1
|
Kim M, Choi M, Kwon YD, Ohe JY, Jung J. The Potential of Enamel Matrix Derivative in Countering Bisphosphonate-Induced Effects in Osteoblasts. Life (Basel) 2024; 14:1088. [PMID: 39337872 PMCID: PMC11432935 DOI: 10.3390/life14091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The suppressive effect of bisphosphonates (BPs) on bone metabolism is considered to be a major cause of medication-related osteonecrosis of the jaw (MRONJ). Enamel matrix derivative (EMD) stimulates and activates growth factors, leading to the regeneration of periodontal tissues. In this study, we aimed to explore the potential of EMD in reversing the detrimental effects of BPs on human fetal osteoblasts (hFOBs) and osteosarcoma-derived immature osteoblasts (MG63s) by assessing cell viability, apoptosis, migration, gene expression, and protein synthesis. While the suppressive effect of zoledronate (Zol) on cell viability and migration was observed, the addition of EMD significantly mitigated this effect and enhanced cell viability and migration. Furthermore, an increased apoptosis rate induced by Zol was decreased with the addition of EMD. The decreased gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and the receptor activator of nuclear factors kappa-B ligand (RANKL) caused by BP treatment was reversed by the co-addition of EMD to hFOB cells. This trend was also observed for ALP and bone sialoprotein (BSP) levels in MG63 cells. Furthermore, suppressed protein levels of OC, macrophage colony-stimulating factor (M-CSF), BSP, and type 1 collagen (COL1) were recovered following the addition of EMD. This finding suggests that EMD could mitigate the effects of BPs, resulting in the recovery of cell survival, migration, and gene and protein expression. However, the behavior of the osteoblasts was not fully restored, and further studies are necessary to confirm their effects at the cellular level and to assess their clinical usefulness in vivo for the prevention and treatment of MRONJ.
Collapse
Affiliation(s)
- Minah Kim
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Saint Vincent's Hospital, The Catholic University of Korea, Suwon 16247, Republic of Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Yong-Dae Kwon
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Joo-Young Ohe
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Junho Jung
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Fakheran O, Fischer KR, Schmidlin PR. Enamel Matrix Derivatives as an Adjunct to Alveolar Ridge Preservation-A Systematic Review. Dent J (Basel) 2023; 11:dj11040100. [PMID: 37185478 PMCID: PMC10137019 DOI: 10.3390/dj11040100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE To systematically assess the current evidence regarding the adjunctive application of enamel matrix derivatives (EMDs) during alveolar ridge preservation (ARP) following tooth extraction. METHODS A comprehensive literature search was conducted in MEDLINE, Cochrane Library, PsycINFO, Web of Science, Google Scholar, and Scopus to identify relevant randomized controlled clinical trials (RCTs). The primary outcome parameters of this systematic review were histomorphometric and radiographic data; secondary outcomes were the feasibility of implant placement after ARP as well as patient-related outcomes such as postoperative discomfort. RESULTS The search identified 436 eligible articles published from 2011 to 2022, but only five were ultimately included for data extraction (146 patients). Given the substantial heterogeneity among the included studies, no meta-analysis could be performed. The authors' qualitative analysis showed marginally improved outcomes regarding an increased percentage of new bone formation after tooth extraction and a reduction in postoperative discomfort. CONCLUSIONS Given the potential value of EMDs in other fields of regenerative dentistry, more consideration should be given to EMDs as an adjunctive treatment option in ARP. However, more well-controlled randomized clinical trials are necessary to evaluate the exact potential and impacts of EMDs.
Collapse
Affiliation(s)
- Omid Fakheran
- Department of Periodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, 81658 Isfahan, Iran
- Department of Oral Surgery and Orthodontics, University Clinic of Dental Medicine and Oral Health, Medical University of Graz, Graz 8010, Austria
| | - Kai R Fischer
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology & Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, Plattenstrasse, 11 8032 Zurich, Switzerland
| | - Patrick R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology & Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, Plattenstrasse, 11 8032 Zurich, Switzerland
| |
Collapse
|
3
|
Amelogenin-Derived Peptides in Bone Regeneration: A Systematic Review. Int J Mol Sci 2021; 22:ijms22179224. [PMID: 34502132 PMCID: PMC8431254 DOI: 10.3390/ijms22179224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Amelogenins are enamel matrix proteins currently used to treat bone defects in periodontal surgery. Recent studies have highlighted the relevance of amelogenin-derived peptides, named LRAP, TRAP, SP, and C11, in bone tissue engineering. Interestingly, these peptides seem to maintain or even improve the biological activity of the full-length protein, which has received attention in the field of bone regeneration. In this article, the authors combined a systematic and a narrative review. The former is focused on the existing scientific evidence on LRAP, TRAP, SP, and C11's ability to induce the production of mineralized extracellular matrix, while the latter is concentrated on the structure and function of amelogenin and amelogenin-derived peptides. Overall, the collected data suggest that LRAP and SP are able to induce stromal stem cell differentiation towards osteoblastic phenotypes; specifically, SP seems to be more reliable in bone regenerative approaches due to its osteoinduction and the absence of immunogenicity. However, even if some evidence is convincing, the limited number of studies and the scarcity of in vivo studies force us to wait for further investigations before drawing a solid final statement on the real potential of amelogenin-derived peptides in bone tissue engineering.
Collapse
|
4
|
Güler Ş, Cetinkaya BO, Kurt Bayrakdar S, Ayas B, Keles GC. Comparison of the effectiveness of Ankaferd Blood Stopper ® and Emdogain in periodontal regeneration. Oral Dis 2021; 28:1947-1957. [PMID: 33740823 DOI: 10.1111/odi.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The present study was performed to compare the effectiveness of Ankaferd Blood Stopper® (ABS) with enamel matrix derivatives (EMD) for treating fenestration defects in rats. MATERIALS AND METHODS Forty-eight male Wistar rats were randomly divided into six groups (each n = 8). Fenestration defects were created in all rats, to which ABS, EMD, or saline (S) was then applied. The rats were grouped and sacrificed at one of two different time points, as follows: ABS-10-group, ABS-treatment/sacrifice on day 10; EMD-10-group, EMD-treatment/sacrifice on day 10; S-10-group, S-treatment/sacrifice on day 10; ABS-38-group, ABS-treatment/sacrifice on day 38; EMD-38-group, EMD-treatment/sacrifice on day 38; and S-38-group, S-treatment/sacrifice on day 38. Then, histomorphometric analysis including measurements of new bone area (NBA) and new bone ratio (NBR), and immunohistochemical analysis including the determination of osteopontin (OPN) and type-III-collagen (C-III) expression were performed. RESULTS The NBA and NBR were significantly higher in the ABS-10-group and EMD-10-group compared to the S-10-group (p < .05), and in the EMD-38-group compared to the S-38-group (p < .05). The levels of C-III and OPN immunoreactivity were significantly higher in the ABS-10-group compared to the S-10-group (p < .017). CONCLUSIONS The results of this study suggested that ABS can promote early periodontal regeneration, although its efficacy seems to decrease over time.
Collapse
Affiliation(s)
- Şevki Güler
- Department of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University, Bolu, Turkey
| | - Burcu Ozkan Cetinkaya
- Department of Periodontology, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Sevda Kurt Bayrakdar
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Bülent Ayas
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gonca Cayir Keles
- Department of Periodontology, Faculty of Dentistry, İstanbul Okan University, İstanbul, Turkey
| |
Collapse
|
5
|
Song M, Yu B, Kim S, Hayashi M, Smith C, Sohn S, Kim E, Lim J, Stevenson RG, Kim RH. Clinical and Molecular Perspectives of Reparative Dentin Formation: Lessons Learned from Pulp-Capping Materials and the Emerging Roles of Calcium. Dent Clin North Am 2018; 61:93-110. [PMID: 27912821 DOI: 10.1016/j.cden.2016.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The long-term use of calcium hydroxide and the recent increase in the use of hydraulic calcium-silicate cements as direct pulp-capping materials provide important clues in terms of how reparative dentin may be induced to form a "biological seal" to protect the underlying pulp tissues. In this review article, we discuss clinical and molecular perspectives of reparative dentin formation based on evidence learned from the use of these pulp-capping materials. We also discuss the emerging role of calcium as an odontoinductive component in these pulp-capping materials.
Collapse
Affiliation(s)
- Minju Song
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Bo Yu
- Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Sol Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Marc Hayashi
- Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Colby Smith
- Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Suhjin Sohn
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Euiseong Kim
- Microscope Center, Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, 50 Yonsei-Ro, 03772, Seoul, Korea
| | - James Lim
- Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Richard G Stevenson
- Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; Section of Restorative Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Weinreb M, Nemcovsky CE. In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 2017; 68:41-54. [PMID: 25867978 DOI: 10.1111/prd.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Periodontal wound healing and regeneration are highly complex processes, involving cells, matrices, molecules and genes that must be properly choreographed and orchestrated. As we attempt to understand and influence these clinical entities, we need experimental models to mimic the various aspects of human wound healing and regeneration. In vivo animal models that simulate clinical situations of humans can be costly and cumbersome. In vitro models have been devised to dissect wound healing/regeneration processes into discrete, analyzable steps. For soft tissue (e.g. gingival) healing, in vitro models range from simple culture of cells grown in monolayers and exposed to biological modulators or physical effectors and materials, to models in which cells are 'injured' by scraping and subsequently the 'wound' is filled with new or migrating cells, to three-dimensional models of epithelial-mesenchymal recombination or tissue explants. The cells employed are gingival keratinocytes, fibroblasts or endothelial cells, and their proliferation, migration, attachment, differentiation, survival, gene expression, matrix production or capillary formation are measured. Studies of periodontal regeneration also include periodontal ligament fibroblasts or progenitors, osteoblasts or osteoprogenitors, and cementoblasts. Regeneration models measure cellular proliferation, attachment and migration, as well as gene expression, transfer and differentiation into a mineralizing phenotype and biomineralization. Only by integrating data from models on all levels (i.e. a single cell to the whole organism) can various critical aspects of periodontal wound healing/regeneration be fully evaluated.
Collapse
|
7
|
Effects of enamel matrix derivative on non-surgical management of peri-implant mucositis: a double-blind randomized clinical trial. Clin Oral Investig 2016; 21:2379-2388. [DOI: 10.1007/s00784-016-2033-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022]
|
8
|
Lim HC, Lee JS, Jung UW, Choi SH. Bone Regenerative Potential of Enamel Matrix Protein in the Circumferential Defect Around a Dental Implant. IMPLANT DENT 2016; 25:179-85. [DOI: 10.1097/id.0000000000000383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Bollu IP, Velagula LD, Bolla N, Kumar KK, Hari A, Thumu J. Histological evaluation of mineral trioxide aggregate and enamel matrix derivative combination in direct pulp capping: An in vivo study. J Conserv Dent 2016; 19:536-540. [PMID: 27994315 PMCID: PMC5146769 DOI: 10.4103/0972-0707.194031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AIM The aim of this study is to evaluate the response of human pulp tissue to mineral trioxide aggregate (MTA), Emdogain (EMD), and combination of MTA/EMD. MATERIALS AND METHODS This study was performed on sixty intact first and second premolars of human maxillary and mandibular teeth. A standard pulpal exposure was done on all the teeth and was divided into three groups of twenty teeth each and was capped with MTA, EMD, and MTA/EMD combination. The final restoration was done with resin-modified glass ionomer cement. The teeth were then extracted on the 15th or 45th day and histological evaluation done. RESULTS Differences in inflammatory response and thickness of dentin bridge formation of the exposed pulp to the three different groups were statistically evaluated using Chi-square and Mann-Whitney tests and were found to be significant. No significant difference was found between MTA/EMD and MTA in terms of calcified bridge formation and pulp inflammatory response to the capping materials. CONCLUSIONS MTA and MTA/EMD combination produced a better quality hard tissue response compared with the use of EMD.
Collapse
Affiliation(s)
- Indira Priyadarshini Bollu
- Department of Conservative Dentistry and Endodontics, St. Joseph Dental College and Hospital, Eluru, Andhra Pradesh, India
| | - L Deepa Velagula
- Department of Conservative Dentistry and Endodontics, Lenora Institute of Dental Sciences, Rajahmundry, Andhra Pradesh, India
| | - Nagesh Bolla
- Department of Conservative Dentistry and Endodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - K Kiran Kumar
- Department of Oral and Maxillofacial Pathology, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Archana Hari
- Department of Periodontics, St. Joseph Dental College and Hospital, Eluru, Andhra Pradesh, India
| | - Jayaprakash Thumu
- Department of Conservative Dentistry and Endodontics, St. Joseph Dental College and Hospital, Eluru, Andhra Pradesh, India
| |
Collapse
|
10
|
Miron RJ, Chandad F, Buser D, Sculean A, Cochran DL, Zhang Y. Effect of Enamel Matrix Derivative Liquid on Osteoblast and Periodontal Ligament Cell Proliferation and Differentiation. J Periodontol 2015; 87:91-9. [PMID: 26334247 DOI: 10.1902/jop.2015.150389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.
Collapse
Affiliation(s)
- Richard J Miron
- Faculty of Dentistry, Dental School, Laval University, Québec City, QC.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern
| | - Fatiha Chandad
- Faculty of Dentistry, Dental School, Laval University, Québec City, QC
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - David L Cochran
- Department of Periodontics, Dental School, University of Texas Health Science Center, San Antonio, TX
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), School and Hospital of Stomatology, Wuhan, China
| |
Collapse
|
11
|
Heng NH, Zahlten J, Cordes V, Ong MMA, Goh BT, N’Guessan PD, Pischon N. Effects of Enamel Matrix Derivative and Transforming Growth Factor-β1 on Connective Tissue Growth Factor in Human Periodontal Ligament Fibroblasts. J Periodontol 2015; 86:569-77. [DOI: 10.1902/jop.2015.120448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Effect of bone graft density on in vitro cell behavior with enamel matrix derivative. Clin Oral Investig 2014; 19:1643-51. [PMID: 25518814 DOI: 10.1007/s00784-014-1388-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.
Collapse
|
13
|
Stähli A, Bosshardt D, Sculean A, Gruber R. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-βRI kinase signaling. PLoS One 2014; 9:e105672. [PMID: 25197981 PMCID: PMC4157743 DOI: 10.1371/journal.pone.0105672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022] Open
Abstract
Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.
Collapse
Affiliation(s)
- Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dieter Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Jeong Y, Yang W, Ko H, Kim M. The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells. Restor Dent Endod 2014; 39:187-94. [PMID: 25110642 PMCID: PMC4125582 DOI: 10.5395/rde.2014.39.3.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 01/09/2023] Open
Abstract
Objectives The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). Results Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). Conclusions These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.
Collapse
Affiliation(s)
- Youngdan Jeong
- Department of Conservative Dentistry, Ulsan University Asan Medical Center, Seoul, Korea
| | - Wonkyung Yang
- Department of Conservative Dentistry, Ulsan University Asan Medical Center, Seoul, Korea
| | - Hyunjung Ko
- Department of Conservative Dentistry, Ulsan University Asan Medical Center, Seoul, Korea
| | - Miri Kim
- Department of Conservative Dentistry, Ulsan University Asan Medical Center, Seoul, Korea
| |
Collapse
|
15
|
Miron RJ, Caluseru OM, Guillemette V, Zhang Y, Gemperli AC, Chandad F, Sculean A. Influence of enamel matrix derivative on cells at different maturation stages of differentiation. PLoS One 2013; 8:e71008. [PMID: 23951068 PMCID: PMC3741386 DOI: 10.1371/journal.pone.0071008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/01/2013] [Indexed: 01/12/2023] Open
Abstract
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Collapse
Affiliation(s)
- Richard J Miron
- Faculté de medecine dentaire, Pavillon de médecine dentaire, rue de la Terrasse, Université Laval, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Karanxha L, Park SJ, Son WJ, Nor JE, Min KS. Combined effects of simvastatin and enamel matrix derivative on odontoblastic differentiation of human dental pulp cells. J Endod 2013; 39:76-82. [PMID: 23228261 PMCID: PMC3812675 DOI: 10.1016/j.joen.2012.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 01/19/2023]
Abstract
INTRODUCTION We previously reported that simvastatin and enamel matrix derivative (EMD) have a dentinogenic effect. However, there is little information about the combined effects of these 2 agents on odontoblastic differentiation. The aim of this study was to investigate the effects of combined treatment with simvastatin and EMD on odontoblastic differentiation of human dental pulp cells (hDPCs). This study further explored the role of extracellular signal-regulated kinase (ERK) as a target and mediator of the differentiation induced by simvastatin in hDPCs. METHODS The odontoblastic differentiation was analyzed by alkaline phosphatase activity, real-time polymerase chain reaction (PCR) for odontoblastic/osteoblastic markers (ie, dentin sialophosphoprotein, dentin matrix protein 1, and osteonectin), and alizarin red S staining. We also explored the role of ERK signaling as a mediator of simvastatin by Western blotting and real-time PCR. The expression of osteoblast-specific transcription factors was detected by reverse-transcription PCR. RESULTS The alkaline phosphatase activity and the expression of odontoblastic markers (ie, dentin sialophosphoprotein and dentin matrix protein 1) increased in simvastatin/EMD-treated cells. Mineralized nodule formation increased in EMD- and simvastatin/EMD-treated cells. Notably, the combined use of both simvastatin and EMD resulted in more potent differentiation than that observed after a single therapy. Simvastatin activated ERK phosphorylation and treatment with ERK inhibitor blocked the messenger RNA expression of odontoblastic markers. However, in simvastatin/EMD-treated cells, the expression of these genes did not decrease significantly. Compared with other groups, the EMD- and simvastatin/EMD-treated group showed a greater expression of osterix. CONCLUSIONS Simvastatin promotes odontoblastic differentiation of hDPCs via the ERK signaling pathway. In addition, simvastatin-induced differentiation is facilitated by co-treatment with EMD. Collectively, these results suggest a new strategy to induce odontoblastic differentiation of hDPCs.
Collapse
Affiliation(s)
- Lorena Karanxha
- Department of Conservative Dentistry, Wonkwang University School of Dentistry, Iksan, Korea
| | - Su-Jung Park
- Department of Conservative Dentistry, Wonkwang University School of Dentistry, Iksan, Korea
| | - Won-Jun Son
- Department of Conservative Dentistry, Seoul National University School of Dentistry, Seoul, Korea
| | - Jacques E. Nor
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Kyung-San Min
- Department of Conservative Dentistry, Chonbuk National University School of Dentistry, Jeonju, Korea
| |
Collapse
|
17
|
Miron RJ, D. Bosshardt D, Hedbom E, Zhang Y, Haenni B, Buser D, Sculean A. Adsorption of Enamel Matrix Proteins to a Bovine-Derived Bone Grafting Material and Its Regulation of Cell Adhesion, Proliferation, and Differentiation. J Periodontol 2012; 83:936-47. [DOI: 10.1902/jop.2011.110480] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Al-Hezaimi K, Javed F, Al-Fouzan K, Tay F. Efficacy of the enamel matrix derivative in direct pulp capping procedures: a systematic review. AUST ENDOD J 2012; 39:171-5. [PMID: 24279667 DOI: 10.1111/j.1747-4477.2012.00357.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim was to review the efficacy of the enamel matrix derivative (EMD) in direct pulp capping (DPC) procedures. Databases were explored using the following keywords: 'dental', 'dentine', 'enamel matrix derivative', 'pulp capping' and 'treatment'. The inclusion criteria were: (i) original studies; (ii) human and animal studies; (iii) reference list of potentially relevant original and review articles; (iv) intervention: effect of EMD on pulp-capping procedures; and (v) articles published only in English. Eight studies (four human and four animal) were included. Among the human studies, two studies reported that EMD is a more efficient DPC procedure compared with calcium hydroxide (Ca(OH)2 ). One study reported Ca(OH)2 to be more efficient for DPC than EMD. One study reported no difference in the efficacies between EMD and Ca(OH)2 for DPC. All animal studies reported EMD to be more effective in reparative dentine formation in comparison with Ca(OH)2 . EMD can provide favourable results in DPC procedures.
Collapse
Affiliation(s)
- Khalid Al-Hezaimi
- Engineer Abdullah Bugshan Research Chair for Growth Factors and Bone Regeneration, 3D Imaging and Biomechanical Lab, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia Division of Endodontics, King Abdulaziz Medical City, National Guard Hospital, Riyadh, Saudi Arabia Department of Endodontics, School of Dentistry, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | |
Collapse
|
19
|
Tanimoto K, Kunimatsu R, Tanne Y, Huang YC, Michida M, Yoshimi Y, Miyauchi M, Takata T, Tanne K. Differential Effects of Amelogenin on Mineralization of Cementoblasts and Periodontal Ligament Cells. J Periodontol 2012; 83:672-9. [DOI: 10.1902/jop.2011.110408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Birang R, Abouei MS, Razavi SM, Zia P, Soolari A. The effect of an enamel matrix derivative (Emdogain) combined with bone ceramic on bone formation in mandibular defects: a histomorphometric and immunohistochemical study in the canine. ScientificWorldJournal 2012; 2012:196791. [PMID: 22619627 PMCID: PMC3349124 DOI: 10.1100/2012/196791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/16/2011] [Indexed: 11/24/2022] Open
Abstract
Background. The purpose of this study was to evaluate the combination of an enamel matrix derivative (EMD) and an osteoconductive bone ceramic (BC) in improving bone regeneration. Materials and Methods. Four cylindrical cavities (6 × 6 mm) were prepared bilaterally in the mandible in three dogs. The defects were randomly assigned to four different treatments—filled with EMD/BC and covered with a nonresorbable membrane, filled with EMD/BC without membrane, membrane coverage only, or control (left untreated)—and healed for 2, 4, or 6 weeks. Harvested specimens were prepared for histologic, histomorphometric, and immunohistochemical analyses. Results. Sites treated with EMD/BC with or without membrane showed more total bone formation and lamellar bone formation than membrane-only and control defects. There were no statistically significant differences in total bone formation between EMD/BC with or without membrane. Conclusion. EMD with BC might improve bone formation in osseous defects more than membrane coverage alone; the use of a membrane had no significant additive effect on total bone formation.
Collapse
Affiliation(s)
- Reza Birang
- Department of Periodontics, School of Dentistry and Torabinejad Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|
21
|
Grandin HM, Gemperli AC, Dard M. Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:181-202. [PMID: 22070552 DOI: 10.1089/ten.teb.2011.0365] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Enamel matrix derivative (EMD), the active component of Emdogain®, is a viable option in the treatment of periodontal disease owing to its ability to regenerate lost tissue. It is believed to mimic odontogenesis, though the details of its functioning remain the focus of current research. OBJECTIVE The aim of this article is to review all relevant literature reporting on the composition/characterization of EMD as well as the effects of EMD, and its components amelogenin and ameloblastin, on the behavior of various cell types in vitro. In this way, insight into the underlying mechanism of regeneration will be garnered and utilized to propose a model for the molecular arrangement and functioning of EMD. METHODS A review of in vitro studies of EMD, or components of EMD, was performed using key words "enamel matrix proteins" OR "EMD" OR "Emdogain" OR "amelogenin" OR "ameloblastin" OR "sheath proteins" AND "cells." Results of this analysis, together with current knowledge on the molecular composition of EMD and the structure and regulation of its components, are then used to present a model of EMD functioning. RESULTS Characterization of the molecular composition of EMD confirmed that amelogenin proteins, including their enzymatically cleaved and alternatively spliced fragments, dominate the protein complex (>90%). A small presence of ameloblastin has also been reported. Analysis of the effects of EMD indicated that gene expression, protein production, proliferation, and differentiation of various cell types are affected and often enhanced by EMD, particularly for periodontal ligament and osteoblastic cell types. EMD also stimulated angiogenesis. In contrast, EMD had a cytostatic effect on epithelial cells. Full-length amelogenin elicited similar effects to EMD, though to a lesser extent. Both the leucine-rich amelogenin peptide and the ameloblastin peptides demonstrated osteogenic effects. A model for molecular structure and functioning of EMD involving nanosphere formation, aggregation, and dissolution is presented. CONCLUSIONS EMD elicits a regenerative response in periodontal tissues that is only partly replicated by amelogenin or ameloblastin components. A synergistic effect among the various proteins and with the cells, as well as a temporal effect, may prove important aspects of the EMD response in vivo.
Collapse
|
22
|
A hybrid approach to direct pulp capping by using emdogain with a capping material. J Endod 2011; 37:667-72. [PMID: 21496668 DOI: 10.1016/j.joen.2011.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 11/20/2022]
Abstract
INTRODUCTION This study evaluated the formation of reparative hard tissues in baboon pulps after Emdogain (EMD) application in conjunction with 3 pulp-capping materials. METHODS Thirty-two premolars in four 3-year-old baboons were randomly assigned to 1 of 3 pulp-capping materials. A split-mouth design and intra-animal side randomization were applied to 3 experimental groups (calcium hydroxide, ProRoot White mineral trioxide aggregate, white Portland cement) and the control group (no pulp-capping material). In the hybrid EMD approach, a small drop of EMD was placed over the exposure site after arrest of hemorrhage. The designated pulp-capping material was placed over the EMD, followed by placement of resin-modified glass ionomer cement over the set/unset pulp-capping material. The animals were killed after 4 months. Histomorphometric analysis and micro-computed tomography were performed on the retrieved specimens. RESULTS All groups capped with EMD and 1 of the 3 capping materials exhibited similar reparative tissue thickness (P > .05). Dentin tunnel defects were absent in the mineral trioxide aggregate and Portland cement groups after the use of EMD. However, only a tubular was identified from all specimens. CONCLUSIONS Mineral trioxide aggregate produces a better quality reparative hard tissue response with the adjunctive use of Emdogain, when compared with the use of calcium hydroxide.
Collapse
|
23
|
Jiang SY, Shu R, Song ZC, Xie YF. Effects of enamel matrix proteins on proliferation, differentiation and attachment of human alveolar osteoblasts. Cell Prolif 2011; 44:372-9. [PMID: 21702859 DOI: 10.1111/j.1365-2184.2011.00762.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Enamel matrix proteins (EMPs) have been demonstrated to promote periodontal regeneration. However, effects of EMPs on human alveolar osteoblasts (hAOBs), up to now, have still been unclear. The purpose of this study was to investigate influence of EMPs on proliferation, differentiation and attachment of hAOBs in vitro. MATERIALS AND METHODS EMPs were extracted using the acetic acid method, hAOBs were obtained and cultured in vitro. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of osteogenic markers and cell attachment were measured in the absence and in the presence of EMPs (50, 100 and 200 μg/ml). RESULTS EMPs increased proliferation of hAOBs; however, they inhibited ALP activity and mRNA expression of osteogenic markers (collagen I, ALP, runt-related protein 2, osteocalcin, bone sialoprotein and osteopontin). Meanwhile, EMPs hindered hAOBs' attachment. These effects occurred in EMPs concentration-dependent manner. CONCLUSIONS These results indicate that EMPs may inhibit osteoblastic differentiation and attachment to prevent ankylosis and allow other cell types to regenerate periodontal tissues.
Collapse
Affiliation(s)
- S-Y Jiang
- Department of Periodontology, College of Stomatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | | | | | | |
Collapse
|
24
|
Chung H, Yang W, Kim M, Ko H. Comparison of the effects of enamel matrix derivative and mineral trioxide aggregate on the mineralization potential of human cementum-derived cells. J Dent Sci 2011. [DOI: 10.1016/j.jds.2011.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Miron RJ, Hedbom E, Ruggiero S, Bosshardt DD, Zhang Y, Mauth C, Gemperli AC, Iizuka T, Buser D, Sculean A. Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin. PLoS One 2011; 6:e23375. [PMID: 21858092 PMCID: PMC3156132 DOI: 10.1371/journal.pone.0023375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/14/2011] [Indexed: 01/17/2023] Open
Abstract
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jingchao H, Rong S, Zhongchen S, Lan C. Human amelogenin up-regulates osteogenic gene expression in human bone marrow stroma cells. Biochem Biophys Res Commun 2011; 408:437-41. [PMID: 21514271 DOI: 10.1016/j.bbrc.2011.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/08/2011] [Indexed: 01/02/2023]
Abstract
Extracts of enamel matrix proteins are used to regenerate periodontal tissues. Amelogenin, the most abundant enamel protein, plays an important role in the regeneration of these tissues. However, the molecular mechanisms by which amelogenin contributes to periodontal regeneration remain unknown. Using primary human bone marrow stroma cells (hBMSCs) transduced with lentivirus encoding human amelogenin (hAm), we performed genome-wide expression profiling to analyze the effects of hAm transduction on the regulation of genes involved in osteogenic differentiation. Our results revealed that BMP-2, BMP-6, OPN and VEGFC were up-regulated. These results suggest that hAm may be a key element in regulating hBMSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Hu Jingchao
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhi Zao Ju Road, Shanghai 200011, China.
| | | | | | | |
Collapse
|
27
|
Laaksonen M, Sorsa T, Salo T. Emdogain in carcinogenesis: a systematic review of in vitro studies. J Oral Sci 2010; 52:1-11. [PMID: 20339227 DOI: 10.2334/josnusd.52.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Emdogain is a commercial product of unknown composition and is clinically used to induce periodontal regeneration. This study aims to review current knowledge of the in vitro effects of Emdogain on oral tissues and, in particular, factors related to carcinoma. A systematic approach was used to review studies from the Embase and Pubmed databases; a total of 76 studies were included. These comprised in vitro studies of the cytokines in, or regulated by, Emdogain and assays designed to study the effects of EMD on human cells in oral tissues or malignant cells. Several studies have shown that EMD regulates the proliferation, migration, adhesion, gene expression, and cytokine production of (pre-)osteoblasts, periodontal fibroblasts, and gingival fibroblasts. However, the effects of EMD on malignant oral cells are not well understood. EMD seems to have broad regulatory effects on malignant cells and on several carcinoma-related factors. Evidence suggests that patients with premalignant or malignant mucosal lesions should not be treated with EMD.
Collapse
Affiliation(s)
- Matti Laaksonen
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Institute of Dentistry, University of Helsinki, Finland
| | | | | |
Collapse
|
28
|
Mellonig JT, Valderrama P, Gregory HJ, Cochran DL. Clinical and Histologic Evaluation of Non-Surgical Periodontal Therapy With Enamel Matrix Derivative: A Report of Four Cases. J Periodontol 2009; 80:1534-40. [DOI: 10.1902/jop.2009.090160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
The Combined Effect of Mineral Trioxide Aggregate and Enamel Matrix Derivative on Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 2009; 35:847-51. [DOI: 10.1016/j.joen.2009.03.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/13/2009] [Accepted: 03/15/2009] [Indexed: 11/18/2022]
|