1
|
Dittmann MT, Lakatos G, Wainwright JF, Mokrosinski J, Cross E, Farooqi IS, Wallis NJ, Halsey LG, Wilson R, O’Rahilly S, Yeo GS, Raffan E. Low resting metabolic rate and increased hunger due to β-MSH and β-endorphin deletion in a canine model. SCIENCE ADVANCES 2024; 10:eadj3823. [PMID: 38446876 PMCID: PMC10917344 DOI: 10.1126/sciadv.adj3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Mutations that perturb leptin-melanocortin signaling are known to cause hyperphagia and obesity, but energy expenditure has not been well studied outside rodents. We report on a common canine mutation in pro-opiomelanocortin (POMC), which prevents production of β-melanocyte-stimulating hormone (β-MSH) and β-endorphin but not α-MSH; humans, similar to dogs, produce α-MSH and β-MSH from the POMC propeptide, but rodents produce only α-MSH. We show that energy expenditure is markedly lower in affected dogs, which also have increased motivational salience in response to a food cue, indicating increased wanting or hunger. There was no difference in satiety at a modified ad libitum meal or in their hedonic response to food, nor disruption of adrenocorticotropic hormone (ACTH) or thyroid axes. In vitro, we show that β-MSH signals comparably to α-MSH at melanocortin receptors. These data implicate β-MSH and β-endorphin as important in determining hunger and moderating energy expenditure and suggest that this role is independent of the presence of α-MSH.
Collapse
Affiliation(s)
- Marie T. Dittmann
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gabriella Lakatos
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jodie F. Wainwright
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jacek Mokrosinski
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eloise Cross
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Natalie J. Wallis
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lewis G. Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Rory Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Giles S.H. Yeo
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eleanor Raffan
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Bateson M, Pepper GV. Food insecurity as a cause of adiposity: evolutionary and mechanistic hypotheses. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220228. [PMID: 37661744 PMCID: PMC10475876 DOI: 10.1098/rstb.2022.0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Food insecurity (FI) is associated with obesity among women in high-income countries. This seemingly paradoxical association can be explained by the insurance hypothesis, which states that humans possess evolved mechanisms that increase fat storage to buffer against energy shortfall when access to food is unpredictable. The evolutionary logic underlying the insurance hypothesis is well established and experiments on animals confirm that exposure to unpredictable food causes weight gain, but the mechanisms involved are less clear. Drawing on data from humans and other vertebrates, we review a suite of behavioural and physiological mechanisms that could increase fat storage under FI. FI causes short-term hyperphagia, but evidence that it is associated with increased total energy intake is lacking. Experiments on animals suggest that unpredictable food causes increases in retained metabolizable energy and reductions in energy expenditure sufficient to fuel weight gain in the absence of increased food intake. Reducing energy expenditure by diverting energy from somatic maintenance into fat stores should improve short-term survival under FI, but the trade-offs potentially include increased disease risk and accelerated ageing. We conclude that exposure to FI plausibly causes increased adiposity, poor health and shorter lifespan. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Melissa Bateson
- Centre for Healther Lives and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gillian V. Pepper
- Department of Psychology, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
3
|
McGrosky A, Pontzer H. The fire of evolution: energy expenditure and ecology in primates and other endotherms. J Exp Biol 2023; 226:297166. [PMID: 36916459 DOI: 10.1242/jeb.245272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Total energy expenditure (TEE) represents the total energy allocated to growth, reproduction and body maintenance, as well as the energy expended on physical activity. Early experimental work in animal energetics focused on the costs of specific tasks (basal metabolic rate, locomotion, reproduction), while determination of TEE was limited to estimates from activity budgets or measurements of subjects confined to metabolic chambers. Advances in recent decades have enabled measures of TEE in free-living animals, challenging traditional additive approaches to understanding animal energy budgets. Variation in lifestyle and activity level can impact individuals' TEE on short time scales, but interspecific differences in TEE are largely shaped by evolution. Here, we review work on energy expenditure across the animal kingdom, with a particular focus on endotherms, and examine recent advances in primate energetics. Relative to other placental mammals, primates have low TEE, which may drive their slow pace of life and be an evolved response to the challenges presented by their ecologies and environments. TEE variation among hominoid primates appears to reflect adaptive shifts in energy throughput and allocation in response to ecological pressures. As the taxonomic breadth and depth of TEE data expand, we will be able to test additional hypotheses about how energy budgets are shaped by environmental pressures and explore the more proximal mechanisms that drive intra-specific variation in energy expenditure.
Collapse
Affiliation(s)
- Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Durham, NC 27708, USA
| |
Collapse
|
4
|
Broggi J, Nilsson JÅ. Individual response in body mass and basal metabolism to the risks of predation and starvation in passerines. J Exp Biol 2023; 226:286531. [PMID: 36628936 PMCID: PMC10086538 DOI: 10.1242/jeb.244744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Wintering energy management in small passerines has focused on the adaptive regulation of the daily acquisition of energy reserves within a starvation-predation trade-off framework. However, the possibility that the energetic cost of living, i.e. basal metabolic rate (BMR), is being modulated as part of the management energy strategy has been largely neglected. Here, we addressed this possibility by experimentally exposing captive great tits (Parus major) during winter to two consecutive treatments of increased starvation and predation risk for each individual bird. Body mass and BMR were measured prior to and after each week-long treatment. We predicted that birds should be lighter but with a higher metabolic capacity (higher BMR) as a response to increased predation risk, and that birds should increase internal reserves while reducing their cost of living (lower BMR) when exposed to increased starvation risk. Wintering great tits kept a constant body mass independently of a week-long predation or starvation treatment. However, great tits reduced the cost of living (lower BMR) when exposed to the starvation treatment, while BMR remained unaffected by the predation treatment. Energy management in wintering small birds partly relies on BMR regulation, which challenges the current theoretical framework based on body mass regulation.
Collapse
Affiliation(s)
- Juli Broggi
- Department of Biology, Section of Evolutionary Ecology, University of Lund, S-223 62 Lund, Sweden.,Estación Biológica de Doñana (CSIC), Av. Américo Vespucio 26, 41092 Sevilla, Spain.,Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Jan-Åke Nilsson
- Department of Biology, Section of Evolutionary Ecology, University of Lund, S-223 62 Lund, Sweden
| |
Collapse
|
5
|
Kahane-Rapport SR, Whelan S, Ammendolia J, Hatch SA, Elliott KH, Jacobs S. Food supply and individual quality influence seabird energy expenditure and reproductive success. Oecologia 2022; 199:367-376. [PMID: 35716234 DOI: 10.1007/s00442-022-05191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure. Here, we find that food-supplemented birds expended less energy than control birds because they spent more time at the colony. However, foraging trips of food-supplemented birds were only slightly shorter than control birds, implying that food-supplemented birds were limited by food availability at sea similarly to control birds. Late breeders expended less energy, suggesting that low-quality individuals may not intake the energy necessary for sustaining high-energy output. Food-supplemented birds had more offspring than control birds, but offspring number did not influence energy expenditure, supporting the idea that the birds reached an energy ceiling. Males and lighter birds expended more energy, possibly compensating for relatively higher energy intake. Chick-rearing birds were working near their maximum, with highest levels of expenditure for early-laying (high-quality) individuals foraging at sea. Due to fluctuating marine environments, kittiwakes may be forced to change their foraging behaviors to maintain the balance between reproduction and survival.
Collapse
Affiliation(s)
- Shirel R Kahane-Rapport
- College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, 92831, USA. .,Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Shannon Whelan
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Justine Ammendolia
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Faculty of Graduate Studies, Interdisciplinary Studies, Dalhousie University, 6299 South St, Halifax, NS, B3H 4R2, Canada
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, 95516, USA
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Shoshanah Jacobs
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
6
|
Bateson M, Nolan R. A Refined Method for Studying Foraging Behaviour and Body Mass in Group-Housed European Starlings. Animals (Basel) 2022; 12:ani12091159. [PMID: 35565585 PMCID: PMC9099603 DOI: 10.3390/ani12091159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Small birds such as European starlings respond rapidly to environmental challenges by losing or gaining weight. Laboratory studies of these birds are therefore useful for understanding how the environment affects body weight. However, practical constraints including the need to catch birds frequently for weighing has meant that birds are often housed alone in small cages for such studies. Such conditions are unnatural and are likely to cause stress. Consequently, the data obtained from these studies are unrepresentative of wild birds. Here, we describe a novel technology based on smart feeders that permits continuous recording of foraging behaviour and body masses from starlings housed in groups in large indoor aviaries that permit more natural behaviour. We show that the birds quickly learn to use the feeders and that the system delivers detailed real-time data on foraging behaviour and body mass, without the need for frequent catching. The data obtained allowed us to study how the foraging decisions that a bird makes within a single day affect its body weight that day. These improvements in the quality of the data that we are able to collect will help inform our understanding of the environmental causes of weight gain and obesity. Abstract Laboratory experiments on passerine birds have been important for testing hypotheses regarding the effects of environmental variables on the adaptive regulation of body mass. However, previous work in this area has suffered from poor ecological validity and animal welfare due to the requirement to house birds individually in small cages to facilitate behavioural measurement and frequent catching for weighing. Here, we describe the social foraging system, a novel technology that permits continuous collection of individual-level data on operant foraging behaviour and body mass from group-housed European starlings (Sturnus vulgaris). We report on the rapid acquisition of operant key pecking, followed by foraging and body mass data from two groups of six birds maintained on a fixed-ratio operant schedule under closed economy for 11 consecutive days. Birds gained 6.0 ± 1.2 g (mean ± sd) between dawn and dusk each day and lost an equal amount overnight. Individual daily mass gain trajectories were non-linear, with the rate of gain decelerating between dawn and dusk. Within-bird variation in daily foraging effort (key pecks) positively predicted within-bird variation in dusk mass. However, between-bird variation in mean foraging effort was uncorrelated with between-bird variation in mean mass, potentially indicative of individual differences in daily energy requirements. We conclude that the social foraging system delivers refined data collection and offers potential for improving our understanding of mass regulation in starlings and other species.
Collapse
|
7
|
Dunn RE, Green JA, Wanless S, Harris MP, Newell MA, Bogdanova MI, Horswill C, Daunt F, Matthiopoulos J. Modelling and mapping how common guillemots balance their energy budgets over a full annual cycle. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. E. Dunn
- School of Environmental Sciences University of Liverpool Liverpool UK
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - J. A. Green
- School of Environmental Sciences University of Liverpool Liverpool UK
| | - S. Wanless
- UK Centre for Ecology & Hydrology, Bush Estate Penicuik UK
| | - M. P. Harris
- UK Centre for Ecology & Hydrology, Bush Estate Penicuik UK
| | - M. A. Newell
- UK Centre for Ecology & Hydrology, Bush Estate Penicuik UK
| | | | - C. Horswill
- ZSL Institute of Zoology Regent’s Park London UK
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment University College London Gower Street London UK
- Department of Zoology University of Cambridge Downing St Cambridge UK
| | - F. Daunt
- UK Centre for Ecology & Hydrology, Bush Estate Penicuik UK
| | - J. Matthiopoulos
- Institute of Biodiversity Animal Health & Comparative Medicine University of Glasgow Glasgow UK
| |
Collapse
|
8
|
Abstract
AbstractThe received wisdom on how activity affects energy expenditure is that the more activity is undertaken, the more calories will have been burned by the end of the day. Yet traditional hunter-gatherers, who lead physically hard lives, burn no more calories each day than Western populations living in labor-saving environments. Indeed, there is now a wealth of data, both for humans and other animals, demonstrating that long-term lifestyle changes involving increases in exercise or other physical activities do not result in commensurate increases in daily energy expenditure (DEE). This is because humans and other animals exhibit a degree of energy compensation at the organismal level, ameliorating some of the increases in DEE that would occur from the increased activity by decreasing the energy expended on other biological processes. And energy compensation can be sizable, reaching many hundreds of calories in humans. But the processes that are downregulated in the long-term to achieve energy compensation are far from clear, particularly in humans-we do not know how energy compensation is achieved. My review here of the literature on relevant exercise intervention studies, for both humans and other species, indicates conflict regarding the role, if any, of basal metabolic rate (BMR) or low-level activity such as fidgeting play, particularly once changes in body composition are factored out. In situations where BMR and low-level activity are not major components of energy compensation, what then drives it? I discuss how changes in mitochondrial efficiency and changes in circadian fluctuations in BMR may contribute to our understanding of energy management. Currently unexplored, these mechanisms and others may provide important insights into the mystery of how energy compensation is achieved.
Collapse
|
9
|
Bateson M, Andrews C, Dunn J, Egger CBCM, Gray F, Mchugh M, Nettle D. Food insecurity increases energetic efficiency, not food consumption: an exploratory study in European starlings. PeerJ 2021; 9:e11541. [PMID: 34123601 PMCID: PMC8166238 DOI: 10.7717/peerj.11541] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Food insecurity—defined as limited or unpredictable access to nutritionally adequate food—is associated with higher body mass in humans and birds. It is widely assumed that food insecurity-induced fattening is caused by increased food consumption, but there is little evidence supporting this in any species. We developed a novel technology for measuring foraging, food intake and body mass in small groups of aviary-housed European starlings (Sturnus vulgaris). Across four exploratory experiments, we demonstrate that birds responded to 1–2 weeks of food insecurity by increasing their body mass despite eating less. Food-insecure birds therefore increased their energetic efficiency, calculated as the body mass maintained per unit of food consumed. Mass gain was greater in birds that were lighter at baseline and in birds that faced greater competition for access to food. Whilst there was variation between experiments in mass gain and food consumption under food insecurity, energetic efficiency always increased. Bomb calorimetry of guano showed reduced energy density under food insecurity, suggesting that the energy assimilated from food increased. Behavioural observations of roosting showed inconsistent evidence for reduced physical activity under food insecurity. Increased energetic efficiency continued for 1–2 weeks after food security was reinstated, indicating an asymmetry in the speed of the response to food insecurity and the recovery from it. Future work to understand the mechanisms underlying food insecurity-induced mass gain should focus on the biological changes mediating increased energetic efficiency rather than increased energy consumption.
Collapse
Affiliation(s)
- Melissa Bateson
- Biosciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clare Andrews
- Biosciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathon Dunn
- Biosciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte B C M Egger
- Biosciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Gray
- Biosciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Molly Mchugh
- Biosciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Nettle
- Population Health Sciences Institute/Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Mathot KJ, Kok EMA, van den Hout P, Dekinga A, Piersma T. Red knots ( Calidris canutus islandica) manage body mass with dieting and activity. ACTA ACUST UNITED AC 2020; 223:jeb.231993. [PMID: 32967997 DOI: 10.1242/jeb.231993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022]
Abstract
Mass regulation in birds is well documented. For example, birds can increase body mass in response to lower availability and/or predictability of food and decrease body mass in response to increased predation danger. Birds also demonstrate an ability to maintain body mass across a range of food qualities. Although the adaptive significance of mass regulation has received a great deal of theoretical and empirical attention, the mechanisms by which birds achieve this have not. Several non-exclusive mechanisms could facilitate mass regulation in birds. Birds could regulate body mass by adjusting food intake (dieting), activity, baseline energetic requirements (basal metabolic rate), mitochondrial efficiency or assimilation efficiency. Here, we present the results of two experiments in captive red knots (Calidris canutus islandica) that assess three of these proposed mechanisms: dieting, activity and up- and down-regulation of metabolic rate. In the first experiment, knots were exposed to cues of predation risk that led them to exhibit presumably adaptive mass loss. In the second experiment, knots maintained constant body mass despite being fed alternating high- and low-quality diets. In both experiments, regulation of body mass was achieved through a combination of changes in food intake and activity. Both experiments also provide some evidence for a role of metabolic adjustments. Taken together, these two experiments demonstrate that fine-scale management of body mass in knots is achieved through multiple mechanisms acting simultaneously.
Collapse
Affiliation(s)
- Kimberley J Mathot
- Canada Research Chair in Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9 .,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands
| | - Eva M A Kok
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Piet van den Hout
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands
| | - Anne Dekinga
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB den Burg, Texel, The Netherlands.,Rudi Drent Chair in Global Flyway Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
11
|
James R, James LJ, Clayton DJ. Anticipation of 24 h severe energy restriction increases energy intake and reduces physical activity energy expenditure in the prior 24 h, in healthy males. Appetite 2020; 152:104719. [DOI: 10.1016/j.appet.2020.104719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 01/21/2023]
|
12
|
Salin K, Villasevil EM, Anderson GJ, Lamarre SG, Melanson CA, McCarthy I, Selman C, Metcalfe NB. Differences in mitochondrial efficiency explain individual variation in growth performance. Proc Biol Sci 2019; 286:20191466. [PMID: 31431161 DOI: 10.1098/rspb.2019.1466] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
| | - Chloé A Melanson
- Département de Biologie, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
| | - Ian McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Kersbergen I, German AJ, Westgarth C, Robinson E. Portion size and meal consumption in domesticated dogs: An experimental study. Physiol Behav 2019; 204:174-179. [PMID: 30817974 PMCID: PMC6488012 DOI: 10.1016/j.physbeh.2019.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
Increases in food portion sizes have been identified as a possible contributor to the increased prevalence of obesity in humans. However, little is known about the origin of behavioural tendencies to overeat from larger portion sizes or whether other non-human animals are affected by meal portion size. In the present experimental study, we examined the effect that larger portion sizes have on meal consumption among domesticated dogs (N = 32). Dogs were fed three meals that varied in size on different occasions (150%, 200% and 300% of usual portion size). A repeated measures design was used and food consumption was measured for each meal. Portion size positively affected food consumption, with dogs eating significantly more food as the portion size of meal increased. The effect of portion size on food consumption was also observed when the dogs that finished all available food were excluded from analyses, however not among dogs who did not finish any of the meals. We conclude that the influence larger portions have on food consumption observed in humans is also observed in domesticated dogs. However, it is unclear whether portion size directly biases the amount of food dogs choose to consume, as has been suggested in humans. Further research is now warranted to examine commonalities between human and non-human animal eating behaviour to understand shared behavioural tendencies and their origins.
Collapse
Affiliation(s)
- Inge Kersbergen
- Psychological Sciences, University of Liverpool, Liverpool, UK; School of Health and Related Research, University of Sheffield, Sheffield, UK.
| | - Alexander J German
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK; Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Carri Westgarth
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Eric Robinson
- Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|