1
|
Cytomegalovirus in urinary sediment in patients with acute kidney injury. BMC Nephrol 2021; 22:169. [PMID: 33962580 PMCID: PMC8106172 DOI: 10.1186/s12882-021-02377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/20/2021] [Indexed: 11/14/2022] Open
Abstract
Background Immunosuppression in solid organ transplantation is associated with frequent infections. Renal allograft recipients are susceptible to opportunistic infections and can acquire human cytomegalovirus (HCMV) infections even within the allograft. There, HCMV can be found in both the glomerulus and tubular cells, but is mostly restricted to specific and circumscribed sites. Therefore, not all organ infections are identifiable by immunohistology for HCMV proteins in fine needle core biopsies. Thus, we performed a urinalysis study to search for HCMV-specific RNA transcripts in the urine sediment of patients with acute kidney injury. Methods Urinary sediment of 90 patients with acute kidney injury (AKI), including 48 renal transplant recipients (RTX) and 42 non-transplant recipients (nRTX), was collected from morning urine for RNA extraction and reverse transcription. The copy number of HCMV transcripts was evaluated using a UL132 HCMV-specific probe set and by real-time quantitative polymerase chain reaction (RT-qPCR). Results Of the 48 RTX patients, ten showed HCMV copies in their urine sediment cells. Within this group, three recipients had negative HCMV serology and received an allograft from an HCMV-seropositive donor. In addition, all three RTX patients on a belatacept-based immunosuppressive regimen had HCMV transcripts in their urine. Of the 42 nRTX patients, only two had detectable HCMV transcripts in urine sediment cells and both were under immunosuppression. Conclusions Ten immunosuppressed renal allograft recipients and two immunosuppressed non-transplant patients with AKI showed HCMV copies in urine sediment. Thus, HCMV positivity in urinary sediment appears to be associated with immunosuppression. This study describes a novel noninvasive method for detection of HCMV in urinary sediment. Whether all HCMV infections can be detected or only those with viral replication warrants further investigation.
Collapse
|
2
|
Popik W, Correa H, Khatua A, Aronoff DM, Alcendor DJ. Mesangial cells, specialized renal pericytes and cytomegalovirus infectivity: Implications for HCMV pathology in the glomerular vascular unit and post-transplant renal disease. ACTA ACUST UNITED AC 2018; 5. [PMID: 29977613 PMCID: PMC6027753 DOI: 10.15761/jts.1000248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Human Cytomegalovirus (HCMV) infection is problematic after kidney transplantation. Human mesangial cells along with human glomerular endothelial cells and podocytes constitute the renal glomerular vascular unit (GVU). HCMV infection of the GVU is poorly understood. Methods GVU cells infectivity was analysed by microscopy and immunofluorescence. Cytokines profiles were measured by Luminex assays. Renal tissue analysis for HCMV infection was performed by immunohistochemistry. Results Mesangial cells and glomerular endothelial cells but not podocytes were permissive for both lab adapted and clinical strains of HCMV. Luminex analysis of cytokines expressed by mesangial cells exposed to the SBCMV clinical strain was examined. A Tricell infection model of the GVU maintains >90% viability with a unique cytokine profile. Finally, we show αSMA stained mesangial cells permissive for HCMV in renal tissue from a transplant patient. Conclusions HCMV infection of mesangial cells induces angiogenic and proinflammatory cytokines that could contribute to glomerular inflammation.
Collapse
Affiliation(s)
- Waldemar Popik
- Department of Internal Medicine and 4Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599 USA
| | - Hernan Correa
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Atanu Khatua
- Meharry Medical College, School of Medicine, Centre for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599, USA
| | - David M Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA.,Division of Infectious Diseases, Department of Medicine, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centre, Nashville, Tennessee 37232, USA
| | - Donald J Alcendor
- Meharry Medical College, School of Medicine, Centre for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599, USA
| |
Collapse
|
3
|
Quantitative proteomic profiling of renal tissue in human chronic rejection biopsy samples after renal transplantation. Transplant Proc 2015; 47:323-31. [PMID: 25769567 DOI: 10.1016/j.transproceed.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Chronic rejection (CR) is the leading cause of late renal transplant failure and is characterized by a relatively slow but progressive loss of renal function in combination with proteinuria and hypertension >3 months after transplantation. To identify and quantify the protein profiles in renal tissues of CR patients, we used isotope tagging for relative and absolute quantification (iTRAQ)-based proteomic technology to perform global protein expression analyses in CR patients and control subjects. MATERIALS AND METHODS After protein extraction, quantitation, and digestion, samples were labeled with iTRAQ reagents and then separated by strong cation exchange and high-performance liquid chromatography. The fractions were further analyzed by tandem mass spectrometry. ProteinPilot version 4.0 software and the Swiss-Prot human database were applied for statistical analysis and database searching, respectively. Differentially expressed proteins were subjected to bioinformatic analysis by using the Gene Ontology database and the Kyoto Encyclopedia of Genes and Genomes database to further characterize their potential functional roles and related pathways in CR. RESULTS In total, 1857 distinct proteins (confidence >95%, ρ < .05) were identified and quantified. Using a strict cutoff value of 1.5-fold for expressed variation, 87 proteins showed significant differences in expression between the CR and control groups; 53 were up-regulated and 34 were down-regulated. The differentially expressed proteins were mainly involved in protein binding, structural molecule activity, and extracellular matrix structural constituent. Several proteins, such as the alpha-1 chain of collagen type IV and integrin alpha-1, may play roles in the pathogenesis of CR and were implicated in the extracellular matrix-receptor interaction pathway. CONCLUSIONS This study is the first to focus on iTRAQ-based quantitative proteomic characterization of renal tissue in CR. These insights may broaden our understanding of the molecular mechanisms underlying CR and provide potential biomarker candidates for future diagnostics.
Collapse
|
4
|
Impaired surfactant production by alveolar epithelial cells in a SCID-hu lung mouse model of congenital human cytomegalovirus infection. J Virol 2012; 86:12795-805. [PMID: 22973041 DOI: 10.1128/jvi.01054-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of birth defects and life-threatening lung-associated diseases in premature infants and immunocompromised children. Although the fetal lung is a major target organ of the virus, HCMV lung pathogenesis has remained unexplored, possibly as a result of extreme host range restriction. To overcome this hurdle, we generated a SCID-hu lung mouse model that closely recapitulates the discrete stages of human lung development in utero. Human fetal lung tissue was implanted into severe combined immunodeficient (CB17-scid) mice and inoculated by direct injection with the VR1814 clinical isolate of HCMV. Virus replication in the fetal lung was assessed by the quantification of infectious virus titers and HCMV genome copies and the detection of HCMV proteins by immunohistochemistry and Western blotting. We show that HCMV efficiently replicated in the lung implants during a 2-week period, forming large viral lesions. The virus productively infected alveolar epithelial and mesenchymal cells, imitating congenital infection of the fetal lung. HCMV replication triggered apoptosis near and within the viral lesions and impaired the production of surfactant proteins in the alveolar epithelium. Our findings highlight that congenital and neonatal HCMV infection can adversely impact lung development, leading to pneumonia and acute lung injury. We have successfully developed a small-animal model that closely recapitulates fetal and neonatal lung development and provides a valuable, biologically relevant tool for an understanding of the lung pathogenesis of HCMV as well as other human respiratory viruses. Additionally, this model would greatly facilitate the development and testing of new antiviral therapies for HCMV along with select human pulmonary pathogens.
Collapse
|
5
|
Smelt MJ, de Haan BJ, Faas MM, Melgert BN, de Haan A, de Vos P. Effects of acute cytomegalovirus infection on rat islet allograft survival. Cell Transplant 2010; 20:1271-83. [PMID: 21176406 DOI: 10.3727/096368910x545077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of pancreatic islets is a promising therapy for the treatment of type 1 diabetes mellitus. However, long-term islet graft survival rates are still unsatisfactory low. In this study we investigated the role of cytomegalovirus (CMV) in islet allograft failure. STZ-diabetic rats received an allogenic islet graft in combination with either an acute CMV infection or control infection. A third group received ganciclovir treatment in addition to the CMV infection. Graft function was assessed by measuring basal blood glucose levels. After sacrifice, the islet grafts were retrieved for analysis of infection and leukocyte infiltration. CMV-infected recipients demonstrated accelerated islet graft failure compared to noninfected controls. CMV infection of the graft was only observed prior to complete graft failure. Quantification of the leukocyte infiltration demonstrated increased CD8(+) T-cell and NK cell infiltration in the CMV-infected grafts compared to the controls. This suggests that CMV infection accelerates immune-mediated graft destruction. Antiviral ganciclovir treatment did not prevent accelerated graft failure, despite effectively decreasing the grade of infection. Our data confirm the recently published CITR data, which state that CMV is an independent risk factor for failure of islet grafts. Also, our data demonstrate that new approaches for preventing virus-induced islet allograft failure may be required.
Collapse
Affiliation(s)
- M J Smelt
- Department of Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Helanterä I, Egli A, Koskinen P, Lautenschlager I, Hirsch HH. Viral Impact on Long-term Kidney Graft Function. Infect Dis Clin North Am 2010; 24:339-71. [DOI: 10.1016/j.idc.2010.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Dou J, Li X, Cai Y, Chen H, Zhu S, Wang Q, Zou X, Mei Y, Yang Q, Li W, Han Y. Human cytomegalovirus induces caspase-dependent apoptosis of megakaryocytic CHRF-288-11 cells by activating the JNK pathway. Int J Hematol 2010; 91:620-9. [PMID: 20376580 DOI: 10.1007/s12185-010-0560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/14/2010] [Accepted: 03/16/2010] [Indexed: 11/30/2022]
Abstract
Human cytomegalovirus (HCMV) infection is usually implicated in thrombocytopenia occurring in newborns and immunocompromised patients. However, the underlying mechanisms remain elusive. This study was conducted to investigate the effects of HCMV infection on the viability of megakaryocytic CHRF-288-11 cells and the underlying mechanisms involved. RT-PCR for determining mRNA expression of HCMV immediate early gene 1 and Western blot for measuring protein expression of late HCMV gene pp65 showed that CHRF-288-11 cells were susceptible to HCMV infection. HCMV infection reduced the viability of CHRF-288-11 cells via apoptosis in a dose- and time-dependent manner. Both caspase 3 and c-Jun terminal kinase (JNK) signaling pathway were activated in the HCMV-treated CHRF-288-11 cells. z-DEVD-fmk (a caspase inhibitor) and SP600125 (a JNK inhibitor) significantly prevented the death of CHRF-288-11 cells induced by HCMV, respectively. Furthermore, inhibition of JNK activity could reduce the formation of active caspase 3 induced by HCMV. Interestingly, the co-application of antivirus drug ganciclovir and SP600125 synergistically prevented the death of CHRF-288-11 cells induced by HCMV. Collectively, these findings suggest that HCMV infection may induce the caspase-dependent apoptosis of megakaryocytic CHRF-288-11 cells by the activation of JNK signaling pathway.
Collapse
Affiliation(s)
- Juan Dou
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Yan H, Xue WJ, Tian PX, Ding XM, Pan XM, Feng XS, Tian XH, Xiang HL, Hou J. Allograft rejection-related gene expression in the endothelial cells of renal transplantation recipients after cytomegalovirus infection. J Zhejiang Univ Sci B 2010; 10:820-8. [PMID: 19882756 DOI: 10.1631/jzus.b0920115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To explore the effects of cytomegalovirus (CMV) infection on rejection-related gene expression in the endothelial cells of renal transplantation recipients. METHODS Endothelial cells (ECs) were cultured and stimulated by a variety of factors: A, normal control group; B, inactivated human cytomegalovirus (HCMV) infection group; C, HCMV infection group; D, HCMV supernatant infection group; and E, ganciclovir HCMV group. Expression of intercellular adhesion molecule-1 (ICAM-1) and major histocompability complex (MHC) class I and class II antigens was detected by flow cytometry (FCM) and immunohistochemistry. RESULTS We found characteristic CMV-infected ECs in this study. There were no significant differences among groups A, B and D (P>0.05). Although the expression levels of ICAM-1 were not significantly different between groups C and E (P>0.05), the ICAM-1 expression in these two groups was significantly higher than that in group A (P<0.05). ICAM-1 expression was detected in groups C and E, while there was no expression in groups A, B and D. Furthermore, there was no significant difference of ICAM-1 mRNA expression between groups C and E (P>0.05). Human leucocyte antigen (HLA)-ABC expression was detected in all the groups, while HLA-DR expression was only detected in groups C and E. There were no significant differences of HLA-ABC and HLA-DR expression among groups A, B and D (P>0.05). However, the HLA-ABC and HLA-DR expression levels in groups C and D were higher than those of the remaining groups previously reported (P<0.05). Meanwhile, the HLA-ABC and HLA-DR expression levels in group E were lower than those of group C (P<0.05). CONCLUSION CMV could up-regulate the expression levels of ICAM-1 and MHC antigens, which was closely related to allograft rejection.
Collapse
Affiliation(s)
- Yang Li
- Department of Renal Transplantation, Center of Nephropathy, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Deng HY, Luo F, Shi LQ, Zhong Q, Liu YJ, Yang ZQ. Efficacy of arbidol on lethal hantaan virus infections in suckling mice and in vitro. Acta Pharmacol Sin 2009; 30:1015-24. [PMID: 19575005 DOI: 10.1038/aps.2009.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Arbidol is an immunomodulator that was first developed in Russia. In this study, we report the antiviral activity of arbidol against Hantaan virus (HTNV) in vitro and in vivo. METHODS The antiviral activity of arbidol in vitro was determined by plaque-forming assay, ranging from 0.5 to 8 microg/mL. To investigate whether arbidol has an antiviral effect in vivo, suckling BALB/c mice infected with HTNV were treated with arbidol at 24 h before infection with a 5, 10 or 20 mg.kg(-1).d(-1), once per day, for 10 days. On day 12 and 28 post infection (pi), histopathological changes and viral antigen were detected. On days 4, 8, 12, and 16 pi, the viral load of target organs and serum TNF-alpha levels of arbidol-treated animals were determined. RESULTS Arbidol was found to have potent inhibitory activity against HTNV when added in vitro before or after viral infection, with a 50% inhibitory concentration (IC(50)) of 0.9 and 1.2 microg/mL, respectively. The 50% lethal dose (LD(50)) of arbidol for suckling mice was 78.42 mg.kg(-1).d(-1). Oral administration of arbidol increased both survival rate and mean time to death (MTD). Treatment with arbidol reduced histopathological changes, decreased viral load and viral antigen levels, and modulated the level of serum TNF-alpha. CONCLUSION Arbidol has the ability to elicit protective antiviral activity against HTNV in vivo and in vitro.Acta Pharmacologica Sinica (2009) 30: 1015-1024; doi: 10.1038/aps.2009.53; published online 8 June 2009.
Collapse
|
10
|
|