1
|
Oscarsson R, Gjøen J, Jensen P. Selection for tameness alters play-like behaviour in red junglefowl in line with effects of domestication. Biol Lett 2025; 21:20240607. [PMID: 39904375 PMCID: PMC11793954 DOI: 10.1098/rsbl.2024.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
The phenotypic alterations brought by domestication have been hypothesized to be driven by selection for tameness. To explore this, we selected red junglefowl (RJF) for high (HF) and low (LF) fear of humans for 14 generations. We previously found that domesticated chickens performed more play-like behaviours during early ontogeny, and therefore, in this study, we explored potential effects of tameness. Groups of three to four chicks were randomly created from each selection line, and each group was moved to an enriched play arena twice per week, from day 6 until day 53 post-hatch. The frequency of 14 different play-like behaviours, categorized as locomotor, social and object play-like behaviour were recorded for 30 min at every observation instance. Every group of three or four birds constituted the independent statistical replicates and measures were averaged within the groups. The frequency of total play-like behaviour as well as object, and locomotor play-like behaviour was significantly higher in LF, while social play-like behaviour was significantly more common in HF. This largely mirrors previous observations of differences between domesticated and ancestral chickens. Hence, our results support the important role of tameness for the evolution of domesticated behaviour.
Collapse
Affiliation(s)
- Rebecca Oscarsson
- IFM Biology, AVIAN Behaviour Genomics and Physiology Group, Linköping University, Linköping581 83, Sweden
| | - Johanna Gjøen
- IFM Biology, AVIAN Behaviour Genomics and Physiology Group, Linköping University, Linköping581 83, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behaviour Genomics and Physiology Group, Linköping University, Linköping581 83, Sweden
| |
Collapse
|
2
|
Le Verger K, Küng LC, Fabre AC, Schmelzle T, Wegmann A, Sánchez-Villagra MR. Goldfish phenomics reveals commonalities and a lack of universality in the domestication process for ornamentation. Evol Lett 2024; 8:774-786. [PMID: 39677575 PMCID: PMC11637523 DOI: 10.1093/evlett/qrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 12/17/2024] Open
Abstract
Domestication process effects are manifold, affecting genotype and phenotype, and assumed to be universal in animals by part of the scientific community. While mammals and birds have been thoroughly investigated, from taming to intensive selective breeding, fish domestication remains comparatively unstudied. The most widely bred and traded ornamental fish species worldwide, the goldfish, underwent the effect of long-term artificial selection on differing skeletal and soft tissue modules through ornamental domestication. Here, we provide a global morphological analysis in this emblematic ornamental domesticated fish. We demonstrate that goldfish exhibit unique morphological innovations in whole-body, cranial, and sensory (Weberian ossicles and brain) anatomy compared to their evolutionary clade, highlighting a remarkable morphological disparity within a single species comparable to that of a macroevolutionary radiation. In goldfish, as in the case of dogs and pigeons in their respective evolutionary contexts, the most ornamented varieties are extremes in the occupied morphological space, emphasizing the power of artificial selection for nonadaptive traits. Using 21st century tools on a dataset comprising the 16 main goldfish breeds, 23 wild close relatives, and 39 cypriniform species, we show that Charles Darwin's expressed wonder at the goldfish is justified. There is a commonality of overall pattern in the morphological differentiation of domesticated forms selected for ornamental purposes, but the singularity of goldfish occupation and extension within (phylo)morphospaces, speaks against a universality in the domestication process.
Collapse
Affiliation(s)
- Kévin Le Verger
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Laurelle C Küng
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Anne-Claire Fabre
- Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland
- Naturhistorisches Museum der Burgergemeinde Bern, Bern, Switzerland
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Thomas Schmelzle
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Alexandra Wegmann
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Stansfield C, Parsons KJ. Developmental bias as a cause and consequence of adaptive radiation and divergence. Front Cell Dev Biol 2024; 12:1453566. [PMID: 39479512 PMCID: PMC11521891 DOI: 10.3389/fcell.2024.1453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Efforts to reconcile development and evolution have demonstrated that development is biased, with phenotypic variation being more readily produced in certain directions. However, how this "developmental bias" can influence micro- and macroevolution is poorly understood. In this review, we demonstrate that defining features of adaptive radiations suggest a role for developmental bias in driving adaptive divergence. These features are i) common ancestry of developmental systems; ii) rapid evolution along evolutionary "lines of least resistance;" iii) the subsequent repeated and parallel evolution of ecotypes; and iv) evolutionary change "led" by biased phenotypic plasticity upon exposure to novel environments. Drawing on empirical and theoretical data, we highlight the reciprocal relationship between development and selection as a key driver of evolutionary change, with development biasing what variation is exposed to selection, and selection acting to mold these biases to align with the adaptive landscape. Our central thesis is that developmental biases are both the causes and consequences of adaptive radiation and divergence. We argue throughout that incorporating development and developmental bias into our thinking can help to explain the exaggerated rate and scale of evolutionary processes that characterize adaptive radiations, and that this can be best achieved by using an eco-evo-devo framework incorporating evolutionary biology, development, and ecology. Such a research program would demonstrate that development is not merely a force that imposes constraints on evolution, but rather directs and is directed by evolutionary forces. We round out this review by highlighting key gaps in our understanding and suggest further research programs that can help to resolve these issues.
Collapse
Affiliation(s)
- Corin Stansfield
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
4
|
Gering E, Johnsson M, Theunissen D, Martin Cerezo ML, Steep A, Getty T, Henriksen R, Wright D. Signals of selection and ancestry in independently feral Gallus gallus populations. Mol Ecol 2024; 33:e17336. [PMID: 38553993 DOI: 10.1111/mec.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 10/18/2024]
Abstract
Recent work indicates that feralisation is not a simple reversal of domestication, and therefore raises questions about the predictability of evolution across replicated feral populations. In the present study we compare genes and traits of two independently established feral populations of chickens (Gallus gallus) that inhabit archipelagos within the Pacific and Atlantic regions to test for evolutionary parallelism and/or divergence. We find that feral populations from each region are genetically closer to one another than other domestic breeds, despite their geographical isolation and divergent colonisation histories. Next, we used genome scans to identify genomic regions selected during feralisation (selective sweeps) in two independently feral populations from Bermuda and Hawaii. Three selective sweep regions (each identified by multiple detection methods) were shared between feral populations, and this overlap is inconsistent with a null model in which selection targets are randomly distributed throughout the genome. In the case of the Bermudian population, many of the genes present within the selective sweeps were either not annotated or of unknown function. Of the nine genes that were identifiable, five were related to behaviour, with the remaining genes involved in bone metabolism, eye development and the immune system. Our findings suggest that a subset of feralisation loci (i.e. genomic targets of recent selection in feral populations) are shared across independently established populations, raising the possibility that feralisation involves some degree of parallelism or convergence and the potential for a shared feralisation 'syndrome'.
Collapse
Affiliation(s)
- E Gering
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - M Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - D Theunissen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - M L Martin Cerezo
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - A Steep
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - T Getty
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - R Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - D Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Barmentlo NWG, Meirmans PG, Stiver WH, Yarkovich JG, McCann BE, Piaggio AJ, Wright D, Smyser TJ, Bosse M. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Mol Ecol 2024; 33:e17383. [PMID: 38747342 DOI: 10.1111/mec.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Collapse
Affiliation(s)
- Niek W G Barmentlo
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Blake E McCann
- Theodore Roosevelt National Park, Medora, North Dakota, USA
| | | | - Dominic Wright
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timothy J Smyser
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Mirte Bosse
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wageningen University & Research - Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
6
|
Balcarcel AM, Geiger M, Sánchez-Villagra MR. Cranial form differences in goats by breed and domestic status. Sci Rep 2024; 14:917. [PMID: 38195639 PMCID: PMC10776561 DOI: 10.1038/s41598-023-50357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Domestic goats (Capra hircus) are globally represented by over 300 breeds, making them a useful model for investigating patterns of morphological change related to domestication. However, they have been little studied, likely due to their poor representation in museum collections and the difficulty in obtaining truly wild goat (Capra aegagrus, the bezoar) samples. Similar studies on other species reveal that domestication correlates with craniofacial alterations in domestics, which are non-uniform and often species-specific. Here, we use three-dimensional geometric morphometric methods (3DGMM) to describe and quantify cranial shape variation in wild (n = 21) versus domestic (n = 54) goats. We find that mean cranial shapes differ significantly between wild and domestic goats as well as between certain breeds. The detected differences are lower in magnitude than those reported for other domestic groups, possibly explained by the fewer directions of artificial selection in goat breeding, and their low global genetic diversity compared to other livestock. We also find tooth-row length reduction in the domestics, suggestive of rostral shortening-a prediction of the "domestication syndrome" (DS). The goat model thus expands the array-and combinations of-morphological changes observed under domestication, notably detecting alterations to the calvarium form which could be related to the ~ 15% brain size reduction previously reported for domestic compared to wild goats. The global success of domestic goats is due more to their ability to survive in a variety of harsh environments than to systematized human management. Nonetheless, their domestication has resulted in a clear disruption from the wild cranial form, suggesting that even low-intensity selection can lead to significant morphological changes under domestication.
Collapse
Affiliation(s)
- A M Balcarcel
- Department of Paleontology, University of Zurich, Karl-Schmid-Str. 4, 8006, Zurich, Switzerland.
| | - M Geiger
- Naturmuseum St.Gallen, Rorschacher Strasse 263, 9016, St.Gallen, Switzerland
| | - M R Sánchez-Villagra
- Department of Paleontology, University of Zurich, Karl-Schmid-Str. 4, 8006, Zurich, Switzerland
| |
Collapse
|
7
|
Ferreira VHB, Lansade L, Calandreau L, Cunha F, Jensen P. Are domesticated animals dumber than their wild relatives? A comprehensive review on the domestication effects on animal cognitive performance. Neurosci Biobehav Rev 2023; 154:105407. [PMID: 37769929 DOI: 10.1016/j.neubiorev.2023.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Animal domestication leads to diverse behavioral, physiological, and neurocognitive changes in domesticated species compared to their wild relatives. However, the widely held belief that domesticated species are inherently less "intelligent" (i.e., have lower cognitive performance) than their wild counterparts requires further investigation. To investigate potential cognitive disparities, we undertook a thorough review of 88 studies comparing the cognitive performance of domesticated and wild animals. Approximately 30% of these studies showed superior cognitive abilities in wild animals, while another 30% highlighted superior cognitive abilities in domesticated animals. The remaining 40% of studies found similar cognitive performance between the two groups. Therefore, the question regarding the presumed intelligence of wild animals and the diminished cognitive ability of domesticated animals remains unresolved. We discuss important factors/limitations for interpreting past and future research, including environmental influences, diverse objectives of domestication (such as breed development), developmental windows, and methodological issues impacting cognitive comparisons. Rather than perceiving these limitations as constraints, future researchers should embrace them as opportunities to expand our understanding of the complex relationship between domestication and animal cognition.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden; INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | - Léa Lansade
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Felipe Cunha
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
8
|
Oscarsson R, Jensen P. Potential domestication and tameness effects on prosocial behaviour in chickens. PLoS One 2023; 18:e0287213. [PMID: 37352138 PMCID: PMC10289331 DOI: 10.1371/journal.pone.0287213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
Prosocial behaviour is pronounced in humans and prevalent in some non-human animals, however, the occurrence of the trait in chickens has not yet been investigated. Here, we studied the occurrence of prosociality in four different lines of adult female chickens. To explore the effects of domestication, chickens of the domesticated layer White Leghorn (WL) and the ancestral Red Junglefowl (RJF) were compared. Additionally, to explore the role of tameness, Red Junglefowl selected for high (RJF HF), or low (RJF LF) fear of humans were also studied. The hens were all tested in a prosocial choice task adapted from a previous study conducted on rats. Each individual was first trained to differentiate between a compartment where itself and a companion received food treats simultaneously (representing a prosocial choice), and one where only itself received the treat. Following training, each bird was tested in a free-choice set-up. No occurrence of prosociality was found at group level in any of the lines, however, our results suggest that the trait may occur in some individuals, and that domestication and increased tameness may have increased its prevalence, although alternative explanations such as side bias and social competition cannot be ruled out. Since this study is the first of its kind, further research is required to make any definite conclusions.
Collapse
Affiliation(s)
- Rebecca Oscarsson
- IFM Biology, AVIAN Behaviour Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behaviour Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Gjøen J, Cunha F, Jensen P. Selection for Reduced Fear of Humans Changes Brain and Cerebellum Size in Red Junglefowl in Line with Effects of Chicken Domestication. Brain Sci 2023; 13:988. [PMID: 37508920 PMCID: PMC10377726 DOI: 10.3390/brainsci13070988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
A central part of the domestication syndrome is a reduction in relative brain size. In chickens, it has previously been shown that domesticated birds have smaller relative brain mass, but larger relative mass of cerebellum, compared to their ancestors, the Red Junglefowl. It has been suggested that tameness may drive the domestication syndrome, so we examined the relationship between brain characteristics and tameness in 31 Red Junglefowl from lines divergently selected during ten generations for tameness. Our focus was on the whole brain, cerebellum, and the remainder of the brain. We used the isotropic fractionator technique to estimate the total number of cells in the cerebellum and differentiate between neurons and non-neuronal cells. We stained the cell nuclei with DAPI and performed cell counting using a fluorescence microscope. NeuN immunostaining was used to identify neurons. The absolute and relative masses of the brains and their regions were determined through weighing. Our analysis revealed that birds selected for low fear of humans (LF) had larger absolute brain mass, but smaller relative brain mass, compared to those selected for high fear of humans (HF). Sex had a significant impact only on the absolute size of the cerebellum, not its relative size. These findings support the notion that selection for increased tameness leads to an enlargement of the relative size of cerebellum in chickens consistent with comparisons of domesticated and ancestral chickens. Surprisingly, the HF birds had a higher density of neurons in the cerebellum compared to the LF line, despite having a smaller cerebellum overall. These findings highlight the intricate relationship between brain structure and behavior in the context of domestication.
Collapse
Affiliation(s)
| | | | - Per Jensen
- AVIAN Behavioural Physiology and Genomics Group, IFM Biology, Linköping University, 58183 Linköping, Sweden; (J.G.); (F.C.)
| |
Collapse
|
10
|
Gleeson BT, Wilson LAB. Shared reproductive disruption, not neural crest or tameness, explains the domestication syndrome. Proc Biol Sci 2023; 290:20222464. [PMID: 36946116 PMCID: PMC10031412 DOI: 10.1098/rspb.2022.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Altered neural crest cell (NCC) behaviour is an increasingly cited explanation for the domestication syndrome in animals. However, recent authors have questioned this explanation, while others cast doubt on whether domestication syndrome even exists. Here, we review published literature concerning this syndrome and the NCC hypothesis, together with recent critiques of both. We synthesize these contributions and propose a novel interpretation, arguing shared trait changes under ancient domestication resulted primarily from shared disruption of wild reproductive regimes. We detail four primary selective pathways for 'reproductive disruption' under domestication and contrast these succinct and demonstrable mechanisms with cryptic genetic associations posited by the NCC hypothesis. In support of our perspective, we illustrate numerous important ways in which NCCs contribute to vertebrate reproductive phenotypes, and argue it is not surprising that features derived from these cells would be coincidentally altered under major selective regime changes, as occur in domestication. We then illustrate several pertinent examples of Darwin's 'unconscious selection' in action, and compare applied selection and phenotypic responses in each case. Lastly, we explore the ramifications of reproductive disruption for wider evolutionary discourse, including links to wild 'self-domestication' and 'island effect', and discuss outstanding questions.
Collapse
Affiliation(s)
- Ben Thomas Gleeson
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Laura A. B. Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Balcarcel AM, Geiger M, Clauss M, Sánchez‐Villagra MR. The mammalian brain under domestication: Discovering patterns after a century of old and new analyses. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:460-483. [PMID: 34813150 PMCID: PMC9787656 DOI: 10.1002/jez.b.23105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Comparisons of wild and domestic populations have established brain reduction as one of the most consistent patterns correlated with domestication. Over a century of scholarly work has been devoted to this subject, and yet, new data continue to foster its debate. Current arguments, both for and against the validity of brain reduction occurring in domestic taxa, have repeatedly cited a small set of reviews on this subject. The original works, their sampling, methodological details, and nuances of results that would be key to establishing validity, particularly in light of new data, have not been investigated. To facilitate and encourage a more informed discussion, we present a comprehensive review of original brain reduction literature for four mammalian clades: Artiodactyla, Perissodactyla, Carnivora, and Glires. Among these are studies that generated the most cited brain reduction values in modern domestication literature. In doing so, we provide a fairer stage for the critique of traits associated with domestication. We conclude that while brain reduction magnitudes may contain error, empirical data collectively support the reduction in brain size and cranial capacity for domestic forms.
Collapse
Affiliation(s)
- A. M. Balcarcel
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - M. Geiger
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - M. Clauss
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and WildlifeUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
12
|
Cunha F, Stingo-Hirmas D, Cardoso RF, Wright D, Henriksen R. Neuronal and non-neuronal scaling across brain regions within an intercross of domestic and wild chickens. Front Neuroanat 2022; 16:1048261. [PMID: 36506870 PMCID: PMC9732670 DOI: 10.3389/fnana.2022.1048261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The allometric scaling of the brain size and neuron number across species has been extensively studied in recent years. With the exception of primates, parrots, and songbirds, larger brains have more neurons but relatively lower neuronal densities than smaller brains. Conversely, when considering within-population variability, it has been shown that mice with larger brains do not necessarily have more neurons but rather more neurons in the brain reflect higher neuronal density. To what extent this intraspecific allometric scaling pattern of the brain applies to individuals from other species remains to be explored. Here, we investigate the allometric relationships among the sizes of the body, brain, telencephalon, cerebellum, and optic tectum, and the numbers of neurons and non-neuronal cells of the telencephalon, cerebellum, and optic tectum across 66 individuals originated from an intercross between wild and domestic chickens. Our intercross of chickens generates a population with high variation in brain size, making it an excellent model to determine the allometric scaling of the brain within population. Our results show that larger chickens have larger brains with moderately more neurons and non-neuronal cells. Yet, absolute number of neurons and non-neuronal cells correlated strongly and positively with the density of neurons and non-neuronal cells, respectively. As previously shown in mice, this scaling pattern is in stark contrast with what has been found across different species. Our findings suggest that neuronal scaling rules across species are not a simple extension of the neuronal scaling rules that apply within a species, with important implications for the evolutionary developmental origins of brain diversity.
Collapse
|
13
|
Gjøen J, Jensen P. Selection for Reduced Fear of Humans Changes Intra-Specific Social Behavior in Red Junglefowl—Implications for Chicken Domestication. Genes (Basel) 2021; 13:genes13010043. [PMID: 35052386 PMCID: PMC8774865 DOI: 10.3390/genes13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
The domestic fowl has a different social behavior compared to their ancestor, the red junglefowl. To examine whether selection for tameness has affected their intra-specific social behavior, 32 red junglefowl from two selection lines, one selected for increased tameness and one selected for a high fear of humans for ten generations, were kept in a group of two females and two males each and were observed in a semi-natural undisturbed enclosure. Birds selected for a low fear of humans had more social conflict, and the males from this selection crowed more and were more often observed in low social proximity to others. The high-fear birds spent more time close together with the rest of the group and performed more social, non-aggressive pecking. These results are consistent with known differences between ancestral red junglefowl and domesticated laying hens. Our results show that intra-specific social behavior has been affected as a side-effect of selection for increased tameness. This may have interesting implications for the emergence of the domestication syndrome in chickens.
Collapse
|
14
|
Wilkins AS, Wrangham R, Fitch WT. The neural crest/domestication syndrome hypothesis, explained: reply to Johnsson, Henriksen, and Wright. Genetics 2021; 219:iyab098. [PMID: 34849912 PMCID: PMC8633094 DOI: 10.1093/genetics/iyab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Adam S Wilkins
- Institute of Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Richard Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Johnsson M, Henriksen R, Wright D. The neural crest cell hypothesis: no unified explanation for domestication. Genetics 2021; 219:iyab097. [PMID: 34849908 PMCID: PMC8633120 DOI: 10.1093/genetics/iyab097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Rie Henriksen
- IFM Biology, Linköping University, Linköping 58183, Sweden
| | - Dominic Wright
- IFM Biology, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
16
|
Wilson LAB, Balcarcel A, Geiger M, Heck L, Sánchez‐Villagra MR. Modularity patterns in mammalian domestication: Assessing developmental hypotheses for diversification. Evol Lett 2021; 5:385-396. [PMID: 34367663 PMCID: PMC8327948 DOI: 10.1002/evl3.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The neural crest hypothesis posits that selection for tameness resulted in mild alterations to neural crest cells during embryonic development, which directly or indirectly caused the appearance of traits associated with the "domestication syndrome" (DS). Although representing an appealing unitary explanation for the generation of domestic phenotypes, support for this hypothesis from morphological data and for the validity of the DS remains a topic of debate. This study used the frameworks of morphological integration and modularity to assess patterns that concern the embryonic origin of the skull and issues around the neural crest hypothesis. Geometric morphometric landmarks were used to quantify cranial trait interactions between six pairs of wild and domestic mammals, comprising representatives that express between five and 17 of the traits included in the DS, and examples from each of the pathways by which animals entered into relationships with humans. We predicted the presence of neural crest vs mesoderm modular structure to the cranium, and that elements in the neural crest module would show lower magnitudes of integration and higher disparity in domestic forms compared to wild forms. Our findings support modular structuring based on tissue origin (neural crest, mesoderm) modules, along with low module integration magnitudes for neural crest cell derived cranial elements, suggesting differential capacity for evolutionary response among those elements. Covariation between the neural crest and mesoderm modules accounted for major components of shape variation for most domestic/wild pairs. Contra to our predictions, however, we find domesticates share similar integration magnitudes to their wild progenitors, indicating that higher disparity in domesticates is not associated with magnitude changes to integration among either neural crest or mesoderm derived elements. Differences in integration magnitude among neural crest and mesoderm elements across species suggest that developmental evolution preserves a framework that promotes flexibility under the selection regimes of domestication.
Collapse
Affiliation(s)
- Laura A. B. Wilson
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
- School of Archaeology and AnthropologyThe Australian National UniversityCanberraAustralia
| | - Ana Balcarcel
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - Madeleine Geiger
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - Laura Heck
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
17
|
Benítez-Burraco A, Ferretti F, Progovac L. Human Self-Domestication and the Evolution of Pragmatics. Cogn Sci 2021; 45:e12987. [PMID: 34170029 DOI: 10.1111/cogs.12987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
As proposed for the emergence of modern languages, we argue that modern uses of languages (pragmatics) also evolved gradually in our species under the effects of human self-domestication, with three key aspects involved in a complex feedback loop: (a) a reduction in reactive aggression, (b) the sophistication of language structure (with emerging grammars initially facilitating the transition from physical aggression to verbal aggression); and (c) the potentiation of pragmatic principles governing conversation, including, but not limited to, turn-taking and inferential abilities. Our core hypothesis is that the reduction in reactive aggression, one of the key factors in self-domestication processes, enabled us to fully exploit our cognitive and interactional potential as applied to linguistic exchanges, and ultimately to evolve a specific form of communication governed by persuasive reciprocity-a trait of human conversation characterized by both competition and cooperation. In turn, both early crude forms of language, well suited for verbal aggression/insult, and later more sophisticated forms of language, well suited for persuasive reciprocity, significantly contributed to the resolution and reduction of (physical) aggression, thus having a return effect on the self-domestication processes. Supporting evidence for our proposal, as well as grounds for further testing, comes mainly from the consideration of cognitive disorders, which typically simultaneously present abnormal features of self-domestication (including aggressive behavior) and problems with pragmatics and social functioning. While various approaches to language evolution typically reduce it to a single factor, our approach considers language evolution as a multifactorial process, with each player acting upon the other, engaging in an intense mutually reinforcing feedback loop. Moreover, we see language evolution as a gradual process, continuous with the pre-linguistic cognitive abilities, which were engaged in a positive feedback loop with linguistic innovations, and where gene-culture co-evolution and cultural niche construction were the main driving forces.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville
| | - Francesco Ferretti
- Department of Philosophy, Communication and Performing Arts. Roma Tre University
| | | |
Collapse
|
18
|
Caspar KR, Biggemann M, Geissmann T, Begall S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci Rep 2021; 11:12994. [PMID: 34155285 PMCID: PMC8217224 DOI: 10.1038/s41598-021-92348-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Pigmentation patterns of the visible part of the eyeball, encompassing the iris and portions of the sclera, have been discussed to be linked to social cognition in primates. The cooperative eye hypothesis suggests the white sclera of humans to be a derived adaptive trait that enhances eye-mediated communication. Here, we provide a comparative analysis of ocular pigmentation patterns in 15 species of hominoids (humans, great apes & gibbons) that show marked differences in social cognition and quantify scleral exposure at the genus level. Our data reveals a continuum of eye pigmentation traits in hominoids which does not align with the complexity of gaze-mediated communication in the studied taxa. Gibbons display darker eyes than great apes and expose less sclera. Iridoscleral contrasts in orangutans and gorillas approach the human condition but differ between congeneric species. Contrary to recent discussions, we found chimpanzee eyes to exhibit a cryptic coloration scheme that resembles gibbons more than other apes. We reevaluate the evidence for links between social cognition and eye pigmentation in primates, concluding that the cooperative eye hypothesis cannot explain the patterns observed. Differences in scleral pigmentation between great apes and humans are gradual and might have arisen via genetic drift and sexual selection.
Collapse
Affiliation(s)
- Kai R Caspar
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141, Essen, Germany.
| | - Marco Biggemann
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141, Essen, Germany
| | - Thomas Geissmann
- Anthropological Institute, University Zurich-Irchel, Winterthurerstraße 190, 8057, Zurich, Switzerland
| | - Sabine Begall
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141, Essen, Germany
| |
Collapse
|
19
|
Lord KA, Larson G, Karlsson EK. Brain Size Does Not Rescue Domestication Syndrome. Trends Ecol Evol 2020; 35:1061-1062. [PMID: 33129589 DOI: 10.1016/j.tree.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford,1 South Parks Road, Oxford OX1 3TG, UK
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|