1
|
Zhang J, Liu Q, Dai L, Zhang Z, Wang Y. Pan-Genome Analysis of Wolbachia, Endosymbiont of Diaphorina citri, Reveals Independent Origin in Asia and North America. Int J Mol Sci 2024; 25:4851. [PMID: 38732070 PMCID: PMC11084931 DOI: 10.3390/ijms25094851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).
Collapse
Affiliation(s)
- Jiahui Zhang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Q.L.); (L.D.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qian Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Q.L.); (L.D.)
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Q.L.); (L.D.)
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Q.L.); (L.D.)
| |
Collapse
|
2
|
Hyder M, Lodhi AM, Wang Z, Bukero A, Gao J, Mao R. Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies. BIOLOGY 2024; 13:151. [PMID: 38534421 DOI: 10.3390/biology13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.
Collapse
Affiliation(s)
- Moazam Hyder
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Abdul Mubeen Lodhi
- Department Plant Protection, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Zhaohong Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Aslam Bukero
- Department of Entomology, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
3
|
Pikula J, Piacek V, Bandouchova H, Bartlova M, Bednarikova S, Burianova R, Danek O, Jedlicka P, Masova S, Nemcova M, Seidlova V, Zukalova K, Zukal J. Case report: Filarial infection of a parti-coloured bat: Litomosa sp. adult worms in abdominal cavity and microfilariae in bat semen. Front Vet Sci 2023; 10:1284025. [PMID: 37808105 PMCID: PMC10551455 DOI: 10.3389/fvets.2023.1284025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Background Filarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure. Methods For the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus). Results The semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 106/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia. Conclusion While the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Marie Bartlova
- Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czechia
| | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Romana Burianova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Ondrej Danek
- Department of Pathology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Jedlicka
- Institute of Scientific Instruments of the Czech Academy of Sciences v.v.i., Brno, Czechia
| | - Sarka Masova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Katerina Zukalova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
4
|
Sanaei E, Albery GF, Yeoh YK, Lin YP, Cook LG, Engelstädter J. Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects. Mol Ecol 2023; 32:2351-2363. [PMID: 36785954 DOI: 10.1111/mec.16883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host-shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.
Collapse
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Yun Kit Yeoh
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yen-Po Lin
- Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, Taiwan
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Liu B, Ren YS, Su CY, Abe Y, Zhu DH. Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes. Front Microbiol 2023; 14:1084839. [PMID: 36819029 PMCID: PMC9937081 DOI: 10.3389/fmicb.2023.1084839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ye-Song Ren
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Dao-Hong Zhu, ✉
| |
Collapse
|
6
|
Jackson R, Patapiou PA, Golding G, Helanterä H, Economou CK, Chapuisat M, Henry LM. Evidence of phylosymbiosis in Formica ants. Front Microbiol 2023; 14:1044286. [PMID: 37213490 PMCID: PMC10196114 DOI: 10.3389/fmicb.2023.1044286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes. Here, we ask whether phylogenetically related ant species have formed distinct and stable microbiomes. Methods To answer this question, we investigated the microbial communities associated with queens of 14 Formica species from five clades, using deep coverage 16S rRNA amplicon sequencing. Results We reveal that Formica species and clades harbor highly defined microbial communities that are dominated by four bacteria genera: Wolbachia, Lactobacillus, Liliensternia, and Spiroplasma. Our analysis reveals that the composition of Formica microbiomes mirrors the phylogeny of the host, i.e., phylosymbiosis, in that related hosts harbor more similar microbial communities. In addition, we find there are significant correlations between microbe co-occurrences. Discussion Our results demonstrate Formica ants carry microbial communities that recapitulate the phylogeny of their hosts. Our data suggests that the co-occurrence of different bacteria genera may at least in part be due to synergistic and antagonistic interactions between microbes. Additional factors potentially contributing to the phylosymbiotic signal are discussed, including host phylogenetic relatedness, host-microbe genetic compatibility, modes of transmission, and similarities in host ecologies (e.g., diets). Overall, our results support the growing body of evidence that microbial community composition closely depends on the phylogeny of their hosts, despite bacteria having diverse modes of transmission and localization within the host.
Collapse
Affiliation(s)
- Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Patapios A. Patapiou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Gemma Golding
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Chloe K. Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lee M. Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Lee M. Henry,
| |
Collapse
|
7
|
Huggins LG, Colella V, Atapattu U, Koehler AV, Traub RJ. Nanopore Sequencing Using the Full-Length 16S rRNA Gene for Detection of Blood-Borne Bacteria in Dogs Reveals a Novel Species of Hemotropic Mycoplasma. Microbiol Spectr 2022; 10:e0308822. [PMID: 36250862 PMCID: PMC9769565 DOI: 10.1128/spectrum.03088-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 01/09/2023] Open
Abstract
Dogs across the globe are afflicted by diverse blood- and vector-borne bacteria (VBB), many of which cause severe disease and can be fatal. Diagnosis of VBB infections can be challenging due to the low concentration of bacteria in the blood, the frequent occurrence of coinfections, and the wide range of known, emerging, and potentially novel VBB species encounterable. Therefore, there is a need for diagnostics that address these challenges by being both sensitive and capable of detecting all VBB simultaneously. We detail the first employment of a nanopore-based sequencing methodology conducted on the Oxford Nanopore Technologies (ONT) MinION device to accurately elucidate the "hemobacteriome" from canine blood through sequencing of the full-length 16S rRNA gene. We detected a diverse range of important canine VBB, including Ehrlichia canis, Anaplasma platys, Mycoplasma haemocanis, Bartonella clarridgeiae, "Candidatus Mycoplasma haematoparvum", a novel species of hemotropic mycoplasma, and Wolbachia endosymbionts of filarial worms, indicative of filariasis. Our nanopore-based protocol was equivalent in sensitivity to both quantitative PCR (qPCR) and Illumina sequencing when benchmarked against these methods, achieving high agreement as defined by the kappa statistics (k > 0.81) for three key VBB. Utilizing the ability of the ONT' MinION device to sequence long read lengths provides an excellent alternative diagnostic method by which the hemobacteriome can be accurately characterized to the species level in a way previously unachievable using short reads. We envision our method to be translatable to multiple contexts, such as the detection of VBB in other vertebrate hosts, including humans, while the small size of the MinION device is highly amenable to field use. IMPORTANCE Blood- and vector-borne bacteria (VBB) can cause severe pathology and even be lethal for dogs in many regions across the globe. Accurate characterization of all the bacterial pathogens infecting a canine host is critical, as coinfections are common and emerging and novel pathogens that may go undetected by traditional diagnostics frequently arise. Deep sequencing using devices from Oxford Nanopore Technologies (ONT) provides a solution, as the long read lengths achievable provide species-level taxonomic identification of pathogens that previous short-read technologies could not accomplish. We developed a protocol using ONT' MinION sequencer to accurately detect and classify a wide spectrum of VBB from canine blood at a sensitivity comparable to that of regularly used diagnostics, such as qPCR. This protocol demonstrates great potential for use in biosurveillance and biosecurity operations for the detection of VBB in a range of vertebrate hosts, while the MinION sequencer's portability allows this method to be used easily in the field.
Collapse
Affiliation(s)
- Lucas G. Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vito Colella
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ushani Atapattu
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Anson V. Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca J. Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Wang W, Cui W, Yang H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ Microbiol 2022; 24:4519-4532. [PMID: 35859330 DOI: 10.1111/1462-2920.16125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
Abstract
Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
9
|
The Incidence of Wolbachia Bacterial Endosymbiont in Bisexual and Parthenogenetic Populations of the Psyllid Genus Cacopsylla (Hemiptera, Psylloidea). INSECTS 2021; 12:insects12100853. [PMID: 34680622 PMCID: PMC8540236 DOI: 10.3390/insects12100853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
Wolbachia is one of the most common intracellular bacteria; it infects a wide variety of insects, other arthropods, and some nematodes. Wolbachia is ordinarily transmitted vertically from mother to offspring and can manipulate physiology and reproduction of their hosts in different ways, e.g., induce feminization, male killing, and parthenogenesis. Despite the great interest in Wolbachia, many aspects of its biology remain unclear and its incidence across many insect orders, including Hemiptera, is still poorly understood. In this report, we present data on Wolbachia infection in five jumping plant-lice species (Hemiptera, Psylloidea) of the genus Cacopsylla Ossiannilsson, 1970 with different reproductive strategies and test the hypothesis that Wolbachia mediates parthenogenetic and bisexual patterns observed in some Cacopsylla species. We show that the five species studied are infected with a single Wolbachia strain, belonging to the supergroup B. This strain has also been found in different insect orders (Lepidoptera, Hemiptera, Plecoptera, Orthoptera, Hymenoptera, Diptera) and even in acariform mites (Trombidiformes), suggesting extensive horizontal transmission of Wolbachia between representatives of these taxa. Our survey did not reveal significant differences in infection frequency between parthenogenetic and bisexual populations or between males and females within bisexual populations. However, infection rate varied notably in different Cacopsylla species or within distinct populations of the same species. Overall, we demonstrate that Wolbachia infects a high proportion of Cacopsylla individuals and populations, suggesting the essential role of this bacterium in their biology.
Collapse
|
10
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879-893. [PMID: 33945798 PMCID: PMC8192442 DOI: 10.1016/j.chom.2021.03.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
11
|
Ding H, Yeo H, Puniamoorthy N. Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore. Parasit Vectors 2020; 13:612. [PMID: 33298138 PMCID: PMC7724734 DOI: 10.1186/s13071-020-04466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the influence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous studies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. Methods We conducted tissue-specific polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecular marker. Mosquito-Wolbachia associations were explored using three methods—tanglegram, distance-based, and event-based methods—and by inferred instances of vertical transmission and host shifts. Results Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including five in the genus Aedes and five in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugnomyia gracilis. Wolbachia were predominantly detected in the reproductive tissues, which is an indication of vertical transmission. However, Wolbachia infection rates varied widely within a mosquito host species. There was no clear signal of cophylogeny between the mosquito hosts and the 12 putative Wolbachia strains observed in this study. Host shift events were also observed. Conclusions Our results suggest that the mosquito-Wolbachia relationship is complex and that combinations of transmission modes and multiple evolutionary events likely explain the observed distribution of Wolbachia diversity across mosquito hosts. These findings have implications for a better understanding of the diversity and ecology of Wolbachia and for their utility as biocontrol agents.
Collapse
Affiliation(s)
- Huicong Ding
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
12
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
13
|
Colgan TJ, Carolan JC, Sumner S, Blaxter ML, Brown MJF. Infection by the castrating parasitic nematode Sphaerularia bombi changes gene expression in Bombus terrestris bumblebee queens. INSECT MOLECULAR BIOLOGY 2020; 29:170-182. [PMID: 31566835 DOI: 10.1111/imb.12618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Parasitism can result in dramatic changes in host phenotype, which are themselves underpinned by genes and their expression. Understanding how hosts respond at the molecular level to parasites can therefore reveal the molecular architecture of an altered host phenotype. The entomoparasitic nematode Sphaerularia bombi is a parasite of bumblebee (Bombus) hosts where it induces complex behavioural changes and host castration. To examine this interaction at the molecular level, we performed genome-wide transcriptional profiling using RNA-Sequencing (RNA-Seq) of S. bombi-infected Bombus terrestris queens at two critical time-points: during and just after overwintering diapause. We found that infection by S. bombi affects the transcription of genes underlying host biological processes associated with energy usage, translation, and circadian rhythm. We also found that the parasite affects the expression of immune genes, including members of the Toll signalling pathway providing evidence for a novel interaction between the parasite and the host immune response. Taken together, our results identify host biological processes and genes affected by an entomoparasitic nematode providing the first steps towards a molecular understanding of this ecologically important host-parasite interaction.
Collapse
Affiliation(s)
- T J Colgan
- Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College, Dublin, Ireland
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - J C Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - S Sumner
- Centre for Biodiversity and Environment Research, University College London, London, UK
| | - M L Blaxter
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - M J F Brown
- Centre of Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
14
|
Stouthamer CM, Kelly SE, Mann E, Schmitz-Esser S, Hunter MS. Development of a multi-locus sequence typing system helps reveal the evolution of Cardinium hertigii, a reproductive manipulator symbiont of insects. BMC Microbiol 2019; 19:266. [PMID: 31775631 PMCID: PMC6882061 DOI: 10.1186/s12866-019-1638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background Cardinium is an intracellular bacterial symbiont in the phylum Bacteroidetes that is found in many different species of arthropods and some nematodes. This symbiont is known to be able to induce three reproductive manipulation phenotypes, including cytoplasmic incompatibility. Placing individual strains of Cardinium within a larger evolutionary context has been challenging because only two, relatively slowly evolving genes, 16S rRNA gene and Gyrase B, have been used to generate phylogenetic trees, and consequently, the relationship of different strains has been elucidated in only its roughest form. Results We developed a Multi Locus Sequence Typing (MLST) system that provides researchers with three new genes in addition to Gyrase B for inferring phylogenies and delineating Cardinium strains. From our Cardinium phylogeny, we confirmed the presence of a new group D, a Cardinium clade that resides in the arachnid order harvestmen (Opiliones). Many Cardinium clades appear to display a high degree of host affinity, while some show evidence of host shifts to phylogenetically distant hosts, likely associated with ecological opportunity. Like the unrelated reproductive manipulator Wolbachia, the Cardinium phylogeny also shows no clear phylogenetic signal associated with particular reproductive manipulations. Conclusions The Cardinium phylogeny shows evidence of diversification within particular host lineages, and also of host shifts among trophic levels within parasitoid-host communities. Like Wolbachia, the relatedness of Cardinium strains does not necessarily predict their reproductive phenotypes. Lastly, the genetic tools proposed in this study may help future authors to characterize new strains and add to our understanding of Cardinium evolution.
Collapse
Affiliation(s)
- Corinne M Stouthamer
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Suzanne E Kelly
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Evelyne Mann
- Milk Technology and Food Science, Institute for Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | | | - Martha S Hunter
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA.
| |
Collapse
|
15
|
Dheilly NM, Ewald PW, Brindley PJ, Fichorova RN, Thomas F. Parasite-microbe-host interactions and cancer risk. PLoS Pathog 2019; 15:e1007912. [PMID: 31415672 PMCID: PMC6695093 DOI: 10.1371/journal.ppat.1007912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Paul W. Ewald
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington DC, United States of America
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
16
|
Diversity of Wolbachia Associated with the Giant Turtle Ant, Cephalotes atratus. Curr Microbiol 2019; 76:1330-1337. [PMID: 31254009 DOI: 10.1007/s00284-019-01722-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Symbiotic relationships between organisms are common throughout the tree of life, and often these organisms share an evolutionary history. In turtle ants (Cephalotes), symbiotic associations with bacteria are known to be especially important for supplementing the nutrients that their herbivorous diets do not provide. However, much remains unknown about the diversity of many common bacterial symbionts with turtle ants, such as Wolbachia. Here, we surveyed the diversity of Wolbachia, focusing on one species of turtle ant with a particularly wide geographic range, Cephalotes atratus. Colonies were collected from the entire range of C. atratus, and we detected the presence of Wolbachia by sequencing multiple individuals per colony for wsp. Then, using the multilocus sequence typing (MLST) approach, we determined each individual's unique sequence type (ST) based on comparison to sequences published in the Wolbachia MLST Database ( https://pubmlst.org/wolbachia/ ). The results of this study suggest that there is a high level of diversity of Wolbachia strains among colonies from different regions, while the diversity within colonies is very low. Additionally, 13 novel variants (alleles) were uncovered. These results suggest that the level of diversity of Wolbachia within species is affected by geography, and the high level of diversity observed among Cephalotes atratus populations may be explained by their wide geographic range.
Collapse
|
17
|
Newton ILG, Slatko BE. Symbiosis Comes of age at the 10 th Biennial Meeting of Wolbachia Researchers. Appl Environ Microbiol 2019; 85:AEM.03071-18. [PMID: 30796064 PMCID: PMC6450017 DOI: 10.1128/aem.03071-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wolbachia pipientis is an alpha-proteobacterial, obligate intracellular microbe and arguably the most successful infection on our planet, colonizing 40-60% of insect species. Wolbachia are also present in most, but not all, filarial nematodes where they are obligate mutualists and are the targets for anti-filarial drug discovery. Although Wolbachia are related to important human pathogens they do not infect mammals, but instead are well known for their reproductive manipulations of insect populations, inducing the following phenotypes: male-killing, feminization, parthenogenesis induction, or cytoplasmic incompatibility (CI). The most common of these, CI, results in a sperm-egg incompatibility and increases the relative fecundity of infected females in a population. In the last decade, Wolbachia have also been shown to provide a benefit to insects, where the infection can inhibit RNA virus replication within the host. Wolbachia cannot be cultivated outside of host cells and no genetic tools are available in the symbiont, limiting approaches available to its study. This means that many questions fundamental to our understanding of Wolbachia basic biology remained unknown for decades. The tenth biennial international Wolbachia conference, "Wolbachia Evolution, Ecology, Genomics and Cell Biology: A Chronicle of the Most Ubiquitous Symbiont", was held on June 17-22, 2018, Salem, MA USA. In the review below we highlight the new science presented at the meeting, link it to prior efforts to answer these questions across the Wolbachia genus, and the importance to the field of symbiosis. The topics covered in this review are based on the presentations at the conference.
Collapse
Affiliation(s)
| | - Barton E. Slatko
- Molecular Parasitology Group, New England BioLabs, Ipswich, Massachusetts, USA
| |
Collapse
|
18
|
O'Brien PA, Webster NS, Miller DJ, Bourne DG. Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. mBio 2019; 10:e02241-18. [PMID: 30723123 PMCID: PMC6428750 DOI: 10.1128/mbio.02241-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marine invertebrates often host diverse microbial communities, making it difficult to identify important symbionts and to understand how these communities are structured. This complexity has also made it challenging to assign microbial functions and to unravel the myriad of interactions among the microbiota. Here we propose to address these issues by applying evidence from model systems of host-microbe coevolution to complex marine invertebrate microbiomes. Coevolution is the reciprocal adaptation of one lineage in response to another and can occur through the interaction of a host and its beneficial symbiont. A classic indicator of coevolution is codivergence of host and microbe, and evidence of this is found in both corals and sponges. Metabolic collaboration between host and microbe is often linked to codivergence and appears likely in complex holobionts, where microbial symbionts can interact with host cells through production and degradation of metabolic compounds. Neutral models are also useful to distinguish selected microbes against a background population consisting predominately of random associates. Enhanced understanding of the interactions between marine invertebrates and their microbial communities is urgently required as coral reefs face unprecedented local and global pressures and as active restoration approaches, including manipulation of the microbiome, are proposed to improve the health and tolerance of reef species. On the basis of a detailed review of the literature, we propose three research criteria for examining coevolution in marine invertebrates: (i) identifying stochastic and deterministic components of the microbiome, (ii) assessing codivergence of host and microbe, and (iii) confirming the intimate association based on shared metabolic function.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| |
Collapse
|
19
|
Bolaños LM, Rosenblueth M, Manrique de Lara A, Migueles-Lozano A, Gil-Aguillón C, Mateo-Estrada V, González-Serrano F, Santibáñez-López CE, García-Santibáñez T, Martínez-Romero E. Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts. PLoS One 2019; 14:e0209588. [PMID: 30625167 PMCID: PMC6326461 DOI: 10.1371/journal.pone.0209588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/08/2018] [Indexed: 11/19/2022] Open
Abstract
Scorpions are predator arachnids of ancient origin and worldwide distribution. Two scorpion species, Vaejovis smithi and Centruroides limpidus, were found to harbor two different Mollicutes phylotypes: a Scorpion Mycoplasma Clade (SMC) and Scorpion Group 1 (SG1). Here we investigated, using a targeted gene sequencing strategy, whether these Mollicutes were present in 23 scorpion morphospecies belonging to the Vaejovidae, Carboctonidae, Euscorpiidae, Diplocentridae, and Buthidae families. Our results revealed that SMC is found in a species-specific association with Vaejovidae and Buthidae, whereas SG1 is uniquely found in Vaejovidae. SMC and SG1 co-occur only in Vaejovis smithi where 43% of the individuals host both phylotypes. A phylogenetic analysis of Mollicutes 16S rRNA showed that SMC and SG1 constitute well-delineated phylotypes. Additionally, we found that SMC and scorpion phylogenies are significantly congruent, supporting the observation that a cospeciation process may have occurred. This study highlights the phylogenetic diversity of the scorpion associated Mollicutes through different species revealing a possible cospeciation pattern.
Collapse
Affiliation(s)
- Luis M. Bolaños
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Mónica Rosenblueth
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Amaranta Manrique de Lara
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Analí Migueles-Lozano
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Citlali Gil-Aguillón
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Valeria Mateo-Estrada
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Francisco González-Serrano
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Carlos E. Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Tonalli García-Santibáñez
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Esperanza Martínez-Romero
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| |
Collapse
|
20
|
Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci Rep 2018; 8:8797. [PMID: 29891919 PMCID: PMC5995804 DOI: 10.1038/s41598-018-25545-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/27/2018] [Indexed: 01/30/2023] Open
Abstract
Wolbachia bacteria, vertically transmitted intracellular endosymbionts, are associated with two major host taxa in which they show strikingly different symbiotic modes. In some taxa of filarial nematodes, where Wolbachia are strictly obligately beneficial to the host, they show complete within- and among-species prevalence as well as co-phylogeny with their hosts. In arthropods, Wolbachia usually are parasitic; if beneficial effects occurs, they can be facultative or obligate, related to host reproduction. In arthropods, the prevalence of Wolbachia varies within and among taxa, and no co-speciation events are known. However, one arthropod species, the common bedbug Cimex lectularius was recently found to be dependent on the provision of biotin and riboflavin by Wolbachia, representing a unique case of Wolbachia providing nutritional and obligate benefits to an arthropod host, perhaps even in a mutualistic manner. Using the presence of presumably functional biotin gene copies, our study demonstrates that the obligate relationship is maintained at least in 10 out of 15 species of the genera Cimex and Paracimex. The remaining five species harboured Wolbachia as well, demonstrating the first known case of 100% prevalence of Wolbachia among higher arthropod taxa. Moreover, we show the predicted co-cladogenesis between Wolbachia and their bedbug hosts, also as the first described case of Wolbachia co-speciation in arthropods.
Collapse
|
21
|
Ramalho MO, Vieira AS, Pereira MC, Moreau CS, Bueno OC. Transovarian Transmission of Blochmannia and Wolbachia Endosymbionts in the Neotropical Weaver Ant Camponotus textor (Hymenoptera, Formicidae). Curr Microbiol 2018; 75:866-873. [PMID: 29468305 DOI: 10.1007/s00284-018-1459-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
Abstract
Camponotus is a hyper-diverse ant genus that is associated with the obligate endosymbiont Blochmannia, and often also with Wolbachia, but morphological studies on the location of these bacteria in the queen's ovaries during oogenesis remain limited. In the present study, we used the Neotropical weaver ant Camponotus textor to characterize the ovary using histology (HE) techniques, and to document the location of Blochmannia and Wolbachia during oogenesis through fluorescence in situ hybridization (FISH). This is the first morphological report of these two bacteria in the same host with polytrophic meroistic ovaries and reveals that Blochmannia is found inside late-stage oocytes and Wolbachia is associated with the nuclei of the nurse cells. Our results provide insights into the developmental sequence of when these bacteria reach the egg, with Blochmannia establishing itself in the egg first, and Wolbachia only reaching the egg shortly before completing egg development. Studies such as this provide understanding about the mechanisms and timing of the establishment of these endosymbionts in the host.
Collapse
Affiliation(s)
- Manuela Oliveira Ramalho
- Departament of Biology e Center for Studies on Social Insects, Biosciense Institute, São Paulo State University (UNESP), Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Field Museum of Natural History, Department of Science and Education, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA.
| | - Alexsandro Santana Vieira
- Departament of Biology e Center for Studies on Social Insects, Biosciense Institute, São Paulo State University (UNESP), Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Mayara Cristina Pereira
- Departament of Biology e Center for Studies on Social Insects, Biosciense Institute, São Paulo State University (UNESP), Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Corrie Saux Moreau
- Field Museum of Natural History, Department of Science and Education, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Odair Correa Bueno
- Departament of Biology e Center for Studies on Social Insects, Biosciense Institute, São Paulo State University (UNESP), Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
22
|
Keroack CD, Wurster JI, Decker CG, Williams KM, Slatko BE, Foster JM, Williams SA. Absence of the Filarial Endosymbiont Wolbachia in Seal Heartworm (Acanthocheilonema spirocauda) but Evidence of Ancient Lateral Gene Transfer. J Parasitol 2016; 102:312-8. [PMID: 26859724 DOI: 10.1645/15-872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The symbiotic relationship of Wolbachia spp. was first observed in insects and subsequently in many parasitic filarial nematodes. This bacterium is believed to provide metabolic and developmental assistance to filarial parasitic nematodes, although the exact nature of this relationship remains to be fully elucidated. While Wolbachia is present in most filarial nematodes in the family Onchocercidae, it is absent in several disparate species such as the human parasite Loa loa . All tested members of the genus Acanthocheilonema, such as Acanthocheilonema viteae, have been shown to lack Wolbachia. Consistent with this, we show that Wolbachia is absent from the seal heartworm (Acanthocheilonema spirocauda), but lateral gene transfer (LGT) of DNA sequences between Wolbachia and A. spirocauda has occurred, indicating a past evolutionary association. Seal heartworm is an important pathogen of phocid seals and understanding its basic biology is essential for conservation of the host. The findings presented here may allow for the development of future treatments or diagnostics for the disease and also aid in clarification of the complicated nematode-Wolbachia relationship.
Collapse
Affiliation(s)
- Caroline D Keroack
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | - Jenna I Wurster
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | - Caroline G Decker
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | - Kalani M Williams
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| | | | | | - Steven A Williams
- * Smith College, Department of Biological Sciences, Northampton, Massachusetts 01063
| |
Collapse
|
23
|
Naito M, Pawlowska TE. The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mob Genet Elements 2015; 6:e1136375. [PMID: 27066304 DOI: 10.1080/2159256x.2015.1136375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
The movement of mobile genetic elements (MGEs), including bacteriophages, insertion sequence (IS) elements, and integrative and conjugative elements (ICEs) can have profound effects on bacterial evolution by introducing novel genes, or disrupting the existing ones. Obligate endobacteria are a distinctive group of bacteria that reside within the intracellular compartments of their eukaryotic hosts. Many obligate endobacteria are reproductively dependent on their hosts. Vertical transmission, in addition to degenerative genome contraction and loss of MGEs, makes heritable endobacteria vulnerable to Muller's ratchet, a process that jeopardizes evolutionary longevity of small populations. Mycoplasma-related endobacteria (MRE) are ancient heritable endosymbionts of arbuscular mycorrhizal fungi. Their genomes harbour numerous MGEs. To explore the significance of MGEs in the evolution of MRE and other obligate endobacteria, we analyze the impact of transmission mode, recombination, and evolutionary age on the maintenance of MGEs. Furthermore, we discuss the ability of MGEs to act as sites of gene conversion and recombination in endobacterial genomes. We propose that MGEs are important instruments of genome shuffling, contributing to population heterogeneity and evolutionary longevity in heritable obligate endobacteria.
Collapse
Affiliation(s)
- Mizue Naito
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, USA; Present address: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University , Ithaca, NY, USA
| |
Collapse
|
24
|
Abstract
Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host’s fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia’s genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia’s riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect’s reproduction in a selfish manner, which tends to affect a host’s fitness negatively. Meanwhile, some theories predict that, at the same time, Wolbachia can directly affect the host’s fitness positively, which may potentially reconcile the negative effect and facilitate spread and stability of the symbiotic association. Here we demonstrate, by using comparative genomic and experimental approaches, that among synthetic pathways for B vitamins, the synthetic pathway for riboflavin (vitamin B2) is exceptionally conserved among diverse insect-associated Wolbachia strains, and Wolbachia’s riboflavin provisioning certainly contributes to growth, survival, and reproduction in an insect. These findings uncover a nutritional mechanism of a Wolbachia-mediated fitness benefit, which provides empirical evidence highlighting a “Jekyll and Hyde” aspect of Wolbachia infection.
Collapse
|
25
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Ormeño-Orrillo E, Vera-Ponce de León A, Rosenblueth M, Delaye L, Martínez J, Martínez-Romero E. Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxteri', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylori', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups. Syst Appl Microbiol 2015; 38:390-9. [PMID: 26189661 DOI: 10.1016/j.syapm.2015.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Wolbachia are highly extended bacterial endosymbionts that infect arthropods and filarial nematodes and produce contrasting phenotypes on their hosts. Wolbachia taxonomy has been understudied. Currently, Wolbachia strains are classified into phylogenetic supergroups. Here we applied phylogenomic analyses to study Wolbachia evolutionary relationships and examined metrics derived from their genome sequences such as average nucleotide identity (ANI), in silico DNA-DNA hybridization (DDH), G+C content, and synteny to shed light on the taxonomy of these bacteria. Draft genome sequences of strains wDacA and wDacB obtained from the carmine cochineal insect Dactylopius coccus were included. Although all analyses indicated that each Wolbachia supergroup represents a distinct evolutionary lineage, we found that some of the analyzed supergroups showed enough internal heterogeneity to be considered as assemblages of more than one species. Thus, supergroups would represent supraspecific groupings. Consequently, Wolbachia pipientis nomen species would apply only to strains of supergroup B and we propose the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxterii', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylorii', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitis' for other supergroups.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| | - Julio Martínez
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
26
|
Abstract
Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated.
Collapse
|
27
|
Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi. PLoS One 2014; 9:e99884. [PMID: 24941309 PMCID: PMC4062475 DOI: 10.1371/journal.pone.0099884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds.
Collapse
|
28
|
Koutsovoulos G, Makepeace B, Tanya VN, Blaxter M. Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode. PLoS Genet 2014; 10:e1004397. [PMID: 24901418 PMCID: PMC4046930 DOI: 10.1371/journal.pgen.1004397] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022] Open
Abstract
Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections. Bovine lungworms are economically important nematode parasites of cattle. We have sequenced the genome of the bovine lungworm to provide information for drug and vaccine discovery. Within the lungworm genome we found extensive evidence of an ancient association between the lungworm and a bacterium called Wolbachia. The lungworm Wolbachia is now a “fossil” in the genome, but tells of an ancient infection. Association between lungworms, and related nematode worms, and Wolbachia was not known previously. We have used the lungworm Wolbachia sequence to explore the history of nematode-Wolbachia interactions, particularly the jumping of these symbionts between arthropods and nematodes.
Collapse
Affiliation(s)
- Georgios Koutsovoulos
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Benjamin Makepeace
- Institute of Infection and Global Health, The University of Liverpool, Liverpool, United Kingdom
| | - Vincent N. Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, Ngaoundéré, Adamawa Region, Cameroon
| | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Abstract
The sequencing of the complete genome of the nematode Caenorhabditis elegans was a landmark achievement and ushered in a new era of whole-organism, systems analyses of the biology of this powerful model organism. The success of the C. elegans genome sequencing project also inspired communities working on other organisms to approach genome sequencing of their species. The phylum Nematoda is rich and diverse and of interest to a wide range of research fields from basic biology through ecology and parasitic disease. For all these communities, it is now clear that access to genome scale data will be key to advancing understanding, and in the case of parasites, developing new ways to control or cure diseases. The advent of second-generation sequencing technologies, improvements in computing algorithms and infrastructure and growth in bioinformatics and genomics literacy is making the addition of genome sequencing to the research goals of any nematode research program a less daunting prospect. To inspire, promote and coordinate genomic sequencing across the diversity of the phylum, we have launched a community wiki and the 959 Nematode Genomes initiative (www.nematodegenomes.org/). Just as the deciphering of the developmental lineage of the 959 cells of the adult hermaphrodite C. elegans was the gateway to broad advances in biomedical science, we hope that a nematode phylogeny with (at least) 959 sequenced species will underpin further advances in understanding the origins of parasitism, the dynamics of genomic change and the adaptations that have made Nematoda one of the most successful animal phyla.
Collapse
Affiliation(s)
- Sujai Kumar
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh, UK
| | | | | | | |
Collapse
|
30
|
Bouchery T, Lefoulon E, Karadjian G, Nieguitsila A, Martin C. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis. Clin Microbiol Infect 2013; 19:131-40. [PMID: 23398406 DOI: 10.1111/1469-0691.12069] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 01/25/2023]
Abstract
Symbiotic associations between eukaryotes and microorganisms are frequently observed in nature, and range along the continuum between parasitism and mutualism. The genus Wolbachia contains well-known intracellular bacteria of arthropods that induce several reproductive phenotypes that benefit the transmission of the bacteria. Interestingly, Wolbachia bacteria have been found in the Onchocercidae, a family of filarial nematodes, including species that cause human filarial diseases, e.g. lymphatic filariasis and onchocerciasis. The endosymbiont is thought to be mutualistic in the Onchocercidae, and to provide essential metabolites to the filariae. Currently, Wolbachia bacteria are targets of antibiotic therapy with tetracyclines, which have profound effects on the development, viability and fertility of filarial parasites. This overview article presents the Onchocercidae and Wolbachia, and then discusses the origin and the nature of the symbiosis. It highlights the contribution of Wolbachia to the survival of the filariae and to the development of pathology. Finally, the infection control implications for filariases are debated. Potential directions for future research are also discussed.
Collapse
Affiliation(s)
- T Bouchery
- UMR 7245, MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Graham RI, Wilson K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol Biol 2012; 12:204. [PMID: 23061984 PMCID: PMC3557208 DOI: 10.1186/1471-2148-12-204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Background Numerous recent studies have shown that resident symbiotic microorganisms of insects play a fundamental role in host ecology and evolution. The lepidopteran pest, African armyworm (Spodoptera exempta), is a highly migratory and destructive species found throughout sub-Saharan Africa, that can experience eruptive outbreaks within the space of a single generation, making predicting population dynamics and pest control forecasting extremely difficult. Three strains of Wolbachia have recently been identified infecting this species in populations sampled from Tanzania. In this study, we examined the interaction between Wolbachia pipiensis infections and the co-inherited marker, mtDNA, within populations of armyworm, as a means to investigate the population biology and evolutionary history of Wolbachia and its host. Results A Wolbachia-infected isofemale line was established in the laboratory. Phenotypic studies confirmed the strain wExe1 as a male-killer. Partial sequencing of the mitochondrial COI gene from 164 individual field-collected armyworm of known infection status revealed 17 different haplotypes. There was a strong association between Wolbachia infection status and mtDNA haplotype, with a single dominant haplotype, haplo1 (90.2% prevalence), harbouring the endosymbiont. All three Wolbachia strains were associated with this haplotype. This indicates that Wolbachia may be driving a selective sweep on armyworm haplotype diversity. Despite very strong biological and molecular evidence that the samples represent a single species (including from nuclear 28S gene markers), the 17 haplotypes did not fall into a monophyletic clade within the Spodoptera genus; with six haplotypes (2 each from 3 geographically separate populations) differing by >11% in their nucleotide sequence to the other eleven. Conclusions This study suggests that three strains of Wolbachia may be driving a selective sweep on armyworm haplotype diversity, and that based on COI sequence data, S. exempta is not a monophyletic group within the Spodoptera genus. This has clear implications for the use of mtDNA as neutral genetic markers in insects, and also demonstrates the impact of Wolbachia infections on host evolutionary genetics.
Collapse
Affiliation(s)
- Robert I Graham
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | | |
Collapse
|
33
|
Serbus LR, Landmann F, Bray WM, White PM, Ruybal J, Lokey RS, Debec A, Sullivan W. A cell-based screen reveals that the albendazole metabolite, albendazole sulfone, targets Wolbachia. PLoS Pathog 2012; 8:e1002922. [PMID: 23028321 PMCID: PMC3447747 DOI: 10.1371/journal.ppat.1002922] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022] Open
Abstract
Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.
Collapse
Affiliation(s)
- Laura R Serbus
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, Wrobel N, Thompson M, Schmid CD, Goto S, Bringaud F, Wolstenholme A, Bandi C, Epe C, Kaminsky R, Blaxter M, Mäser P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB J 2012; 26:4650-61. [PMID: 22889830 PMCID: PMC3475251 DOI: 10.1096/fj.12-205096] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9-Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.—Godel, C., Kumar, S., Koutsovoulos, G., Ludin, P., Nilsson, D., Comandatore, F., Wrobel, N., Thompson, M., Schmid, C. D., Goto, S., Bringaud, F., Wolstenholme, A., Bandi, C., Epe, C., Kaminsky, R., Blaxter, M., Mäser, P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets.
Collapse
|
35
|
Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, Montoya-Alonso JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 2012; 25:507-44. [PMID: 22763636 PMCID: PMC3416488 DOI: 10.1128/cmr.00012-12] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.
Collapse
Affiliation(s)
- Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy and IBSAL, University of Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
Scott AL, Ghedin E, Nutman TB, McReynolds LA, Poole CB, Slatko BE, Foster JM. Filarial and Wolbachia genomics. Parasite Immunol 2012; 34:121-9. [PMID: 22098559 DOI: 10.1111/j.1365-3024.2011.01344.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics.
Collapse
Affiliation(s)
- A L Scott
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Landmann F, Bain O, Martin C, Uni S, Taylor MJ, Sullivan W. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes. Biol Open 2012; 1:536-47. [PMID: 23213446 PMCID: PMC3509449 DOI: 10.1242/bio.2012737] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parasitic filarial nematodes that belong to the Onchocercidae family live in mutualism with Wolbachia endosymbionts. We developed whole-mount techniques to follow the segregation patterns of Wolbachia through the somatic and germline lineages of four filarial species. These studies reveal multiple evolutionarily conserved mechanisms that are required for Wolbachia localization to the germline. During the initial embryonic divisions, Wolbachia segregate asymmetrically such that they concentrate in the posteriorly localized P2 blastomere, a precursor to the adult germline and hypodermal lineages. Surprisingly, in the next division they are excluded from the germline precursor lineage. Rather, they preferentially segregate to the C blastomere, a source of posterior hypodermal cells. Localization to the germline is accomplished by a distinct mechanism in which Wolbachia invade first the somatic gonadal cells close to the ovarian distal tip cell, the nematode stem cell niche, from the hypodermis. This tropism is associated with a cortical F-actin disruption, suggesting an active engulfment. Significantly, germline invasion occurs only in females, explaining the lack of Wolbachia in the male germline. Once in the syncytial environment of the ovaries, Wolbachia rely on the rachis to multiply and disperse into the germ cells. The utilization of cell-to-cell invasion for germline colonization may indicate an ancestral mode of horizontal transfer that preceded the acquisition of the mutualism.
Collapse
Affiliation(s)
- Frédéric Landmann
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California , Santa Cruz, CA 95064 , USA
| | | | | | | | | | | |
Collapse
|
38
|
Insect immune responses to nematode parasites. Trends Parasitol 2011; 27:537-47. [PMID: 21982477 DOI: 10.1016/j.pt.2011.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 12/16/2022]
Abstract
Host innate immunity plays a central role in detecting and eliminating microbial pathogenic infections in both vertebrate and invertebrate animals. Entomopathogenic or insect pathogenic nematodes are of particular importance for the control of insect pests and vectors of pathogens, while insect-borne nematodes cause serious diseases in humans. Recent work has begun to use the power of insect models to investigate host-nematode interactions and uncover host antiparasitic immune reactions. This review describes recent findings on innate immune evasion strategies of parasitic nematodes and host cellular and humoral responses to the infection. Such information can be used to model diseases caused by human parasitic nematodes and provide clues indicating directions for research into the interplay between vector insects and their invading tropical parasites.
Collapse
|
39
|
Bennuru S, Meng Z, Ribeiro JMC, Semnani RT, Ghedin E, Chan K, Lucas DA, Veenstra TD, Nutman TB. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci U S A 2011; 108:9649-54. [PMID: 21606368 PMCID: PMC3111283 DOI: 10.1073/pnas.1011481108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global proteomic analyses of pathogens have thus far been limited to unicellular organisms (e.g., protozoa and bacteria). Proteomic analyses of most eukaryotic pathogens (e.g., helminths) have been restricted to specific organs, specific stages, or secretomes. We report here a large-scale proteomic characterization of almost all the major mammalian stages of Brugia malayi, a causative agent of lymphatic filariasis, resulting in the identification of more than 62% of the products predicted from the Bm draft genome. The analysis also yielded much of the proteome of Wolbachia, the obligate endosymbiont of Bm that also expressed proteins in a stage-specific manner. Of the 11,610 predicted Bm gene products, 7,103 were definitively identified from adult male, adult female, blood-borne and uterine microfilariae, and infective L3 larvae. Among the 4,956 gene products (42.5%) inferred from the genome as "hypothetical," the present study was able to confirm 2,336 (47.1%) as bona fide proteins. Analysis of protein families and domains coupled with stage-specific expression highlight the important pathways that benefit the parasite during its development in the host. Gene set enrichment analysis identified extracellular matrix proteins and those with immunologic effects as enriched in the microfilarial and L3 stages. Parasite sex- and stage-specific protein expression identified those pathways related to parasite differentiation and demonstrates stage-specific expression by the Bm endosymbiont Wolbachia as well.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Elsworth B, Wasmuth J, Blaxter M. NEMBASE4: the nematode transcriptome resource. Int J Parasitol 2011; 41:881-94. [PMID: 21550347 DOI: 10.1016/j.ijpara.2011.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/28/2022]
Abstract
Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. To demonstrate the utility of NEMBASE4, we have used the database to examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Collapse
Affiliation(s)
- Benjamin Elsworth
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | | |
Collapse
|
41
|
Horizontal gene transfer between bacteria and animals. Trends Genet 2011; 27:157-63. [PMID: 21334091 DOI: 10.1016/j.tig.2011.01.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers.
Collapse
|
42
|
Yamada R, Iturbe-Ormaetxe I, Brownlie JC, O'Neill SL. Functional test of the influence of Wolbachia genes on cytoplasmic incompatibility expression in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2011; 20:75-85. [PMID: 20854481 DOI: 10.1111/j.1365-2583.2010.01042.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Wolbachia are inherited intracellular bacteria that infect a broad range of invertebrate hosts. They commonly manipulate host reproduction in a variety of ways and thereby favour their invasion into host populations. While the biology of Wolbachia has been extensively studied at the ecological and phenotypic level, little is known about the molecular mechanisms underlying the interaction between Wolbachia and their hosts. Recent comparative genomics studies of Wolbachia strains have revealed putative candidate genes involved in the expression of cytoplasmic incompatibility (CI) in insects. However the functional testing of these genes is hindered by the lack of available genetic tools in Wolbachia. To circumvent this problem we generated transgenic Drosophila lines expressing various Wolbachia CI candidate genes under the control of the GAL4/UAS system in order to evaluate their possible role in Wolbachia-related phenotypes in Drosophila. The expression of a number of these genes in Drosophila melanogaster failed to mimic or alter CI phenotypes across a range of Wolbachia backgrounds or in the absence of Wolbachia.
Collapse
Affiliation(s)
- R Yamada
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
43
|
Simões PM, Mialdea G, Reiss D, Sagot MF, Charlat S. Wolbachia detection: an assessment of standard PCR protocols. Mol Ecol Resour 2011; 11:567-72. [PMID: 21481216 DOI: 10.1111/j.1755-0998.2010.02955.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolbachia is a large monophyletic genus of intracellular bacteria, traditionally detected using PCR assays. Its considerable phylogenetic diversity and impact on arthropods and nematodes make it urgent to assess the efficiency of these screening protocols. The sensitivity and range of commonly used PCR primers and of a new set of 16S primers were evaluated on a wide range of hosts and Wolbachia strains. We show that certain primer sets are significantly more efficient than others but that no single protocol can ensure the specific detection of all known Wolbachia infections.
Collapse
Affiliation(s)
- P M Simões
- Équipe BAMBOO (INRIA), Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 bd du 11 Novembre 1918, 69100 Villeurbanne, France.
| | | | | | | | | |
Collapse
|
44
|
BRUVO RUŽA, ADOLFSSON SOFIA, SYMONOVA RADKA, LAMATSCH DUNJAK, SCHÖN ISA, JOKELA JUKKA, BUTLIN ROGERK, MÜLLER STEFAN. Few parasites, and no evidence for Wolbachia infections, in a freshwater ostracod inhabiting temporary ponds. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01556.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Touchdown-touchup nested PCR for low-copy gene detection of benzimidazole-susceptible Wuchereria bancrofti with a Wolbachia endosymbiont imported by migrant carriers. Exp Parasitol 2010; 127:559-68. [PMID: 21074526 DOI: 10.1016/j.exppara.2010.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/20/2022]
Abstract
A novel, sensitive and specific touchdown-touchup nested PCR (TNPCR) technique based on two useful molecular markers, a Wuchereria bancrofti β-tubulin gene involved in benzimidazole susceptibility and a Wolbachia ftsZ gene involved in cell division, was developed to simultaneously detect the parasite W. bancrofti (W1) with its Wolbachia endosymbiont (W2) from both microfilaremic and post-treatment samples of at-risk migrant carriers infected with geographical W. bancrofti isolates. The detection and characterization of authentically low-copy gene-derived amplicons revealed no false positive identifications in amicrofilaremia with or without antigenemia. The W1-TNPCR was 100-fold more sensitive than the W2-TNPCR regardless of the microfilarial DNA isolation method and compared well with the thick blood film and membrane filtration techniques. These locus-specific TNPCRs could also detect Wolbachia-carrying W. bancrofti genotype in addition to a link to benzimidazole sensitivity among those with unknown infection origins that exhibited microfilaremia responsiveness against treatment with diethylcarbamazine plus albendazole. These TNPCR methods can augment the results of microscopic detection of the parasite because these methods enhance DNA isolation and PCR amplification capabilities.
Collapse
|
46
|
Neary JM, Trees AJ, Ekale DD, Tanya VN, Hetzel U, Makepeace BL. Onchocerca armillata contains the endosymbiotic bacterium Wolbachia and elicits a limited inflammatory response. Vet Parasitol 2010; 174:267-76. [PMID: 20850932 PMCID: PMC3038270 DOI: 10.1016/j.vetpar.2010.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/16/2010] [Accepted: 08/23/2010] [Indexed: 11/27/2022]
Abstract
Human onchocerciasis, also known as River Blindness, is a debilitating disease caused by the filarial nematode Onchocerca volvulus. Many, but not all, filarial nematodes carry within their tissues endosymbiotic, Rickettsia-like bacteria of the genus Wolbachia. Onchocerca spp. infections in cattle offer the most relevant, analogous host–parasite model system. West African cattle are commonly co-infected with four Onchocerca spp.; two of these are Wolbachia-positive (Onchocerca gutturosa and Onchocerca ochengi), and the remainder are of unknown Wolbachia status (Onchocerca dukei and Onchocerca armillata). Previous studies have suggested that worm survival is dependent on this bacterium. O. armillata, an abundant parasite of African cattle that has received little attention, is a primitive species that may lack Wolbachia. The objectives of this study were to determine if O. armillata carries Wolbachia and to provide preliminary descriptions of the host inflammatory cell environment around the adult worms. The findings may support or refute the hypothesis that a prime contribution of Wolbachia is to permit long-term survival and reproduction of certain Onchocerca spp. (including O. volvulus in humans). O. armillata adult worms were found in the aorta of 90.7% of cattle (n = 54) slaughtered at an abattoir in Ngaoundéré, Adamawa Region, Cameroon. The presence of Wolbachia in O. armillata was confirmed by a specific anti-Wolbachia surface protein antibody detected using a peroxidase conjugate (immunohistochemistry) and PCR for detection of Wolbachia-specific sequences within DNA extracts from frozen worms. Tissue sections stained with haematoxylin and eosin showed the host cell response to be dominated by macrophages and fibroblasts. This is unusual compared with nodule-dwelling Wolbachia-positive Onchocerca spp., where the host response is typically characterised by granulocytes, and suggests that the mechanisms for worm survival employed by this species (which is probably motile) may differ.
Collapse
Affiliation(s)
- Joseph M Neary
- Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
47
|
Kremer N, Dedeine F, Charif D, Finet C, Allemand R, Vavre F. Do variable compensatory mechanisms explain the polymorphism of the dependence phenotype in the Asobara tabida-wolbachia association? Evolution 2010; 64:2969-79. [PMID: 20482609 DOI: 10.1111/j.1558-5646.2010.01034.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolbachia are symbiotic intracellular bacteria, which are classified as reproductive parasites. Although generally facultative, Wolbachia is necessary for Asobara tabida (Hymenoptera), because aposymbiotic females do not produce any offspring. Interestingly, the ovarian phenotype of aposymbiotic females is variable: some females do not produce any eggs, whereas others do produce some eggs, but these are aborted. Here, we show that the ovarian phenotype of aposymbiotic females is highly polymorphic within populations, although dependence remains complete in both cases. We also identified some lines in which aposymbiotic females were able to produce a very few viable offspring, further extending the range of variation observed. These results suggest that various factors actively maintain polymorphism. We demonstrated that Wolbachia is necessary to trigger oogenetic processes, but that the ovarian phenotype was determined by the host only. Phenotypic variation was also correlated with the differential expression of genes controlling iron homeostasis and oxidative stress, which are potentially involved in the evolution of dependence. This suggests that variation in the ovarian phenotype could reflect selection for different levels of compensatory mechanisms in response to Wolbachia infection, and that polymorphism is maintained through selection on different antagonist traits influenced by oxidative stress.
Collapse
|
48
|
Slatko BE, Taylor MJ, Foster JM. The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis 2010; 51:55-65. [PMID: 20730111 PMCID: PMC2918796 DOI: 10.1007/s13199-010-0067-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/13/2010] [Indexed: 01/05/2023]
Abstract
Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship.
Collapse
Affiliation(s)
- Barton E. Slatko
- Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Mark J. Taylor
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Jeremy M. Foster
- Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
49
|
Johnston KL, Taylor MJ. Wolbachia in filarial parasites: targets for filarial infection and disease control. Curr Infect Dis Rep 2010; 9:55-9. [PMID: 17254505 DOI: 10.1007/s11908-007-0023-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes. These nematodes have evolved a mutualistic symbiosis with intracellular bacteria of the genus Wolbachia, which are required for nematode embryogenesis and survival. The essential role of these bacteria in the biology of the nematode and their demonstrated involvement in the pathogenesis of filariasis make Wolbachia a promising novel chemotherapeutic target for the control of filarial infection and disease. This article reviews the recent findings, which highlight potential processes that form the basis of the symbiosis, the role of Wolbachia in filarial pathogenesis, and the efficacy of Wolbachia-targeted antibiotic chemotherapy in human trials. Future prospects for the development of an anti-Wolbachia treatment regimen suitable for integration into mass drug administration programs are also discussed.
Collapse
Affiliation(s)
- Kelly L Johnston
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, UK
| | | |
Collapse
|
50
|
Paily KP, Hoti SL, Das PK. A review of the complexity of biology of lymphatic filarial parasites. J Parasit Dis 2009; 33:3-12. [PMID: 23129882 PMCID: PMC3454129 DOI: 10.1007/s12639-009-0005-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/01/2009] [Indexed: 10/19/2022] Open
Abstract
There are about five more common, including Wuchereria bancrofti and Brugia malayi, and four less common filarial parasites infecting human. Genetic analysis of W. bancrofti populations in India showed that two strains of the species are prevalent in the country. The adult filarial parasites are tissue specific in the human host and their embryonic stage, called microfilariae (mf), are found in the blood or skin of the host, depending upon the species of the parasite. Three genetically determined physiological races exist in W. bancrofti and B. malayi, based on the microfilarial periodicity. They are the nocturnally periodic, nocturnally subperiodic and diurnally subperiodic forms. The susceptibility of a mosquito species to filarial infection depends on various factors, which could be genetic, physiological or physical. Survival analysis of Culex quinquefasciatus infected with W. bancrofti showed that the parasite load in the mosquito is a risk factor of vector survival. The extrinsic life cycle of the parasite is initiated when the mf are ingested by a mosquito vector during feeding on the host blood. On maturity, most of the infective L3 stage larvae migrate to the head and proboscis of the mosquito to get transmitted to the mammalian host during subsequent feeding. They develop to the adult L5 stage and the period of development and the longevity of the parasites varies according to the species of the nematode and the mammalian host. The rate of production of mf by the adult female was found to be stable at least for a period of five years. The life span of the mf has some influence on the dynamics of transmission of filariasis. Recent studies show that the endosymbiont, Wolbachia, plays an important role in the survival of filarial parasites. The possibility of in vitro and in vivo culture of filarial parasites is also reviewed.
Collapse
Affiliation(s)
- K. P. Paily
- Vector Control Research Centre (Indian Council of Medical Research), Indira Nagar, Pondicherry, 605 006 India
| | - S. L. Hoti
- Vector Control Research Centre (Indian Council of Medical Research), Indira Nagar, Pondicherry, 605 006 India
| | - P. K. Das
- Vector Control Research Centre (Indian Council of Medical Research), Indira Nagar, Pondicherry, 605 006 India
| |
Collapse
|