1
|
Martin RA, Tate AT. Pleiotropy alleviates the fitness costs associated with resource allocation trade-offs in immune signalling networks. Proc Biol Sci 2024; 291:20240446. [PMID: 38835275 DOI: 10.1098/rspb.2024.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.
Collapse
Affiliation(s)
- Reese A Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Schrom E, Kinzig A, Forrest S, Graham AL, Levin SA, Bergstrom CT, Castillo-Chavez C, Collins JP, de Boer RJ, Doupé A, Ensafi R, Feldman S, Grenfell BT, Halderman JA, Huijben S, Maley C, Moses M, Perelson AS, Perrings C, Plotkin J, Rexford J, Tiwari M. Challenges in cybersecurity: Lessons from biological defense systems. Math Biosci 2023:109024. [PMID: 37270102 DOI: 10.1016/j.mbs.2023.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance. Throughout this paper, we pose open questions for further exploration. We hope to spark the interdisciplinary discovery of general principles of optimal defense, which can be understood and applied in biological immunity, cybersecurity, and other defensive realms.
Collapse
Affiliation(s)
- Edward Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America
| | - Ann Kinzig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Stephanie Forrest
- Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America; School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America.
| | - Carl T Bergstrom
- Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| | - Carlos Castillo-Chavez
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States of America
| | - James P Collins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Adam Doupé
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Center for Cybersecurity and Trusted Foundations, Global Security Initiative, Arizona State University, Tempe, AZ 85287, United States of America
| | - Roya Ensafi
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Stuart Feldman
- Schmidt Futures, New York, NY 10011, United States of America
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, United States of America
| | - J Alex Halderman
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America; Center for Computer Security and Society, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, United States of America; Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America
| | - Melanie Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, United States of America; Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Charles Perrings
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Joshua Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jennifer Rexford
- Department of Computer Science, Princeton University, Princeton, NJ 08540, United States of America
| | - Mohit Tiwari
- Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, United States of America
| |
Collapse
|
3
|
Chabas H, Müller V, Bonhoeffer S, Regoes RR. Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems. PLoS Comput Biol 2022; 18:e1010329. [PMID: 35881633 PMCID: PMC9355216 DOI: 10.1371/journal.pcbi.1010329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteria have adaptive immunity against viruses (phages) in the form of CRISPR-Cas immune systems. Currently, 6 types of CRISPR-Cas systems are known and the molecular study of three of these has revealed important molecular differences. It is unknown if and how these molecular differences change the outcome of phage infection and the evolutionary pressure the CRISPR-Cas systems faces. To determine the importance of these molecular differences, we model a phage outbreak entering a population defending exclusively with a type I/II or a type III CRISPR-Cas system. We show that for type III CRISPR-Cas systems, rapid phage extinction is driven by the probability to acquire at least one resistance spacer. However, for type I/II CRISPR-Cas systems, rapid phage extinction is characterized by an a threshold-like behaviour: any acquisition probability below this threshold leads to phage survival whereas any acquisition probability above it, results in phage extinction. We also show that in the absence of autoimmunity, high acquisition rates evolve. However, when CRISPR-Cas systems are prone to autoimmunity, intermediate levels of acquisition are optimal during a phage outbreak. As we predict an optimal probability of spacer acquisition 2 factors of magnitude above the one that has been measured, we discuss the origin of such a discrepancy. Finally, we show that in a biologically relevant parameter range, a type III CRISPR-Cas system can outcompete a type I/II CRISPR-Cas system with a slightly higher probability of acquisition. CRISPR-Cas systems are adaptive immune systems that use a complex 3-step molecular mechanism to defend prokaryotes against phages. Viral infections of populations defending themselves with CRISPR-Cas can result in rapid phage extinction or in medium-term phage maintenance. To investigate what controls the fate of the phage population, we use mathematical modeling of type I/II and type III CRISPR-Cas systems, and show that two parameters control the epidemiological short-term outcome: the type of CRISPR-Cas systems and CRISPR-Cas probability of resistance acquisition. Furthermore, the latter impacts host fitness. From this, we derive that 1) for both types, CRISPR-Cas acquisition probability is a key predictor of the efficiency and of the cost of a CRISPR-Cas system, 2) during an outbreak, there is an optimal probability of resistance acquisition balancing the cost of autoimmunity and immune efficiency and 3) type I/II CRISPR-Cas systems are likely to evolve higher acquisition probability than type III.
Collapse
Affiliation(s)
- Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | | | - Roland R. Regoes
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Graham AL, Schrom EC, Metcalf CJE. The evolution of powerful yet perilous immune systems. Trends Immunol 2021; 43:117-131. [PMID: 34949534 PMCID: PMC8686020 DOI: 10.1016/j.it.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022]
Abstract
The mammalian immune system packs serious punch against infection but can also cause harm: for example, coronavirus disease 2019 (COVID-19) made headline news of the simultaneous power and peril of human immune responses. In principle, natural selection leads to exquisite adaptation and therefore cytokine responsiveness that optimally balances the benefits of defense against its costs (e.g., immunopathology suffered and resources expended). Here, we illustrate how evolutionary biology can predict such optima and also help to explain when/why individuals exhibit apparently maladaptive immunopathological responses. Ultimately, we argue that the evolutionary legacies of multicellularity and life-history strategy, in addition to our coevolution with symbionts and our demographic history, together explain human susceptibility to overzealous, pathology-inducing cytokine responses. Evolutionary insight thereby complements molecular/cellular mechanistic insights into immunopathology.
Collapse
|
5
|
Anelone AJN, Hancock EJ, Klein N, Kim P, Spurgeon SK. Control theory helps to resolve the measles paradox. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201891. [PMID: 34007460 PMCID: PMC8080004 DOI: 10.1098/rsos.201891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Measles virus (MV) is a highly contagious respiratory morbillivirus that results in many disabilities and deaths. A crucial challenge in studying MV infection is to understand the so-called 'measles paradox'-the progression of the infection to severe immunosuppression before clearance of acute viremia, which is also observed in canine distemper virus (CDV) infection. However, a lack of models that match in vivo data has restricted our understanding of this complex and counter-intuitive phenomenon. Recently, progress was made in the development of a model that fits data from acute measles infection in rhesus macaques. This progress motivates our investigations to gain additional insights from this model into the control mechanisms underlying the paradox. In this paper, we investigated analytical conditions determining the control and robustness of viral clearance for MV and CDV, to untangle complex feedback mechanisms underlying the dynamics of acute infections in their natural hosts. We applied control theory to this model to help resolve the measles paradox. We showed that immunosuppression is important to control and clear the virus. We also showed under which conditions T-cell killing becomes the primary mechanism for immunosuppression and viral clearance. Furthermore, we characterized robustness properties of T-cell immunity to explain similarities and differences in the control of MV and CDV. Together, our results are consistent with experimental data, advance understanding of control mechanisms of viral clearance across morbilliviruses, and will help inform the development of effective treatments. Further the analysis methods and results have the potential to advance understanding of immune system responses to a range of viral infections such as COVID-19.
Collapse
Affiliation(s)
- Anet J. N. Anelone
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Edward J. Hancock
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
- The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Nigel Klein
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Peter Kim
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Sarah K. Spurgeon
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
6
|
DeCandia AL, Schrom EC, Brandell EE, Stahler DR, vonHoldt BM. Sarcoptic mange severity is associated with reduced genomic variation and evidence of selection in Yellowstone National Park wolves ( Canis lupus). Evol Appl 2021; 14:429-445. [PMID: 33664786 PMCID: PMC7896714 DOI: 10.1111/eva.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023] Open
Abstract
Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.
Collapse
Affiliation(s)
| | - Edward C. Schrom
- Ecology & Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | |
Collapse
|
7
|
Metcalf CJE, Grenfell BT, Graham AL. Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models. PLoS Pathog 2020; 16:e1009105. [PMID: 33306746 PMCID: PMC7732095 DOI: 10.1371/journal.ppat.1009105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Health outcomes following infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are remarkably variable. The way the virus spreads inside hosts, and how this spread interacts with host immunity and physiology, is likely to determine variation in health outcomes. Decades of data and dynamical analyses of how other viruses spread and interact with host cells could shed light on SARS-CoV-2 within-host trajectories. We review how common axes of variation in within-host dynamics and emergent pathology (such as age and sex) might be combined with ecological principles to understand the case of SARS-CoV-2. We highlight pitfalls in application of existing theoretical frameworks relevant to the complexity of the within-host context and frame the discussion in terms of growing knowledge of the biology of SARS-CoV-2. Viewing health outcomes for SARS-CoV-2 through the lens of ecological models underscores the value of repeated measures on individuals, especially since many lines of evidence suggest important contingence on trajectory.
Collapse
Affiliation(s)
- C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton School of Public and International Affairs, Princeton University, New Jersey, United States of America
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton School of Public and International Affairs, Princeton University, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
8
|
Schrom EC, Levin SA, Graham AL. Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Comput Biol 2020; 16:e1008051. [PMID: 32730250 PMCID: PMC7392205 DOI: 10.1371/journal.pcbi.1008051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
In the animal kingdom, various forms of swarming enable groups of autonomous individuals to transform uncertain information into unified decisions which are probabilistically beneficial. Crossing scales from individual to group decisions requires dynamically accumulating signals among individuals. In striking parallel, the mammalian immune system is also a group of decentralized autonomous units (i.e. cells) which collectively navigate uncertainty with the help of dynamically accumulating signals (i.e. cytokines). Therefore, we apply techniques of understanding swarm behavior to a decision-making problem in the mammalian immune system, namely effector choice among CD4+ T helper (Th) cells. We find that incorporating dynamic cytokine signaling into a simple model of Th differentiation comprehensively explains divergent observations of this process. The plasticity and heterogeneity of individual Th cells, the tunable mixtures of effector types that can be generated in vitro, and the polarized yet updateable group effector commitment often observed in vivo are all explained by the same set of underlying molecular rules. These rules reveal that Th cells harness dynamic cytokine signaling to implement a system of quorum sensing. Quorum sensing, in turn, may confer adaptive advantages on the mammalian immune system, especially during coinfection and during coevolution with manipulative parasites. This highlights a new way of understanding the mammalian immune system as a cellular swarm, and it underscores the power of collectives throughout nature.
Collapse
Affiliation(s)
- Edward C. Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
9
|
Schrom EC, Prada JM, Graham AL. Immune Signaling Networks: Sources of Robustness and Constrained Evolvability during Coevolution. Mol Biol Evol 2017; 35:676-687. [PMID: 29294066 DOI: 10.1093/molbev/msx321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defense against infection incurs costs as well as benefits that are expected to shape the evolution of optimal defense strategies. In particular, many theoretical studies have investigated contexts favoring constitutive versus inducible defenses. However, even when one immune strategy is theoretically optimal, it may be evolutionarily unachievable. This is because evolution proceeds via mutational changes to the protein interaction networks underlying immune responses, not by changes to an immune strategy directly. Here, we use a theoretical simulation model to examine how underlying network architectures constrain the evolution of immune strategies, and how these network architectures account for desirable immune properties such as inducibility and robustness. We focus on immune signaling because signaling molecules are common targets of parasitic interference but are rarely studied in this context. We find that in the presence of a coevolving parasite that disrupts immune signaling, hosts evolve constitutive defenses even when inducible defenses are theoretically optimal. This occurs for two reasons. First, there are relatively few network architectures that produce immunity that is both inducible and also robust against targeted disruption. Second, evolution toward these few robust inducible network architectures often requires intermediate steps that are vulnerable to targeted disruption. The few networks that are both robust and inducible consist of many parallel pathways of immune signaling with few connections among them. In the context of relevant empirical literature, we discuss whether this is indeed the most evolutionarily accessible robust inducible network architecture in nature, and when it can evolve.
Collapse
Affiliation(s)
- Edward C Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Joaquín M Prada
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| |
Collapse
|
10
|
Schrom EC, Graham AL. Instructed subsets or agile swarms: how T-helper cells may adaptively counter uncertainty with variability and plasticity. Curr Opin Genet Dev 2017; 47:75-82. [PMID: 28926759 DOI: 10.1016/j.gde.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 10/25/2022]
Abstract
Over recent years, extensive phenotypic variability and plasticity have been revealed among the T-helper cells of the mammalian adaptive immune system, even within clonal lineages of identical antigen specificity. This challenges the conventional view that T-helper cells assort into functionally distinct subsets following differential instruction by the innate immune system. We argue that the adaptive value of coping with uncertainty can reconcile the 'instructed subset' framework with T-helper variability and plasticity. However, we also suggest that T-helper cells might better be understood as agile swarms engaged in collective decision-making to promote host fitness. With rigorous testing, the 'agile swarms' framework may illuminate how variable and plastic individual T-helper cells interact to create coherent immunity.
Collapse
Affiliation(s)
- Edward C Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Soen Y, Knafo M, Elgart M. A principle of organization which facilitates broad Lamarckian-like adaptations by improvisation. Biol Direct 2015; 10:68. [PMID: 26631109 PMCID: PMC4668624 DOI: 10.1186/s13062-015-0097-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the lifetime of an organism, every individual encounters many combinations of diverse changes in the somatic genome, epigenome and microbiome. This gives rise to many novel combinations of internal failures which are unique to each individual. How any individual can tolerate this high load of new, individual-specific scenarios of failure is not clear. While stress-induced plasticity and hidden variation have been proposed as potential mechanisms of tolerance, the main conceptual problem remains unaddressed, namely: how largely non-beneficial random variation can be rapidly and safely organized into net benefits to every individual. PRESENTATION OF THE HYPOTHESIS We propose an organizational principle which explains how every individual can alleviate a high load of novel stressful scenarios using many random variations in flexible and inherently less harmful traits. Random changes which happen to reduce stress, benefit the organism and decrease the drive for additional changes. This adaptation (termed 'Adaptive Improvisation') can be further enhanced, propagated, stabilized and memorized when beneficial changes reinforce themselves by auto-regulatory mechanisms. This principle implicates stress not only in driving diverse variations in cells tissues and organs, but also in organizing these variations into adaptive outcomes. Specific (but not exclusive) examples include stress reduction by rapid exchange of mobile genetic elements (or exosomes) in unicellular, and rapid changes in the symbiotic microorganisms of animals. In all cases, adaptive changes can be transmitted across generations, allowing rapid improvement and assimilation in a few generations. TESTING THE HYPOTHESIS We provide testable predictions derived from the hypothesis. IMPLICATIONS OF THE HYPOTHESIS The hypothesis raises a critical, but thus far overlooked adaptation problem and explains how random variation can self-organize to confer a wide range of individual-specific adaptations beyond the existing outcomes of natural selection. It portrays gene regulation as an inseparable synergy between natural selection and adaptation by improvisation. The latter provides a basis for Lamarckian adaptation that is not limited to a specific mechanism and readily accounts for the remarkable resistance of tumors to treatment.
Collapse
Affiliation(s)
- Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Maor Knafo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
12
|
Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol Biol 2015; 15:43. [PMID: 25881094 PMCID: PMC4372072 DOI: 10.1186/s12862-015-0324-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. Results We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Conclusions Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
13
|
Chakarov N, Linke B, Boerner M, Goesmann A, Krüger O, Hoffman JI. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol 2015; 24:1355-63. [PMID: 25688585 DOI: 10.1111/mec.13115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 11/30/2022]
Abstract
Parasite transmission strategies strongly impact host-parasite co-evolution and virulence. However, studies of vector-borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high-throughput sequencing to develop microsatellites for malaria-like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph-specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector-mediated parent-to-offspring transmission. The conditions for such 'quasi-vertical' transmission may be common and could suppress the evolution of pathogen virulence.
Collapse
Affiliation(s)
- Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Metcalf CJE, Andreasen V, Bjørnstad ON, Eames K, Edmunds WJ, Funk S, Hollingsworth TD, Lessler J, Viboud C, Grenfell BT. Seven challenges in modeling vaccine preventable diseases. Epidemics 2015; 10:11-5. [PMID: 25843375 PMCID: PMC6777947 DOI: 10.1016/j.epidem.2014.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/19/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022] Open
Abstract
Vaccination has been one of the most successful public health measures since the introduction of basic sanitation. Substantial mortality and morbidity reductions have been achieved via vaccination against many infections, and the list of diseases that are potentially controllable by vaccines is growing steadily. We introduce key challenges for modeling in shaping our understanding and guiding policy decisions related to vaccine preventable diseases.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Ecology and Evolutionary Biology and the Woodrow Wilson School, Princeton University, Princeton, NJ, USA.
| | - V Andreasen
- Department of Science, Systems and Models, Universitetsvej 1, 27.1, DK-4000 Roskilde, Denmark
| | - O N Bjørnstad
- Centre for Infectious Disease Dynamics, the Pennsylvania State University, State College, PA, USA
| | - K Eames
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - W J Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - S Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - T D Hollingsworth
- Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - J Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C Viboud
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - B T Grenfell
- Department of Ecology and Evolutionary Biology and the Woodrow Wilson School, Princeton University, Princeton, NJ, USA; Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Iranzo J, Villoslada P. Autoimmunity and tumor immunology: two facets of a probabilistic immune system. BMC SYSTEMS BIOLOGY 2014; 8:120. [PMID: 25385554 PMCID: PMC4236429 DOI: 10.1186/s12918-014-0120-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Background The immune system of vertebrates has evolved the ability to mount highly elaborate responses to a broad range of pathogen-driven threats. Accordingly, it is quite a challenge to understand how a primitive adaptive immune system that probably lacked much of its present complexity could provide its bearers with significant evolutionary advantage, and therefore, continue to be selected for. Results We have developed a very simple model of the immune system that captures the probabilistic communication between its innate and adaptive components. Probabilistic communication arises specifically from the fact that antigen presenting cells collect and present a range of antigens from which the adaptive immune system must (probabilistically) identify its target. Our results show that although some degree of self-reactivity in the immune repertoire is unavoidable, the system is generally able to correctly target pathogens rather than self-antigens. Particular circumstances that impair correct targeting and that may lead to infection-induced autoimmunity can be predicted within this framework. Notably, the probabilistic immune system exhibits the remarkable ability to detect sudden increases in the abundance of rare self-antigens, which represents a first step towards developing anti-tumoral responses. Conclusion A simple probabilistic model of the communication between the innate and adaptive immune system provides a robust immune response, including targeting tumors, but at the price of being at risk of developing autoimmunity.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Astrobiología, INTA - CSIC, Madrid, Spain. .,Current address: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Pablo Villoslada
- Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Casanova 145, Cellex Center 3A, 08036, Barcelona, Spain.
| |
Collapse
|
16
|
Rimer J, Cohen IR, Friedman N. Do all creatures possess an acquired immune system of some sort? Bioessays 2014; 36:273-81. [DOI: 10.1002/bies.201300124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacob Rimer
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Irun R. Cohen
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Nir Friedman
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
17
|
Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 2013; 4:413. [PMID: 24348479 PMCID: PMC3841818 DOI: 10.3389/fimmu.2013.00413] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023] Open
Abstract
T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a "next-generation" of repertoire analysis.
Collapse
Affiliation(s)
- Adrien Six
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Maria Encarnita Mariotti-Ferrandiz
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Wahiba Chaara
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Susana Magadan
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| | - Hang-Phuong Pham
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2 , Montpellier , France
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS and Ecole Normale Supérieure , Paris , France
| | - Véronique Thomas-Vaslin
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, UMR8549, CNRS and Ecole Normale Supérieure , Paris , France
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
18
|
Immune evasion, immunopathology and the regulation of the immune system. Pathogens 2013; 2:71-91. [PMID: 25436882 PMCID: PMC4235712 DOI: 10.3390/pathogens2010071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/26/2022] Open
Abstract
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Collapse
|
19
|
Stromberg SP, Antia R. On the role of CD8 T cells in the control of persistent infections. Biophys J 2012; 103:1802-10. [PMID: 23083724 DOI: 10.1016/j.bpj.2012.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
The control of pathogen density during infections is typically assumed to be the result of a combination of resource limitation (loss of target cells that the pathogen can infect), innate immunity, and specific immunity. The contributions of these factors have been considered in acute infections, which are characterized by having a short duration. What controls the pathogen during persistent infections is less clear, and is complicated by two factors. First, specific immune responses become exhausted if they are subject to chronic stimulation. Exhaustion has been best characterized for CD8 T cell responses, and occurs through a combination of cell death and loss of functionality of surviving cells. Second, new nonexhausted T cells can immigrate from the thymus during the infection, and may play a role in the control of the infection. In this article, we formulate a partial-differential-equation model to describe the interaction between these processes, and use this model to explore how thymic influx and exhaustion might affect the ability of CD8 T cell responses to control persistent infections. We find that although thymic influx can play a critical role in the maintenance of a limited CD8 T cell response during persistent infections, this response is not sufficiently large to play a significant role in controlling the infection. In doing so, our results highlight the importance of resource limitation and innate immunity in the control of persistent infections.
Collapse
|
20
|
Brock PM, Hall AJ, Goodman SJ, Cruz M, Acevedo-Whitehouse K. Applying the tools of ecological immunology to conservation: a test case in the Galapagos sea lion. Anim Conserv 2012. [DOI: 10.1111/j.1469-1795.2012.00567.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - A. J. Hall
- Sea Mammal Research Unit; Scottish Ocean Institute; University of St. Andrews; Fife; UK
| | - S. J. Goodman
- Institute of Integrative and Comparative Biology; University of Leeds; Leeds; UK
| | - M. Cruz
- Galapagos Genetics; Epidemiology and Pathology Laboratory; Galapagos National Park & University of Guayaquil; Puerto Ayora; Galapagos Islands; Ecuador
| | | |
Collapse
|
21
|
Krakauer DC, Page K, Flack J. The immuno-dynamics of conflict intervention in social systems. PLoS One 2011; 6:e22709. [PMID: 21887221 PMCID: PMC3160838 DOI: 10.1371/journal.pone.0022709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022] Open
Abstract
We present statistical evidence and dynamical models for the management of conflict and a division of labor (task specialization) in a primate society. Two broad intervention strategy classes are observed– a dyadic strategy – pacifying interventions, and a triadic strategy –policing interventions. These strategies, their respective degrees of specialization, and their consequences for conflict dynamics can be captured through empirically-grounded mathematical models inspired by immuno-dynamics. The spread of aggression, analogous to the proliferation of pathogens, is an epidemiological problem. We show analytically and computationally that policing is an efficient strategy as it requires only a small proportion of a population to police to reduce conflict contagion. Policing, but not pacifying, is capable of effectively eliminating conflict. These results suggest that despite implementation differences there might be universal features of conflict management mechanisms for reducing contagion-like dynamics that apply across biological and social levels. Our analyses further suggest that it can be profitable to conceive of conflict management strategies at the behavioral level as mechanisms of social immunity.
Collapse
Affiliation(s)
- David C Krakauer
- Santa Fe Institute, Santa Fe, New Mexico, United States of America.
| | | | | |
Collapse
|
22
|
Abstract
To Darwin, parasites were fascinating examples of adaptation but their significance as selective factors for a wide range of phenomena has only been studied in depth over the last few decades. This work has had its roots in behavioural/evolutionary ecology on the one hand, and in population biology/ecology on the other, thus shaping a new comprehensive field of 'evolutionary parasitology'. Taking parasites into account has been a success story and has shed new light on several old questions such as sexual selection, the evolution of sex and recombination, changes in behaviour, adaptive life histories, and so forth. In the process, the topic of ecological immunology has emerged, which analyses immune defences in a framework of costs and benefits. Throughout, a recurrent theme is how to appropriately integrate the underlying mechanisms as evolved boundary conditions into a framework of studying the adaptive value of traits. On the conceptual side, major questions remain and await further study.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH-Zürich ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| |
Collapse
|
23
|
Sorci G, Faivre B. Inflammation and oxidative stress in vertebrate host-parasite systems. Philos Trans R Soc Lond B Biol Sci 2009; 364:71-83. [PMID: 18930878 DOI: 10.1098/rstb.2008.0151] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the 'horror autotoxicus' of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation.
Collapse
Affiliation(s)
- Gabriele Sorci
- BioGéoSciences, CNRS UMR 5561, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | |
Collapse
|
24
|
Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for 'macroscopic phenomena' such as virulence. Philos Trans R Soc Lond B Biol Sci 2009; 364:85-98. [PMID: 18930879 DOI: 10.1098/rstb.2008.0157] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The discussion of host-parasite interactions, and of parasite virulence more specifically, has so far, with a few exceptions, not focused much attention on the accumulating evidence that immune evasion by parasites is not only almost universal but also often linked to pathogenesis, i.e. the appearance of virulence. Now, the immune evasion hypothesis offers a deeper insight into the evolution of virulence than previous hypotheses. Sensitivity analysis for parasite fitness and life-history theory shows promise to generate a more general evolutionary theory of virulence by including a major element, immune evasion to prevent parasite clearance from the host. Also, the study of dose-response relationships and multiple infections should be particularly illuminating to understand the evolution of virulence. Taking into account immune evasion brings immunological processes to the core of understanding the evolution of parasite virulence and for a range of related issues such as dose, host specificity or immunopathology. The aim of this review is to highlight the mechanism underlying immune evasion and to discuss possible consequences for the evolutionary ecology analysis of host-parasite interactions.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), Universitätsstrasse 16, 8092 Zürich, Switzerland.
| |
Collapse
|
25
|
Abstract
Defending self against nonself is a major problem in a world in which individuals are under constant pressure from parasites that gain fitness benefits at a cost to their host. Defences that have evolved are diverse, and range from behavioural adaptations to physiochemical barriers. The immune defence is a final line of protection and is therefore of great importance. Given this importance, variability in immune defence would seem counterintuitive, yet that is what is observed. Ecological immunology attempts to explain this variation by invoking costs and trade-offs, and in turn proposing that the optimal immune defence will vary over environments. Studies in this field have been highly successful in establishing an evolutionary ecology framework around immunology. However, in order enrich our understanding of this area, it is perhaps time to broaden the focus to include parasites as more than simply elicitors of immune responses. In essence, to view immunity as produced by the host, the environment, and the active involvement of parasites.
Collapse
Affiliation(s)
- Ben M Sadd
- Institute for Integrative Biology (IBZ), Experimental Ecology ETH Zentrum, CHN, Zurich, Switzerland
| | - Paul Schmid-Hempel
- Institute for Integrative Biology (IBZ), Experimental Ecology ETH Zentrum, CHN, Zurich, Switzerland
| |
Collapse
|
26
|
Rolff J. Why did the acquired immune system of vertebrates evolve? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:476-82. [PMID: 17055576 DOI: 10.1016/j.dci.2006.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 05/12/2023]
Abstract
Rapidly expanding genomic information offers important insights into the mechanisms of acquired immunity and has fostered progress in comparative immunology. However, the question of why the acquired immune system, a trait restricted to jawed vertebrates, evolved has rarely been addressed. Here, I will examine three unique features of early vertebrate evolution, during the 50 million years when the acquired immune system evolved: co-evolution with specialised parasites, increased metabolic rates and genomic instability. These combine to shape a powerful multi-level and multi-causal selective scenario that I propose could have moulded the acquired immune system.
Collapse
Affiliation(s)
- Jens Rolff
- Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK.
| |
Collapse
|
27
|
BERTRAND S, CRISCUOLO F, FAIVRE B, SORCI G. Immune activation increases susceptibility to oxidative tissue damage in Zebra Finches. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01191.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|