1
|
Liu P, Yang L, Lu Q, Qian Y, Shi A, Liu X, Wei S, Fan S, Lv Y, Xiang J. Cross-circulation combined with rapidly deployable veno-venous bypass grafts for multi-organ biosystemic support in liver failure: Experimental studies. Int J Surg 2024; 111:01279778-990000000-01756. [PMID: 38954664 PMCID: PMC11745694 DOI: 10.1097/js9.0000000000001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Liver failure remains a critical clinical challenge with limited treatment options. Cross-circulation, the establishment of vascular connections between individuals, has historically been explored as a potential supportive therapy but with limited success. This study investigated the feasibility of combining cross-circulation with a rapidly deployable veno-venous bypass (VVB) graft for multi-organ support in a rat model of total hepatectomy, representing the most severe form of liver failure. MATERIALS AND METHODS A Y-shaped VVB graft was fabricated using coaxial electrospinning of PLCL/heparin nanofibers and magnetic rings for rapid anastomosis. After total hepatectomy in rats, the VVB graft was implanted to divert blood flow. Cross-circulation was then established between anhepatic and normal host rats. Hemodynamics, biochemical parameters, blood gases, and survival were analyzed across three groups: hepatectomy with blocked vessels (block group), hepatectomy with VVB only (VVB group), and hepatectomy with VVB and cross-circulation (VVB/cross-circulation group). RESULTS The VVB graft exhibited suitable mechanical properties and hemocompatibility. VVB rapidly restored hemodynamic stability and mitigated abdominal congestion post-hepatectomy. Cross-circulation further ameliorated liver dysfunction, metabolic derangements, and coagulation disorders in anhepatic rats, significantly prolonging survival compared to the VVB group (mean 6.56±0.58 vs 4.05±0.51 h, P<0.05) and the block group (mean 1.01±0.05 h, P<0.05). CONCLUSION Combining cross-circulation with a rapidly deployed VVB graft provided effective multi-organ biosystemic support in a rat model of total hepatectomy, substantially improving the biochemical status and survival time. This approach holds promise for novel liver failure therapies and could facilitate liver transplantation procedures.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Yerong Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Xin Liu
- Department of Graduate School, Xi’an Medical University
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Shujuan Fan
- Department of Medical Information Management, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
2
|
Wu WK, Ukita R, Patel YJ, Cortelli M, Trinh VQ, Ziogas IA, Francois SA, Mentz M, Cardwell NL, Talackine JR, Grogan WM, Stokes JW, Lee YA, Kim J, Alexopoulos SP, Bacchetta M. Xenogeneic cross-circulation for physiological support and recovery of ex vivo human livers. Hepatology 2023; 78:820-834. [PMID: 36988383 PMCID: PMC10440302 DOI: 10.1097/hep.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS The scarcity of suitable donor livers highlights a continuing need for innovation to recover organs with reversible injuries in liver transplantation. APPROACH AND RESULTS Explanted human donor livers (n = 5) declined for transplantation were supported using xenogeneic cross-circulation of whole blood between livers and xeno-support swine. Livers and swine were assessed over 24 hours of xeno-support. Livers maintained normal global appearance, uniform perfusion, and preservation of histologic and subcellular architecture. Oxygen consumption increased by 75% ( p = 0.16). Lactate clearance increased from -0.4 ± 15.5% to 31.4 ± 19.0% ( p = 0.02). Blinded histopathologic assessment demonstrated improved injury scores at 24 hours compared with 12 hours. Vascular integrity and vasoconstrictive function were preserved. Bile volume and cholangiocellular viability markers improved for all livers. Biliary structural integrity was maintained. CONCLUSIONS Xenogeneic cross-circulation provided multisystem physiological regulation of ex vivo human livers that enabled functional rehabilitation, histopathologic recovery, and improvement of viability markers. We envision xenogeneic cross-circulation as a complementary technique to other organ-preservation technologies in the recovery of marginal donor livers or as a research tool in the development of advanced bioengineering and pharmacologic strategies for organ recovery and rehabilitation.
Collapse
Affiliation(s)
- Wei Kelly Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vincent Q. Trinh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean A. Francois
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William M. Grogan
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Youngmin A. Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University; Nashville, Tennessee, USA
| |
Collapse
|
3
|
Wu WK, Stier MT, Stokes JW, Ukita R, Patel YJ, Cortelli M, Landstreet SR, Talackine JR, Cardwell NL, Simonds EM, Mentz M, Lowe C, Benson C, Demarest CT, Alexopoulos SP, Shaver CM, Bacchetta M. Immune characterization of a xenogeneic human lung cross-circulation support system. SCIENCE ADVANCES 2023; 9:eade7647. [PMID: 37000867 PMCID: PMC10065447 DOI: 10.1126/sciadv.ade7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Improved approaches to expanding the pool of donor lungs suitable for transplantation are critically needed for the growing population with end-stage lung disease. Cross-circulation (XC) of whole blood between swine and explanted human lungs has previously been reported to enable the extracorporeal recovery of donor lungs that declined for transplantation due to acute, reversible injuries. However, immunologic interactions of this xenogeneic platform have not been characterized, thus limiting potential translational applications. Using flow cytometry and immunohistochemistry, we demonstrate that porcine immune cell and immunoglobulin infiltration occurs in this xenogeneic XC system, in the context of calcineurin-based immunosuppression and complement depletion. Despite this, xenogeneic XC supported the viability, tissue integrity, and physiologic improvement of human donor lungs over 24 hours of xeno-support. These findings provide targets for future immunomodulatory strategies to minimize immunologic interactions on this organ support biotechnology.
Collapse
Affiliation(s)
- Wei K. Wu
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew T. Stier
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R. Landstreet
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Simonds
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Lowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clayne Benson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin T. Demarest
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophoclis P. Alexopoulos
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| |
Collapse
|
4
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
5
|
Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nat Med 2020; 26:1102-1113. [PMID: 32661401 PMCID: PMC9990469 DOI: 10.1038/s41591-020-0971-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Patients awaiting lung transplantation face high wait-list mortality, as injury precludes the use of most donor lungs. Although ex vivo lung perfusion (EVLP) is able to recover marginal quality donor lungs, extension of normothermic support beyond 6 h has been challenging. Here we demonstrate that acutely injured human lungs declined for transplantation, including a lung that failed to recover on EVLP, can be recovered by cross-circulation of whole blood between explanted human lungs and a Yorkshire swine. This xenogeneic platform provided explanted human lungs a supportive, physiologic milieu and systemic regulation that resulted in functional and histological recovery after 24 h of normothermic support. Our findings suggest that cross-circulation can serve as a complementary approach to clinical EVLP to recover injured donor lungs that could not otherwise be utilized for transplantation, as well as a translational research platform for immunomodulation and advanced organ bioengineering.
Collapse
|