1
|
Hara H, Yamamoto T, Wei HJ, Cooper DK. What Have We Learned From In Vitro Studies About Pig-to-primate Organ Transplantation? Transplantation 2023; 107:1265-1277. [PMID: 36536507 PMCID: PMC10205677 DOI: 10.1097/tp.0000000000004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural preformed and de novo antibodies against pig antigens are a major cause of pig xenograft rejection in nonhuman primates (NHPs). In vivo studies in pig-to-NHP models are time consuming. In vitro assays, for example, antibody binding to pig cells, complement-dependent cytotoxicity assays, provide valuable information quickly and inexpensively. Using in vitro assays for several years, it has been documented that (1) during the first year of life, humans and NHPs develop anti-wild-type pig antibodies, but humans develop no or minimal antibody to triple-knockout (TKO) pig cells. (2) Some adult humans have no or minimal antibodies to TKO pig cells and are therefore unlikely to rapidly reject a TKO organ, particularly if the organ also expresses human "protective" proteins. (3) There is good correlation between immunoglobulin (Ig)M (but no t IgG) binding and complement injury. (4) All Old World NHPs develop antibodies to TKO pig cells and are not optimal recipients of TKO organs. (5) galactosyltransferase gene-knockout/β4GalNT2KO pigs are preferred for Old World NHPs. (6) Humans develop anti-pig IgE and IgA antibodies against pig cells, but their role remains uncertain. (7) In a small percentage of allosensitized humans, antibodies that cross-react with swine leukocyte antigens may be detrimental to a pig organ xenograft. (8) Prior sensitization to pig antigens is unlikely to be detrimental to a subsequent allograft. (9) Deletion of expression of Gal and Neu5Gc is associated with a reduction in the T-cell response to pig cells. All of these valuable observations have largely predicted the results of in vivo studies.
Collapse
Affiliation(s)
- Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Takayuki Yamamoto
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Hong-Jiang Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K.C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Oscherwitz M, Nguyen HQ, Raza SS, Cleveland DC, Padilla LA, Sorabella RA, Ayares D, Maxwell K, Rhodes LA, Cooper DKC, Hara H. Will previous palliative surgery for congenital heart disease be detrimental to subsequent pig heart xenotransplantation? Transpl Immunol 2022; 74:101661. [PMID: 35787933 PMCID: PMC9762890 DOI: 10.1016/j.trim.2022.101661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Pig heart xenotransplantation might act as a bridge in infants with complex congenital heart disease (CHD) until a deceased human donor heart becomes available. Infants develop antibodies to wild-type (WT, i.e., genetically-unmodified) pig cells, but rarely to cells in which expression of the 3 known carbohydrate xenoantigens has been deleted by genetic engineering (triple-knockout [TKO] pigs). Our objective was to test sera from children who had undergone palliative surgery for complex CHD (and who potentially might need a pig heart transplant) to determine whether they had serum cytotoxic antibodies against TKO pig cells. METHODS Sera were obtained from children with CHD undergoing Glenn or Fontan operation (n = 14) and healthy adults (n = 8, as controls). All of the children had complex CHD and had undergone some form of cardiac surgery. Seven had received human blood transfusions and 3 bovine pericardial patch grafts. IgM and IgG binding to WT and TKO pig red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were measured by flow cytometry, and killing of PBMCs by a complement-dependent cytotoxicity assay. RESULTS Almost all children and adults demonstrated relatively high IgM/IgG binding to WT RBCs, but minimal binding to TKO RBCs (p < 0.0001 vs WT), although IgG binding was greater in children than adults (p < 0.01). All sera showed IgM/IgG binding to WT PBMCs, but this was much lower to TKO PBMCs (p < 0.0001 vs WT) and was greater in children than in adults (p < 0.05). Binding to both WT and TKO PBMCs was greater than to RBCs. Mean serum cytotoxicity to WT PBMCs was 90% in both children and adults, whereas to TKO PBMCs it was only 20% and < 5%, respectively. The sera from 6/14 (43%) children were cytotoxic to TKO PBMCs, but no adult sera were cytotoxic. CONCLUSIONS Although no children had high levels of antibodies to TKO RBCs, 13/14 demonstrated antibodies to TKO PBMCs, in 6 of these showed mild cytotoxicity. As no adults had cytotoxic antibodies to TKO PBMCs, the higher incidence in children may possibly be associated with their exposure to previous cardiac surgery and biological products. However, the numbers were too small to determine the influence of such past exposures. Before considering pig heart xenotransplantation for children with CHD, testing for antibody binding may be warranted.
Collapse
Affiliation(s)
- Max Oscherwitz
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Quoc Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Syed Sikandar Raza
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luz A Padilla
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A Sorabella
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kathryn Maxwell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leslie A Rhodes
- Department of Pediatric Cardiology, Division of Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Hara H, Nguyen H, Wang ZY, Jagdale A, Bikhet M, Yamamoto T, Iwase H, Ayares D, Cooper DKC. Evidence that sensitization to triple-knockout pig cells will not be detrimental to subsequent allotransplantation. Xenotransplantation 2021; 28:e12701. [PMID: 34053125 DOI: 10.1111/xen.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The current evidence is that sensitization to a pig xenograft does not result in the development of antibodies that cross-react with alloantigens, and therefore, sensitization to a pig xenograft would not be detrimental to the outcome of a subsequent allograft. This evidence relates almost entirely to the transplantation of cells or organs from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. However, it is not known whether recipients of triple-knockout (TKO) pig grafts who become sensitized to TKO pig antigens develop antibodies that cross-react with alloantigens and thus be detrimental to a subsequent organ allotransplant. We identified a single baboon (B1317) in which no (or minimal) serum anti-TKO pig antibodies could be measured-in our experience unique among baboons. We sensitized it by repeated subcutaneous injections of TKO pig peripheral blood mononuclear cells (PBMCs) in the absence of any immunosuppressive therapy. After TKO pig PBMC injection, there was a transient increase in anti-TKO pig IgM, followed by a sustained increase in IgG binding to TKO cells. In contrast, there was no serum IgM or IgG binding to PBMCs from any of a panel of baboon PBMCs (n = 8). We conclude that sensitization to TKO pig PBMCs in the baboon did not result in the development of antibodies that also bound to baboon cells, suggesting that there would be no detrimental effect of sensitization on a subsequent organ allotransplant.
Collapse
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zheng-Yu Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Yamamoto T, Ladowski JM, Bikhet M, Cooper DKC, Hara H. Efficacy of ATG and Rituximab in capuchin monkeys (a New World monkey)-An in vitro study relevant to xenotransplantation. Xenotransplantation 2020; 27:e12627. [PMID: 32596827 DOI: 10.1111/xen.12627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022]
Abstract
While Old World monkeys, for example, baboons, have antibodies against triple-knockout (TKO) pig cells, thus complicating pig organ transplantation studies, capuchin monkeys (a New World monkey) do not, thus more closely mimicking humans in respect to the response to TKO pig cells. Whether drugs such as anti-thymocyte globulin (ATG) and Rituximab are effective in capuchin monkeys remains uncertain. We measured the binding and cytotoxicity of ATG and Rituximab to human (n = 7), baboon (n = 7), and capuchin monkey (n = 5) peripheral blood mononuclear cells (PBMCs), T cells or B cells by flow cytometry.The effect in vitro of ATG in depleting PBMCs in capuchin monkeys and baboons was significantly less than in humans, but the depletion in capuchin monkeys was not significantly different from that in baboons. In contrast, the effect in vitro of Rituximab in depleting B cells in capuchin monkeys was very limited, and significantly less than in humans and baboons.Although capuchin monkeys mimic the human antibody response to TKO pig cells more closely than baboons, Rituximab had a minimal effect in capuchin monkeys in vitro. This observation may limit the value of New World Monkeys as recipients of pig organs, tissues, or cells in experimental studies of xenotransplantation or, indeed, in allotransplantation.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph M Ladowski
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|