of Csp2-connected COF, which opened a new situation for insecticide detection.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
24
|
He T, Zhao Z, Liu R, Liu X, Ni B, Wei Y, Wu Y, Yuan W, Peng H, Jiang Z, Zhao Y. Porphyrin-Based Covalent Organic Frameworks Anchoring Au Single Atoms for Photocatalytic Nitrogen Fixation. J Am Chem Soc 2023; 145:6057-6066. [PMID: 36888741 DOI: 10.1021/jacs.2c10233] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The development of efficient photocatalysts for N2 fixation to produce NH3 under ambient conditions remains a great challenge. Since covalent organic frameworks (COFs) possess predesignable chemical structures, good crystallinity, and high porosity, it is highly significant to explore their potential for photocatalytic nitrogen conversion. Herein, we report a series of isostructural porphyrin-based COFs loaded with Au single atoms (COFX-Au, X = 1-5) for photocatalytic N2 fixation. The porphyrin building blocks act as the docking sites to immobilize Au single atoms as well as light-harvesting antennae. The microenvironment of the Au catalytic center is precisely tuned by controlling the functional groups at the proximal and distal positions of porphyrin units. As a result, COF1-Au decorated with strong electron-withdrawing groups exhibits a high activity toward NH3 production with rates of 333.0 ± 22.4 μmol g-1 h-1 and 37.0 ± 2.5 mmol gAu-1 h-1, which are 2.8- and 171-fold higher than that of COF4-Au decorated with electron-donating functional groups and a porphyrin-Au molecular catalyst, respectively. The NH3 production rates could be further increased to 427.9 ± 18.7 μmol g-1 h-1 and 61.1 ± 2.7 mmol gAu-1 h-1 under the catalysis of COF5-Au featuring two different kinds of strong electron-withdrawing groups. The structure-activity relationship analysis reveals that the introduction of electron-withdrawing groups facilitates the separation and transportation of photogenerated electrons within the entire framework. This work manifests that the structures and optoelectronic properties of COF-based photocatalysts can be finely tuned through a rational predesign at the molecular level, thus leading to superior NH3 evolution.
Collapse
Affiliation(s)
- Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhanfeng Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Bing Ni
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Yanping Wei
- College of Science, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongjie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
25
|
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang SW, Liu X. Three-Component Donor-π-Acceptor Covalent-Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 36917067 DOI: 10.1021/jacs.2c11893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Two-dimensional covalent-organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor-π-acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g-1 h-1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420-780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.
Collapse
Affiliation(s)
- Ziping Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Si Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P. R. China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
26
|
Dai L, Dong A, Meng X, Liu H, Li Y, Li P, Wang B. Enhancement of Visible-Light-Driven Hydrogen Evolution Activity of 2D π-Conjugated Bipyridine-Based Covalent Organic Frameworks via Post-Protonation. Angew Chem Int Ed Engl 2023; 62:e202300224. [PMID: 36757154 DOI: 10.1002/anie.202300224] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Photocatalytic hydrogen (H2 ) evolution represents a promising and sustainable technology. Covalent organic frameworks (COFs)-based photocatalysts have received growing attention. A 2D fully conjugated ethylene-linked COF (BTT-BPy-COF) was fabricated with a dedicated designed active site. The introduced bipyridine sites enable a facile post-protonation strategy to fine-tune the actives sites, which results in a largely improved charge-separation efficiency and increased hydrophilicity in the pore channels synergically. After modulating the degree of protonation, the optimal BTT-BPy-PCOF exhibits a remarkable H2 evolution rate of 15.8 mmol g-1 h-1 under visible light, which surpasses the biphenyl-based COF 6 times. By using different types of acids, the post-protonation is proved to be a potential universal strategy for promoting photocatalytic H2 evolution. This strategy would provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Lu Dai
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Anwang Dong
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Xiangjian Meng
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Huanyu Liu
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Yueting Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Pengfei Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China.,Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, P. R. China
| |
Collapse
|
27
|
Yu G, Liu Y, Yang X, Li Y, Li Y, Zhang Y, He C. A robust sp2 carbon-conjugated COF for efficient iodine uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
28
|
Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water. Nat Commun 2023; 14:329. [PMID: 36658157 PMCID: PMC9852592 DOI: 10.1038/s41467-023-35999-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Attempts to develop photocatalysts for hydrogen production from water usually result in low efficiency. Here we report the finding of photocatalysts by integrated interfacial design of stable covalent organic frameworks. We predesigned and constructed different molecular interfaces by fabricating ordered or amorphous π skeletons, installing ligating or non-ligating walls and engineering hydrophobic or hydrophilic pores. This systematic interfacial control over electron transfer, active site immobilisation and water transport enables to identify their distinct roles in the photocatalytic process. The frameworks, combined ordered π skeletons, ligating walls and hydrophilic channels, work under 300-1000 nm with non-noble metal co-catalyst and achieve a hydrogen evolution rate over 11 mmol g-1 h-1, a quantum yield of 3.6% at 600 nm and a three-order-of-magnitude-increased turnover frequency of 18.8 h-1 compared to those obtained with hydrophobic networks. This integrated interfacial design approach is a step towards designing solar-to-chemical energy conversion systems.
Collapse
|
29
|
Li S, Ma R, Xu S, Zheng T, Wang H, Fu G, Yang H, Hou Y, Liao Z, Wu B, Feng X, Wu LZ, Li XB, Zhang T. Two-Dimensional Benzobisthiazole-Vinylene-Linked Covalent Organic Frameworks Outperform One-Dimensional Counterparts in Photocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huaping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Guangen Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, Dresden 01109, Germany
| | - Bozhen Wu
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
30
|
Ji H, Yan G, Zou P, Wang H, Li M, Feng Y, Qu X, Geng D, Shi J, Zhang X. Synthesis of Vinylene-Linked Thiopyrylium-, Pyrylium-, and Pyridinium-Based Covalent Organic Frameworks by Acid-Catalyzed Aldol Condensation. Chemistry 2023; 29:e202202787. [PMID: 36196504 DOI: 10.1002/chem.202202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The development of new vinylene-linked covalent organic frameworks (COFs) with special ionic structure and high stability is challenging. Herein, we report a facile, general method for constructing ionic vinylene-linked thiopyrylium-based COFs from 2,4,6-trimethylpyrylium tetrafluoroborate and other common reagents by means of acid-catalyzed Aldol condensation. Besides, pyrylium-, and pyridinium-based COFs also can be prepared from the same monomer under slightly different reaction conditions. The COFs exhibited uniform nanofibrous morphologies with excellent crystallinities, special ionic structures, well-defined nanochannels, and high specific surface areas.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Peng Zou
- Downhole Technology Service Company, Bohai Drilling Engineering Company Limited, CNPC, Dagang, Tianjin, 300283, P. R. China
| | - Han Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Dongling Geng
- College of Science, Civil Aviation University of China, Tianjin, 300300, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| |
Collapse
|
31
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Zhang P, Wang Z, Wang S, Wang J, Liu J, Wang T, Chen Y, Cheng P, Zhang Z. Fabricating Industry-Compatible Olefin-Linked COF Resins for Oxoanion Pollutant Scavenging. Angew Chem Int Ed Engl 2022; 61:e202213247. [PMID: 36300874 DOI: 10.1002/anie.202213247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/27/2022]
Abstract
Large-scale and low-cost synthesis of covalent organic frameworks (COFs) to meet the demands of industrial application remains formidably challenge. Here we report using 2,4,6-collidine as monomer to produce a series of highly crystalline olefin-linked COFs by a melt polymerization method. This method enables the kilogram-scale fabrication of self-shaped monolithic robust foams. The afforded COFs possess extremely low cost (<50 USD/kg), superior to all the reported COFs. Furthermore, using one-pot or post-modification methods can conveniently transform neutral COFs to ionic COFs, which can be applied as highly efficient ion-exchange sorbents for scavenging oxoanion pollutants. Remarkably, the superior adsorption capacity of a model oxoanion (ReO4 - ) is the highest among crystalline porous materials reported so far. This work not only expands the scopes of olefin-linked COFs but also enlightens the route for the industrial production of crystalline ion exchange sorbents.
Collapse
Affiliation(s)
- Penghui Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Sa Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Jian Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
33
|
Chi K, Wu Y, Wang X, Zhang Q, Gao W, Yang L, Chen X, Chang D, Zhang Y, Shen T, Lu X, Zhao Y, Liu Y. Single Atom Catalysts with Out-of-Plane Coordination Structure on Conjugated Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203966. [PMID: 36135721 DOI: 10.1002/smll.202203966] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Adjusting the local coordination environment of single-atom electrocatalysts is a viable way to improve catalytic performance. The diversity of coordination geometric structures is limited to the traditional in-plane configuration, with only a little consideration paid to out-of-plane configurations due to the lack of suitable carriers and fabrication methods. This study reports out-of-plane coordination of Co-based single-atom catalysts mediated by the conjugated bipyridine-rich covalent organic framework (COF). The bipyridine nitrogen on the COF layer backbone of these catalysts serves as the linker center for cobalt sites anchoring, while the complementary moieties are coordinated at the other side of the Co metal and reside beyond the COF backbone plane, thus yielding out-of-plane coordination. The electrochemical experiments and density functional theory calculations reveal that catalysts with multiple out-of-plane coordinations exhibit different electrocatalytic oxygen evolution activities and catalytic pathways. The out-of-plane coordination enabled by COFs provides a strategy for designing single-atom electrocatalysts, expanding the application of COFs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Kai Chi
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yangjiang Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuejun Wang
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qingsong Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenqiang Gao
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Yang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Dongdong Chang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yu Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Tao Shen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuefeng Lu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
34
|
Yang J, Ghosh S, Roeser J, Acharjya A, Penschke C, Tsutsui Y, Rabeah J, Wang T, Djoko Tameu SY, Ye MY, Grüneberg J, Li S, Li C, Schomäcker R, Van De Krol R, Seki S, Saalfrank P, Thomas A. Constitutional isomerism of the linkages in donor–acceptor covalent organic frameworks and its impact on photocatalysis. Nat Commun 2022; 13:6317. [PMID: 36274186 PMCID: PMC9588771 DOI: 10.1038/s41467-022-33875-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs. Systematic investigation of isomerism in covalent organic frameworks (COFs) can provide key insights into their properties. Here, the authors reveal that the constitutional isomerism of the linkage i.e., linkage orientations distinctly impact COFs’ structural and photophysical properties.
Collapse
|
35
|
Wang Z, Zhu Q, Wang J, Jin F, Zhang P, Yan D, Cheng P, Chen Y, Zhang Z. Industry-compatible covalent organic frameworks for green chemical engineering. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
Two-dimensional (2D) polymers have garnered widespread interest because of their intriguing physicochemical properties. Envisaged applications in fields including nanodevices, solid-state chemistry, physical organic chemistry, and condensed matter physics, however, demand high-quality and large-scale production. In this perspective, we first introduce exotic band structures of organic frameworks holding honeycomb, kagome, and Lieb lattices. We further discuss how mesoscale ordered 2D polymers can be synthesized by means of choosing suitable monomers and optimizing growth conditions. We describe successful polymerization strategies to introducing a non-benzenoid subunit into a π-conjugated carbon lattice via delicately designed monomer precursors. Also, to obviate transfer and restore the intrinsic properties of π-conjugated polymers, new paradigms of aryl-aryl coupling on inert surfaces are discussed. Recent achievements in the photopolymerization demonstrate the need for monomer design. We conclude the potential applications of these organic networks and project the future possibilities in providing new insights into on-surface polymerization.
Collapse
Affiliation(s)
- Tianchao Niu
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Chenqiang Hua
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Miao Zhou
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
- School of Physics, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
37
|
He T, Yang C, Chen Y, Huang N, Duan S, Zhang Z, Hu W, Jiang D. Bottom-Up Interfacial Design of Covalent Organic Frameworks for Highly Efficient and Selective Electrocatalysis of CO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205186. [PMID: 35934874 DOI: 10.1002/adma.202205186] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Assembling molecular catalytic centers into crosslinked networks is widely used to fabricate heterogeneous catalysts but they often suffer loss in activity and selectivity accompanied by unclear causes. Here, a strategy for the construction of heterogeneous catalysts to induce activity and selectivity by bottom-up introduction of segregated electron-conduction and mass-transport interfaces into the catalytic materials is reported. The catalytic skeletons are designed to possess different π orderings for electron motion and the open channels are tailored to install finely engineered walls for mass transport, so that origins of activity and selectivity are correlated. The resultant covalent organic framework catalysts with ordered π skeletons and solvophobic pores increase activity by two orders of magnitude, enhance selectivity and energy efficiency by 70-fold, and broaden the voltage range, to promote CO2 transformation under ambient conditions. The results open a way to precise interfacial design of actionable heterogeneous catalysts for producing feedstocks from CO2 .
Collapse
Affiliation(s)
- Ting He
- Department of Chemistry, Faulty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yongzhi Chen
- Department of Chemistry, Faulty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalisation, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuming Duan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| |
Collapse
|
38
|
Sun C, Oppenheim JJ, Skorupskii G, Yang L, Dincă M. Reversible topochemical polymerization and depolymerization of a crystalline 3D porous organic polymer with C–C bond linkages. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water-Assisted Dynamic Michael-Addition-Elimination for the Synthesis of Vinylene-Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202202492. [PMID: 35253336 PMCID: PMC9401016 DOI: 10.1002/anie.202202492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.
Collapse
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)01109DresdenGermany
| | - Arezoo Dianat
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Sang‐Wook Park
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF)01069DresdenGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Yubin Fu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Yannan Liu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Gianaurelio Cuniberti
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Marcus Richter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Xinliang Feng
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| |
Collapse
|
41
|
Li L, Ma Y, Yang H, Niu J, Yang H, Wang F, Hu C, Zhang Y, Guan X, Peng H, Ma G. An olefin‐based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines. Chem Asian J 2022; 17:e202200279. [DOI: 10.1002/asia.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Lihua Li
- Northwest Normal University College of Chemistry and Chemical Engineering 967 Anning East Rd., Gansu, Lanzhou 730070,P. R. China 730000 Lan Zhou CHINA
| | - Yinghu Ma
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Haohao Yang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jing Niu
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Haoran Yang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Faqiang Wang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Chengxian Hu
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Yubao Zhang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Xiaolin Guan
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Hui Peng
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Guofu Ma
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
42
|
Zhang P, Wang Z, Yang Y, Wang S, Wang T, Liu J, Cheng P, Chen Y, Zhang Z. Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1224-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water‐Assisted Dynamic Michael‐Addition‐Elimination for the Synthesis of Vinylene‐Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) 01109 Dresden Germany
| | - Arezoo Dianat
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Sang‐Wook Park
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF) 01069 Dresden Germany
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Yubin Fu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Yannan Liu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Gianaurelio Cuniberti
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Marcus Richter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Xinliang Feng
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| |
Collapse
|
44
|
Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Jin E, Geng K, Fu S, Addicoat MA, Zheng W, Xie S, Hu J, Hou X, Wu X, Jiang Q, Xu Q, Wang HI, Jiang D. Module‐Patterned Polymerization towards Crystalline 2D sp
2
‐Carbon Covalent Organic Framework Semiconductors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Enquan Jin
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Keyu Geng
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuailei Xie
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Jun‐Shan Hu
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xudong Hou
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiao Wu
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qing‐Hua Xu
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
46
|
Das P, Ball B, Sarkar P. Theoretical Investigation of a Tetrazine Based Covalent Organic Framework as a Promising Anode Material for Sodium/Calcium Ion Batteries. Phys Chem Chem Phys 2022; 24:21729-21739. [DOI: 10.1039/d2cp02852b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nowadays, a great attention is being directed towards the development of promising elec- trode materials for non-lithium rechargeable batteries such as sodium and calcium ion batter- ies (SIBs and CIBs),...
Collapse
|
47
|
Jiang D, Jin E, Gen K, Fu S, Addicoat MA, Zheng W, Xie S, Hu J, Wu X, Jiang Q, Xu QH, Wang HI, Hou X. Module-Patterned Polymerization towards Crystalline 2D sp2-Carbon Covalent Organic Framework Semiconductors. Angew Chem Int Ed Engl 2021; 61:e202115020. [PMID: 34931425 DOI: 10.1002/anie.202115020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Despite a rapid progress over the past decade, most polycondensation systems even upon a small structural variation of building units eventually result in amorphous polymers other than desired crystalline covalent organic frameworks. This synthetic dilemma is a central and challenging issue of the field. Here we report a novel approach based on module-patterned polymerization to enable efficient and designed synthesis of crystalline porous polymeric frameworks. This strategy features a wide applicability to allow the use of various knots of different structures, enables polycondensation with diverse linkers , and develops a diversity of novel crystalline 2D polymers and frameworks, as demonstrated by using the C=C bond formation polycondensation reaction. The new sp 2 carbon frameworks are highly emissive and enable up-conversion luminescence, offer low bandgap semiconductors with tunable band structures, and achieve ultrahigh charge mobilities close to theoretically predicted maxima.
Collapse
Affiliation(s)
- Donglin Jiang
- National University of Singapore, Department of Chemistry, Faculty of Science, 3 Science Drive 3, 117543, Singapore, SINGAPORE
| | - Enquan Jin
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Keyu Gen
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Shuai Fu
- Max Planck Institute for Polymer Research: Max-Planck-Institut fur Polymerforschung, Polymer, GERMANY
| | | | - Wenhao Zheng
- Max Planck Institute for Polymer Research: Max-Planck-Institut fur Polymerforschung, Polymer, GERMANY
| | - Shuailei Xie
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Junsha Hu
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Xiao Wu
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Qiuhong Jiang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Qing-Hua Xu
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Hai I Wang
- Max Planck Institute for Polymer Research: Max-Planck-Institut fur Polymerforschung, Polymer, GERMANY
| | - Xudong Hou
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Department of Chemistry, SINGAPORE
| |
Collapse
|
48
|
Ghosh R, Paesani F. Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. J Phys Chem Lett 2021; 12:9442-9448. [PMID: 34554754 DOI: 10.1021/acs.jpclett.1c02454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ the Holstein model for polarons to investigate the relationship among defects, topology, Coulomb trapping, and polaron delocalization in covalent organic frameworks (COFs). We find that intrasheet topological connectivity and π-column density can override disorder-induced deep traps and significantly enhance polaron migration by several orders of magnitude in good agreement with recent experimental observations. The combination of percolation networks and micropores makes trigonal COFs ideally suited for charge transport followed by kagome/tetragonal and hexagonal structures. By comparing the polaron spectral signatures and coherence numbers of large three-dimensional frameworks having a maximum of 180 coupled chromophores, we show that controlling nanoscale defects and the location of the counteranion is critical for the design of new COF-based materials yielding higher mobilities. Our analysis establishes design strategies for enhanced conductivity in COFs that can be readily generalized to other classes of conductive materials such as metal-organic frameworks and perovskites.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
49
|
Wu B, Jiang X, Liu Y, Li QY, Zhao X, Wang XJ. Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Adv 2021; 11:33653-33660. [PMID: 35497515 PMCID: PMC9042297 DOI: 10.1039/d1ra06118f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Two vinylene-bridged D–A structural POPs are constructed by the electron-rich triarylamine and electron-deficient tricyanomesitylene, which exhibited highly effective photocatalytic activities for aerobic oxidative coupling of amines to imine.
Collapse
Affiliation(s)
- Bang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinyue Jiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiu-Yan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|