1
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Seija M, García-Luna J, Rammauro F, Brugnini A, Trías N, Astesiano R, Santiago J, Orihuela N, Zulberti C, Machado D, Recalde C, Yandián F, Guerisoli A, Noboa J, Orihuela S, Curi L, Bugstaller E, Noboa O, Nin M, Bianchi S, Tiscornia A, Lens D. Low switched memory B cells are associated with no humoral response after SARS-CoV-2 vaccine boosters in kidney transplant recipients. Front Immunol 2023; 14:1202630. [PMID: 37942335 PMCID: PMC10628322 DOI: 10.3389/fimmu.2023.1202630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The humoral response after SARS-CoV-2 vaccination and boosters in kidney transplant recipients (KTRs) is heterogeneous and depends on immunosuppression status. There is no validated immune measurement associated with serological response in clinical practice. Multicolor flow cytometric immunophenotyping could be useful for measuring immune response. This study aimed to study B- and T-cell compartments through Standardized EuroFlow PID Orientation after SARS-CoV-2 vaccination and their association with IgG SARS-CoV-2 seropositivity status after two doses or boosters. Methods We conducted a multicenter prospective study to evaluate humoral response after SARS-CoV-2 vaccination in KTRs. Heterologous regimen: two doses of inactivated SARS-CoV-2 and two boosters of BNT162b2 mRNA (n=75). Homologous vaccination: two doses of BNT162b2 mRNA and one BNT162b2 mRNA booster (n=13). Booster doses were administrated to KTRs without taking into account their IgG SARS-CoV-2 seropositivity status. Peripheral blood samples were collected 30 days after the second dose and after the last heterologous or homologous booster. A standardized EuroFlow PID Orientation Tube (PIDOT) and a supervised automated analysis were used for immune monitoring cellular subsets after boosters. Results A total of 88 KTRs were included and divided into three groups according to the time of the first detected IgG SARS-CoV-2 seropositivity: non-responders (NRs, n=23), booster responders (BRs, n=41), and two-dose responders (2DRs, n=24). The NR group was more frequent on mycophenolate than the responder groups (NRs, 96%; BRs, 80%; 2DRs, 42%; p=0.000). Switched memory B cells in the 2DR group were higher than those in the BR and NR groups (medians of 30, 17, and 10 cells/ul, respectively; p=0.017). Additionally, the absolute count of central memory/terminal memory CD8 T cells was higher in the 2DR group than in the BR and NR groups. (166, 98, and 93 cells/ul, respectively; p=0.041). The rest of the T-cell populations studied did not show a statistical difference. Conclusion switched memory B cells and memory CD8 T-cell populations in peripheral blood were associated with the magnitude of the humoral response after SARS-CoV-2 vaccination. Boosters increased IgG anti-SARS-CoV-2 levels, CM/TM CD8 T cells, and switched MBCs in patients with seropositivity after two doses. Interestingly, no seropositivity after boosters was associated with the use of mycophenolate and a lower number of switched MBCs and CM/TM CD8 T cells in peripheral blood.
Collapse
Affiliation(s)
- Mariana Seija
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquin García-Luna
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Rammauro
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andreína Brugnini
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trías
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Astesiano
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - José Santiago
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Orihuela
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | | | - Danilo Machado
- Centro de Trasplante, Hospital Evangélico, Montevideo, Uruguay
| | - Cecilia Recalde
- Centro de Trasplante, Hospital Evangélico, Montevideo, Uruguay
| | - Federico Yandián
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Guerisoli
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Noboa
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio Orihuela
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | - Lilian Curi
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | - Emma Bugstaller
- Centro de Trasplante, Hospital Evangélico, Montevideo, Uruguay
| | - Oscar Noboa
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Nin
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | - Sergio Bianchi
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adriana Tiscornia
- Instituto Nacional de Donación y Trasplante, Hospital de Clínicas, Facultad de Medicina, Universidad de la República y Ministerio de Salud Pública, Montevideo, Uruguay
| | - Daniela Lens
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Xia Y, Jin S, Wu Y. Small-molecule BCL6 inhibitor protects chronic cardiac transplant rejection and inhibits T follicular helper cell expansion and humoral response. Front Pharmacol 2023; 14:1140703. [PMID: 37007047 PMCID: PMC10063191 DOI: 10.3389/fphar.2023.1140703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background: B cell lymphoma 6 (BCL6) is an important transcription factor of T follicular helper (Tfh) cells, which regulate the humoral response by supporting the maturation of germinal center B cells and plasma cells. The aim of this study is to investigate the expansion of T follicular helper cells and the effect of the BCL6 inhibitor FX1 in acute and chronic cardiac transplant rejection models.Methods: A mouse model of acute and chronic cardiac transplant rejection was established. Splenocytes were collected at different time points after transplantation for CXCR5+PD-1+ and CXCR5+BCL6+ Tfh cells detection by flow cytometry (FCM). Next, we treated the cardiac transplant with BCL6 inhibitor FX1 and the survival of grafts was recorded. The hematoxylin and eosin, Elastica van Gieson, and Masson staining of cardiac grafts was performed for the pathological analysis. Furthermore, the proportion and number of CD4+ T cells, effector CD4+ T cells (CD44+CD62L−), proliferating CD4+ T cells (Ki67+), and Tfh cells in the spleen were detected by FCM. The cells related to humoral response (plasma cells, germinal center B cells, IgG1+ B cells) and donor-specific antibody were also detected.Results: We found that the Tfh cells were significantly increased in the recipient mice on day 14 post transplantation. During the acute cardiac transplant rejection, even the BCL6 inhibitor FX1 did not prolong the survival or attenuate the immune response of cardiac graft, the expansion of Tfh cell expansion inhibit. During the chronic cardiac transplant rejection, FX1 prolonged survival of cardiac graft, and prevented occlusion and fibrosis of vascular in cardiac grafts. FX1 also decreased the proportion and number of splenic CD4+ T cells, effector CD4+ T cells, proliferating CD4+ T cells, and Tfh cells in mice with chronic rejection. Moreover, FX1 also inhibited the proportion and number of splenic plasma cells, germinal center B cells, IgG1+ B cells, and the donor-specific antibody in recipient mice.Conclusion: We found BCL6 inhibitor FX1 protects chronic cardiac transplant rejection and inhibits the expansion of Tfh cells and the humoral response, which suggest that BCL6 is a potential therapeutic target of the treatment for chronic cardiac transplant rejection.
Collapse
Affiliation(s)
- Yuxuan Xia
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
- *Correspondence: Yuming Wu,
| |
Collapse
|
5
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Louis K, Macedo C, Metes D. Targeting T Follicular Helper Cells to Control Humoral Allogeneic Immunity. Transplantation 2021; 105:e168-e180. [PMID: 33909968 PMCID: PMC8484368 DOI: 10.1097/tp.0000000000003776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Humoral allogeneic immunity driven by anti-HLA donor-specific antibodies and antibody-mediated rejection (AMR) significantly impede prolonged survival of organ allografts after transplantation. Although the importance of T follicular helper (TFH) cells in controlling antibody responses has been long established, their role in directing donor-specific antibody generation leading to AMR was only recently appreciated in the clinical setting of organ transplantation. In this review, we provide a comprehensive summary of the current knowledge on the biology of human TFH cells as well as their circulating counterparts and describe their pivotal role in driving humoral alloimmunity. In addition, we discuss the intrinsic effects of current induction therapies and maintenance immunosuppressive drugs as well as of biotherapies on TFH cells and provide future directions and novel opportunities of biotherapeutic targeting of TFH cells that have the potential of bringing the prophylactic and curative treatments of AMR toward personalized and precision medicine.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Human Immunology and Immunopathology, Inserm UMR 976, Université de Paris, Paris, France
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
The role of circulating T follicular helper cells in kidney transplantation. Transpl Immunol 2021; 69:101459. [PMID: 34461243 DOI: 10.1016/j.trim.2021.101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Humoral rejection plays a crucial role in the chronic deterioration of kidney allografts, but there is no effective therapeutic strategy to prevent or treat it. T follicular helper (Tfh) cells provide help to B cells, subsequently contributing to humoral rejection. Investigation of Tfh cells may be a useful strategy for assessing the risk and level of humoral rejection. However, it is difficult to investigate Tfh cells from patient-derived lymphoid tissue. Recent studies have shown that circulating Tfh (cTfh) cells, working in parallel to Tfh cells, have the capacity to promote antibody-secreting B cell differentiation and antibody secretion. Here, we review recent studies of cTfh cells in kidney transplantation and discuss the characteristics and functions of cTfh cells in kidney transplant recipients.
Collapse
|
8
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
9
|
Inhibition of T Helper Cell Differentiation by Tacrolimus or Sirolimus Results in Reduced B-Cell Activation: Effects on T Follicular Helper Cells. Transplant Proc 2019; 51:3463-3473. [DOI: 10.1016/j.transproceed.2019.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
|
10
|
Niu Q, Kraaijeveld R, Li Y, Mendoza Rojas A, Shi Y, Wang L, Van Besouw NM, Baan CC. An overview of T follicular cells in transplantation: spotlight on their clinical significance. Expert Rev Clin Immunol 2019; 15:1249-1262. [PMID: 31721600 DOI: 10.1080/1744666x.2020.1693262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: For late stage organ failure patients, transplantation is the best option to increase life expectancy with a superior quality of life. Unfortunately, after transplantation many patients are at risk of cellular and antibody-mediated rejection (ABMR). The latter is initiated by donor specific antibodies (DSA) which depend on the actions of B cells, T follicular helper (Tfh) cells and T follicular regulatory (Tfr) cells that are present in the germinal center of lymphoid organs.Areas covered: In this overview paper, we discuss the biology and function of Tfh and Tfr cells in lymphoid tissues, transplanted organs and their circulating counterparts. We report on their relevance to alloimmunity and on the effects of immunosuppressive drugs on these immunocompetent cell populations.Expert opinion: Growing knowledge about the actions of Tfh and Tfr allows for a better understanding of the immunological mechanisms of ABMR after organ transplantation. This understanding feeds the hypothesis that immunosuppressive drugs targeting the actions of Tfh cells have huge therapeutic potential. This new concept in the treatment of the humoral rejection response will improve graft and patient survival after organ transplantation.
Collapse
Affiliation(s)
- Qian Niu
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rens Kraaijeveld
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Yi Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Aleixandra Mendoza Rojas
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Yunying Shi
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Nicole M Van Besouw
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Carla C Baan
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Danger R, Chesneau M, Delbos F, Le Bot S, Kerleau C, Chenouard A, Ville S, Degauque N, Conchon S, Cesbron A, Giral M, Brouard S. CXCR5 +PD1 +ICOS + Circulating T Follicular Helpers Are Associated With de novo Donor-Specific Antibodies After Renal Transplantation. Front Immunol 2019; 10:2071. [PMID: 31552030 PMCID: PMC6746839 DOI: 10.3389/fimmu.2019.02071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Donor-specific anti-HLA antibodies (DSAs) are a major risk factor associated with renal allograft outcomes. As a trigger of B cell antibody production, T follicular helper cells (Tfhs) promote DSA appearance. Herein, we evaluated whether circulating Tfhs (cTfhs) are associated with the genesis of antibody-mediated rejection. We measured cTfh levels on the day of transplantation and 1 year after transplantation in blood from a prospective cohort of 237 renal transplantation patients without DSA during the first year post-transplantation. Total cTfhs were characterized as CD4+CD45RA−CXCR5+, and the three following subsets of activated cTfh were analyzed: CXCR5+PD1+, CXCR5+PD1+ICOS+, an CXCR5+PD1+CXCR3−. Immunizing events (previous blood transfusion and/or pregnancy) and the presence of class II anti-HLA antibodies were associated with increased frequencies of activated CXCR5+PD1+, CXCR5+PD1+ICOS+, and CXCR5+PD1+CXCR3− cTfh subsets. In addition, ATG-depleting induction and calcineurin inhibitor treatments were associated with a relative increase of activated cTfh subsets frequencies at 1 year post-transplantation. In multivariate survival analysis, we reported that a decrease in activated CXCR5+PD1+ICOS+ at 1 year after transplantation in the blood of DSA-free patients was significantly associated with the risk of developing de novo DSA after the first year (p = 0.018, HR = 0.39), independently of HLA mismatches (p = 0.003, HR = 3.79). These results highlight the importance of monitoring activated Tfhs in patients early after transplantation and show that current treatments cannot provide early, efficient prevention of Tfh activation and migration. These findings indicate the need to develop innovative treatments to specifically target Tfhs to prevent DSA appearance in renal transplantation.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Florent Delbos
- Laboratoire Histocompatibilité et Immunogénétique - Etablissement Français du sang, Nantes, France
| | - Sabine Le Bot
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Clarisse Kerleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Alexis Chenouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Simon Ville
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Anne Cesbron
- Laboratoire Histocompatibilité et Immunogénétique - Etablissement Français du sang, Nantes, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| |
Collapse
|
12
|
van Besouw NM, Mendoza Rojas A, Baan CC. The role of follicular T helper cells in the humoral alloimmune response after clinical organ transplantation. HLA 2019; 94:407-414. [PMID: 31423738 PMCID: PMC6852567 DOI: 10.1111/tan.13671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Over the past decade, antibody‐mediated or humoral rejection in combination with development of de novo donor‐specific antibodies (DSA) has been recognized as a distinct and common cause of transplant dysfunction and is responsible for one‐third of the failed allografts. Detailed knowledge of the mechanisms that initiate and maintain B‐cell driven antidonor reactivity is required to prevent and better treat this antidonor response in organ transplant patients. Over the past few years, it became evident that this response largely depends on the actions of both T follicular helper (Tfh) cells and the controlling counterparts, the T follicular regulatory (Tfr) cells. In this overview paper, we review the latest insights on the functions of circulating (c)Tfh cells, their subsets Tfh1, Tfh2 and Tfh17 cells, IL‐21 and Tfr cells in antibody mediated rejection (ABMR). This may offer new insights in the process to reduce de novo DSA secretion resulting in a decline in the incidence of ABMR. In addition, monitoring these cell populations could be helpful for the development of biomarkers identifying patients at risk for ABMR and provide novel therapeutic drug targets to treat ABMR.
Collapse
Affiliation(s)
- Nicole M van Besouw
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aleixandra Mendoza Rojas
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine - Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Laguna-Goya R, Suàrez-Fernández P, Paz-Artal E. Follicular helper T cells and humoral response in organ transplantation. Transplant Rev (Orlando) 2019; 33:183-190. [PMID: 31327572 DOI: 10.1016/j.trre.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Antibody mediated rejection has been recognized as an important contributor to long-term graft loss in most solid organ transplants. Current immunosuppressive regimes are not capable of preventing anti-HLA antibody formation and eventual damage to the graft, and there is a need to develop drugs directed against novel targets to avoid graft allorecognition. In this review we introduce follicular helper T cells (Tfh), a subtype of lymphocyte specialized in helping B cells to differentiate into plasmablasts and produce class-switched antibodies. We focus on the role of Tfh in solid organ transplantation, what is known about Tfh and the production of alloantibodies, how current immunosuppressive therapies affect Tfh and what new molecules could be used to target Tfh in transplantation, with the goal of improving graft survival.
Collapse
Affiliation(s)
- R Laguna-Goya
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain.
| | - P Suàrez-Fernández
- Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - E Paz-Artal
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
14
|
Dahdal S, Saison C, Valette M, Bachy E, Pallet N, Lina B, Koenig A, Monneret G, Defrance T, Morelon E, Thaunat O. Residual Activatability of Circulating Tfh17 Predicts Humoral Response to Thymodependent Antigens in Patients on Therapeutic Immunosuppression. Front Immunol 2019; 9:3178. [PMID: 30804950 PMCID: PMC6370621 DOI: 10.3389/fimmu.2018.03178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
The generation of antibodies against protein antigens (such as donor-specific HLA molecules) requires that T follicular helper cells (Tfh) provide help to B cells. Immunosuppressive (IS) armamentarium prevents T cell activation, yet a significant proportion of renal transplant patients develop donor-specific antibodies (DSA), which suggests that IS drugs do not efficiently block T follicular helper cells. To test this hypothesis, the number of circulating Tfh, their polarization profile, and ability to up-regulate (i) the co-stimulatory molecules CD40L and ICOS, and (ii) the activation marker CD25, following in vitro stimulation in presence of IS drugs, were compared between 36 renal transplant patients (6–72 months post transplantation) and nine healthy controls. IS drugs reduced the number of Tfh1 and 2 but had little impact on Tfh17, which was the dominant subset in transplant patients. Although, IS drugs decreased activation-induced expression of co-stimulatory molecules by Tfh, the impact was highly variable between individuals. Furthermore, 20% of transplant patients displayed normal expression of CD25 on Tfh following in vitro stimulation (i.e., “residual activatability”). To test whether residual activatability of Tfh correlates with antibody response against thymo-dependent antigens we took advantage of the 2015 influenza vaccination campaign, which provided a normalized setting for antigenic stimulation. In line with our hypothesis, responders to influenza vaccine exhibited significantly higher percentage of CD25-expressing Tfh17 after in vitro stimulation. A results that was confirmed retrospectively in nine transplanted patients at the time of first DSA detection. We concluded that “residual activatability” of Tfh17 might be used as a non-invasive biomarker to identify transplant patients at higher risk to develop DSA under immunosuppression. If validated in larger studies, this assay might help optimizing the prevention of DSA through personalized adaptation of immunosuppressive regimen.
Collapse
Affiliation(s)
- Suzan Dahdal
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Carole Saison
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Martine Valette
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Infectious Agents Institute (IAI) Laboratory of Virology-National Reference Center for Respiratory Viruses (Including Influenza), Lyon, France
| | - Emmanuel Bachy
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud University Hospital, Pierre Bénite, France.,Claude Bernard University (Lyon 1), Lyon, France
| | - Nicolas Pallet
- Laboratory of Biochemistry, Assistance Publique-Hôpitaux de Paris, Georges Pompidou Hospital, Paris, France.,Paris Descartes University, Paris, France
| | - Bruno Lina
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Hospices Civils de Lyon, Croix-Rousse University Hospital, Infectious Agents Institute (IAI) Laboratory of Virology-National Reference Center for Respiratory Viruses (Including Influenza), Lyon, France.,Claude Bernard University (Lyon 1), Lyon, France
| | - Alice Koenig
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Guillaume Monneret
- Laboratory of Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Thierry Defrance
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France
| | - Emmanuel Morelon
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France.,Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France.,Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
15
|
Li Y, Guptill JT, Russo MA, Massey JM, Juel VC, Hobson-Webb LD, Howard JF, Chopra M, Liu W, Yi JS. Tacrolimus inhibits Th1 and Th17 responses in MuSK-antibody positive myasthenia gravis patients. Exp Neurol 2018; 312:43-50. [PMID: 30472069 DOI: 10.1016/j.expneurol.2018.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
Abstract
Muscle specific tyrosine kinase antibody positive myasthenia gravis (MuSK- MG) is characterized by autoantibodies against the MuSK protein of the neuromuscular junction resulting in weakness of bulbar and proximal muscles. We previously demonstrated that patients with MuSK-MG have increased pro-inflammatory Th1 and Th17 responses. Tacrolimus, an immunosuppressant used in AChR-MG and transplantation patients, inhibits T cell responses through interference with IL-2 transcription. The therapeutic efficacy and immunological effect of tacrolimus in MuSK-MG is unclear. In the current study we examined the proliferation, phenotype and cytokine production of CD4+ and CD8+ T cells in peripheral blood mononuclear cells of MuSK-MG following a 3-day in vitro culture with or without tacrolimus. We determined that tacrolimus profoundly suppressed CD4 and CD8 T cell proliferation and significantly suppressed Th1 and Th17 responses, as demonstrated by a reduced frequency of IFN-γ, IL-2, and IL-17 producing CD4 T cells and reduced frequencies of IFN-γ and IL-2 producing CD8 T cells. Tacrolimus also inhibits pathogenic Th17 cells coproducing IL-17 and IFN-γ. In addition, tacrolimus suppressed follicular T helper cell (Tfh) and regulatory T helper cell (Treg) subsets. These findings provide preliminary support for tacrolimus as a potential alternative immunosuppressive therapy for MuSK-MG.
Collapse
Affiliation(s)
- Yingkai Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffrey T Guptill
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Melissa A Russo
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Janice M Massey
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Vern C Juel
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Lisa D Hobson-Webb
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manisha Chopra
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - John S Yi
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|