1
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
3
|
Rajaram Mohan K, Fenn SM, Pethagounder Thangavelu R. Squamous Papilloma on the Hard Palate: A Rare Clinical Entity. Cureus 2023; 15:e38710. [PMID: 37292556 PMCID: PMC10246509 DOI: 10.7759/cureus.38710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 06/10/2023] Open
Abstract
Squamous papilloma is a benign, exophytic, soft tissue tumour caused by the rapid proliferation of stratified squamous epithelium. It typically manifests in the oral cavity as a painless, soft, non-tender, pedunculated growth that resembles a cauliflower. This case report of squamous papilloma on the hard palate sheds light on the etiopathogenesis, types, clinical features, differential diagnosis, and management modalities.
Collapse
Affiliation(s)
- Karthik Rajaram Mohan
- Oral Medicine, Vinayaka Mission's Sankarachariyar Dental College, Vinayaka Mission's Research Foundation, Salem, IND
| | - Saramma Mathew Fenn
- Oral Medicine and Radiology, Vinayaka Mission's Sankarachariyar Dental College, Vinayaka Mission's Research Foundation, Salem, IND
| | | |
Collapse
|
4
|
Dos Santos ES, Pérez‐de‐Oliveira ME, Normando AGC, Gueiros LAM, Rogatto SR, Vargas PA, Lopes MA, da Silva Guerra EN, Leme AFP, Santos‐Silva AR. Systemic conditions associated with increased risk to develop oral squamous cell carcinoma: Systematic review and meta‐analysis. Head Neck 2022; 44:2925-2937. [DOI: 10.1002/hed.27193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | | | - Luiz Alcino Monteiro Gueiros
- Oral Medicine Unit, Departamento de Clínica e Odontologia Preventiva Universidade Federal de Pernambuco Recife Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics University Hospital of Southern Denmark, Vejle and Institute of Regional Health Research, University of Southern Denmark Odense Denmark
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis Piracicaba Dental School, University of Campinas Piracicaba Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis Piracicaba Dental School, University of Campinas Piracicaba Brazil
| | | | - Adriana Franco Paes Leme
- Brazilian Bioscience National Laboratory Brazil Center of Research in Energy and Materials Campinas Brazil
| | - Alan Roger Santos‐Silva
- Department of Oral Diagnosis Piracicaba Dental School, University of Campinas Piracicaba Brazil
| |
Collapse
|
5
|
Current Knowledge of Immunosuppression as a Risk Factor for Skin Cancer Development. Crit Rev Oncol Hematol 2022; 177:103754. [DOI: 10.1016/j.critrevonc.2022.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
|
6
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
7
|
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. BIOLOGY 2021; 10:biology10040313. [PMID: 33918597 PMCID: PMC8069273 DOI: 10.3390/biology10040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. Immunologists and oncologists should interact to monitor and promptly diagnose the potential development of cancer in known IEI patients, as well as an underlying IEI in newly diagnosed cancers with suggestive medical history or high rate of therapy-related toxicity. The creation of an international registry of IEI cases with detailed information on the occurrence of cancer is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the aim of improving prognosis and reducing comorbidities. Abstract Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The aim of this narrative review is to discuss the epidemiology, the pathogenesis and the correct management of tumours in patients with IEI. PubMed was used to search for all of the studies published over the last 20 years using the keywords: “inborn errors of immunity” or “primary immunodeficiency” and “cancer” or “tumour” or “malignancy”. Literature analysis showed that the overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. The knowledge of a specific tumour risk in the presence of IEI highlights the importance of a synergistic effort by immunologists and oncologists in tracking down the potential development of cancer in known IEI patients, as well as an underlying IEI in patients with newly diagnosed cancers. In the current genomic era, the creation of an international registry of IEI cases integrated with malignancies occurrence information is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the hope to obtain a better prognosis for these patients.
Collapse
Affiliation(s)
- Alessandra Tiri
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Riccardo Masetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Anna Tignanelli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Elena Turrini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Patrizia Bertolini
- Pediatric Oncohematology Unit, Pietro Barilla Children’s Hospital, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
- Correspondence: ; Tel.: +39-0521-903-524
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| |
Collapse
|
8
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
9
|
Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, Lougaris V, Plebani A, Smith CIE, Norlin AC, Gòmez Raccio AC, Bubanska E, Bertolini P, Amendola G, Visentini M, Fiorilli M, Venuti A, Badolato R. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1568-1577. [DOI: 10.1016/j.jaip.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
10
|
McDermott DH, Pastrana DV, Calvo KR, Pittaluga S, Velez D, Cho E, Liu Q, Trout HH, Neves JF, Gardner PJ, Bianchi DA, Blair EA, Landon EM, Silva SL, Buck CB, Murphy PM. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med 2019; 380:163-170. [PMID: 30625055 PMCID: PMC6425947 DOI: 10.1056/nejmoa1808575] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
WHIM syndrome (warts, hypogammaglobulinemia, infections, and myelokathexis), a primary immunodeficiency disorder involving panleukopenia, is caused by autosomal dominant gain-of-function mutations in CXC chemokine receptor 4 (CXCR4). Myelokathexis is neutropenia caused by neutrophil retention in bone marrow. Patients with WHIM syndrome are often treated with granulocyte colony-stimulating factor (G-CSF), which can increase neutrophil counts but does not affect cytopenias other than neutropenia. In this investigator-initiated, open-label study, three severely affected patients with WHIM syndrome who could not receive G-CSF were treated with low-dose plerixafor, a CXCR4 antagonist, for 19 to 52 months. Myelofibrosis, panleukopenia, anemia, and thrombocytopenia were ameliorated, the wart burden and frequency of infection declined, human papillomavirus-associated oropharyngeal squamous-cell carcinoma stabilized, and quality of life improved markedly. Adverse events were mainly infections attributable to the underlying immunodeficiency. One patient died from complications of elective reconstructive surgery. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- David H McDermott
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Diana V Pastrana
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Katherine R Calvo
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Stefania Pittaluga
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Daniel Velez
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Elena Cho
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Qian Liu
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Hugh H Trout
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - João F Neves
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Pamela J Gardner
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - David A Bianchi
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Elizabeth A Blair
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Emily M Landon
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Susana L Silva
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Christopher B Buck
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Philip M Murphy
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| |
Collapse
|
11
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
12
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
Satgé D. A Tumor Profile in Primary Immune Deficiencies Challenges the Cancer Immune Surveillance Concept. Front Immunol 2018; 9:1149. [PMID: 29881389 PMCID: PMC5976747 DOI: 10.3389/fimmu.2018.01149] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 01/23/2023] Open
Abstract
Under the concept of cancer immune surveillance, individuals with primary immune deficiencies would be expected to develop many more malignancies and show an excess of all types of cancers, compared to people with a normal immune system. A review of the nine most frequent and best-documented human conditions with primary immune deficiency reveals a 1.6- to 2.3-fold global increase of cancer in the largest epidemiological studies. However, the spectrum of cancer types with higher frequencies is narrow, limited mainly to lymphoma, digestive tract cancers, and virus-induced cancers. Increased lymphoma is also reported in animal models of immune deficiency. Overstimulation of leukocytes, chronic inflammation, and viruses explain this tumor profile. This raises the question of cancers being foreign organisms or tissues. Organisms, such as bacteria, viruses, and parasites as well as non-compatible grafts are seen as foreign (non-self) and identified and destroyed or rejected by the body (self). As cancer cells rarely show strong (and unique) surface antibodies, their recognition and elimination by the immune system is theoretically questionable, challenging the immune surveillance concept. In the neonatal period, the immune system is weak, but spontaneous regression and good outcomes occur for some cancers, suggesting that non-immune factors are effective in controlling cancer. The idea of cancer as a group of cells that must be destroyed and eliminated appears instead as a legacy of methods and paradigms in microbiological medicine. As an alternative approach, cancer cells could be considered part of the body and could be controlled by an embryonic and neonatal environment.
Collapse
Affiliation(s)
- Daniel Satgé
- Institut Universitaire de Recherche Clinique, Biostatistics, Epidemiology and Public Health, Team Cancer EA 2415 and Oncodéfi, Montpellier, France
| |
Collapse
|
14
|
How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood 2017; 130:2491-2498. [DOI: 10.1182/blood-2017-02-708552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a genetic disease characterized by neutropenia, lymphopenia, susceptibility to infections, and myelokathexis, which describes degenerative changes of mature neutrophils and hyperplasia of bone marrow myeloid cells. Some patients present with hypogammaglobulinemia and/or refractory warts of skin and genitalia. Congenital cardiac defects constitute uncommon manifestations of the disease. The disorder, which is inherited as an autosomal dominant trait, is caused by heterozygous mutations of the chemokine receptor CXCR4. These mutations lead to an increased sensitivity of neutrophils and lymphocytes to the unique ligand CXCL12 and to an increased accumulation of mature neutrophils in the bone marrow. Despite greatly improved knowledge of the disease, therapeutic choices are insufficient to prevent some of the disease outcomes, such as development of bronchiectasis, anogenital dysplasia, or invasive cancer. The available therapeutic measures aimed at preventing the risk for infection in WHIM patients are discussed. We critically evaluate the diagnostic criteria of WHIM syndrome, particularly when WHIM syndrome should be suspected in patients with congenital neutropenia and lymphopenia despite the absence of hypogammaglobulinemia and/or warts. Finally, we discuss recent results of trials evaluating plerixafor, a selective antagonist of CXCR4, as a mechanism-oriented strategy for treatment of WHIM patients.
Collapse
|
15
|
Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL, McDermott DH, Murphy PM. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs 2017; 5:813-825. [PMID: 29057173 DOI: 10.1080/21678707.2017.1375403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
21 INTRODUCTION WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erin Yim
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander Yang
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ari B Azani
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Qian Liu
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David H McDermott
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Philip M Murphy
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Rave-Fränk M, Tehrany N, Kitz J, Leu M, Weber HE, Burfeind P, Schliephake H, Canis M, Beissbarth T, Reichardt HM, Wolff HA. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma. Strahlenther Onkol 2015; 192:47-54. [PMID: 26374452 DOI: 10.1007/s00066-015-0892-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. METHODS Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16(INK4A) status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. RESULTS CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16(INK4A) positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). CONCLUSION A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis.
Collapse
Affiliation(s)
- Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Narges Tehrany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Martin Leu
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hanne Elisabeth Weber
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Peter Burfeind
- Department of Human Genetics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Holger Michael Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hendrik Andreas Wolff
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
17
|
Moutsopoulos NM, Lionakis MS, Hajishengallis G. Inborn errors in immunity: unique natural models to dissect oral immunity. J Dent Res 2015; 94:753-8. [PMID: 25900229 DOI: 10.1177/0022034515583533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, the study of genetic defects arising from inborn errors in immunity has resulted in the discovery of new genes involved in the function of the immune system and in the elucidation of the roles of known genes whose importance was previously unappreciated. With the recent explosion in the field of genomics and the increasing number of genetic defects identified, the study of naturally occurring mutations has become a powerful tool for gaining mechanistic insight into the functions of the human immune system. In this concise perspective, we discuss emerging evidence that inborn errors in immunity constitute real-life models that are indispensable both for the in-depth understanding of human biology and for obtaining critical insights into common diseases, such as those affecting oral health. In the field of oral mucosal immunity, through the study of patients with select gene disruptions, the interleukin-17 (IL-17) pathway has emerged as a critical element in oral immune surveillance and susceptibility to inflammatory disease, with disruptions in the IL-17 axis now strongly linked to mucosal fungal susceptibility, whereas overactivation of the same pathways is linked to inflammatory periodontitis.
Collapse
Affiliation(s)
- N M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - M S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Abstract
We initially described the WHIM syndrome based on the combination of Warts, Hypogammaglobulinaemia, Infections and Myelokathexis (neutrophil retention in the bone marrow). Translational research led to the discovery that this rare immunodeficiency disease is caused by a heterozygous mutation in the CXCR4 gene. Recently, Plerixafor has been suggested as a treatment for WHIM syndrome due to its efficacy as a CXCR4 antagonist, closing the translational research loop. In this review, we will focus on the clinical manifestations, pathophysiology, diagnosis and possible therapies for this rare entity.
Collapse
Affiliation(s)
- Omar Al Ustwani
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| | - Razelle Kurzrock
- University of California, San Diego, Moores Cancer Center, San Diego, CA
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY
| |
Collapse
|
19
|
Bharti AH, Chotaliya K, Marfatia YS. An update on oral human papillomavirus infection. Indian J Sex Transm Dis AIDS 2013; 34:77-82. [PMID: 24339456 PMCID: PMC3841675 DOI: 10.4103/0253-7184.120533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human papillomavirus (HPV) constitutes the majority of newly acquired sexually transmitted infections (STIs) in United States as per the centers for disease control factsheet 2013. Genital HPV is the most common STI with incidence of about 5.5 million world-wide, nearly 75% of sexually active men and women have been exposed to HPV at some point in their lives. Oral Sexual behavior is an important contributor to infection of HPV in the oral mucosa especially in cases known to practice high risk behavior and initiating the same at an early age. HPV infection of the oral mucosa currents is believed to affect 1-50% of the general population, depending on the method used for diagnosis. The immune system clears most HPV naturally within 2 years (about 90%), but the ones that persist can cause serious diseases. HPV is an essential carcinogen being implicated increasingly in association with cancers occurring at numerous sites in the body. Though there does not occur any specific treatment for the HPV infection, the diseases it causes are treatable such as genital warts, cervical and other cancers.
Collapse
Affiliation(s)
- Ankit H. Bharti
- Department of Skin and VD, Baroda Medical College, Raopura, Vadodara, Gujarat, India
| | - Kiran Chotaliya
- Department of Skin and VD, Baroda Medical College, Raopura, Vadodara, Gujarat, India
| | - Y. S. Marfatia
- Department of Skin and VD, Baroda Medical College, Raopura, Vadodara, Gujarat, India
| |
Collapse
|
20
|
Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich PS, Daltroff G, Plantier I, Dupuy A, Kerob D, Beaupain B, Bordigoni P, Fouyssac F, Delezoide AL, Devouassoux G, Nicolas JF, Bensaid P, Bertrand Y, Balabanian K, Chantelot CB, Bachelerie F, Donadieu J. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis 2012; 7:71. [PMID: 23009155 PMCID: PMC3585856 DOI: 10.1186/1750-1172-7-71] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WHIM syndrome (WS), a rare congenital neutropenia due to mutations of the CXCR4 chemokine receptor, is associated with Human Papillomavirus (HPV)-induced Warts, Hypogammaglobulinemia, bacterial Infections and Myelokathexis. The long term follow up of eight patients highlights the clinical heterogeneity of this disease as well as the main therapeutic approaches and remaining challenges in the light of the recent development of new CXCR4 inhibitors. OBJECTIVE This study aims to describe the natural history of WS based on a French cohort of 8 patients. METHODS We have reviewed the clinical, biological and immunological features of patients with WS enrolled into the French Severe Chronic Neutropenia Registry. RESULTS We identified four pedigrees with WS comprised of eight patients and one foetus. Estimated incidence for WS was of 0.23 per million births. Median age at the last visit was 29 years. Three pedigrees encompassing seven patients and the fetus displayed autosomal dominant heterozygous mutations of the CXCR4 gene, while one patient presented a wild-type CXCR4 gene. Two subjects exhibited congenital conotruncal heart malformations. In addition to neutropenia and myelokathexis, all patients presented deep monocytopenia and lymphopenia. Seven patients presented repeated bacterial Ears Nose Throat as well as severe bacterial infections that were curable with antibiotics. Four patients with late onset prophylaxis developed chronic obstructive pulmonary disease (COPD). Two patients reported atypical mycobacteria infections which in one case may have been responsible for one patient's death due to liver failure at the age of 40.6 years. HPV-related disease manifested in five subjects and progressed as invasive vulvar carcinoma with a fatal course in one patient at the age of 39.5 years. In addition, two patients developed T cell lymphoma skin cancer and basal cell carcinoma at the age of 38 and 65 years. CONCLUSIONS Continuous prophylactic anti-infective measures, when started in early childhood, seem to effectively prevent further bacterial infections and the consequent development of COPD. Long-term follow up is needed to evaluate the effect of early anti-HPV targeted prophylaxis on the development of skin and genital warts.
Collapse
Affiliation(s)
- Sarah Beaussant Cohen
- AP-HP, Registre Français des Neutropénies Chroniques Sévères, Centre de Référence des Déficits Immunitaires Héréditaires, Service d'Hémato-Oncologie Pédiatrique Hôpital Trousseau, 26 avenue du Dr Netter, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sarode SC, Sarode GS, Karmarkar S, Tupkari JV. Oral (mucosal) potentially malignant disorders. Oral Oncol 2012; 48:e35-e36. [PMID: 22682944 DOI: 10.1016/j.oraloncology.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Maheshnagar, Pimpri, Pune 411 018, Maharashtra, India.
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Maheshnagar, Pimpri, Pune 411 018, Maharashtra, India.
| | - Swarada Karmarkar
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Maheshnagar, Pimpri, Pune 411 018, Maharashtra, India.
| | - Jagdish V Tupkari
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Mumbai, Maharashtra, India.
| |
Collapse
|
22
|
Comment on the article "A new classification for potentially malignant disorders of the oral cavity" by Sachin C. Sarode et al. Published in Oral Oncology 47(2011): 920-921. Oral Oncol 2012; 48:e26. [PMID: 22658679 DOI: 10.1016/j.oraloncology.2012.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/07/2012] [Indexed: 11/23/2022]
|
23
|
McDermott DH, Lopez J, Deng F, Liu Q, Ojode T, Chen H, Ulrick J, Kwatemaa N, Kelly C, Anaya-O'Brien S, Garofalo M, Marquesen M, Hilligoss D, DeCastro R, Malech HL, Murphy PM. AMD3100 is a potent antagonist at CXCR4(R334X) , a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med 2012; 15:2071-81. [PMID: 21070597 PMCID: PMC3071896 DOI: 10.1111/j.1582-4934.2010.01210.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
WHIM is an acronym for a rare immunodeficiency syndrome (OMIM #193670) caused by autosomal dominant mutations truncating the C-terminus of the chemokine receptor CXC chemokine receptor 4 (CXCR4). WHIM mutations may potentiate CXCR4 signalling, suggesting that the United States Food and Drug Administration (FDA)-approved CXCR4 antagonist AnorMED3100 (AMD3100) (also known as Plerixafor) may be beneficial in WHIM syndrome. We have tested this at the preclinical level by comparing Chinese hamster ovary (CHO) and K562 cell lines matched for expression of recombinant wild-type CXCR4 (CXCR4WT) and the most common WHIM variant of CXCR4 (CXCR4R334X), as well as leucocytes from a WHIM patient with the CXCR4R334X mutation versus healthy controls. We found that CXCR4R334X mediated modestly increased signalling (∼2-fold) in all functional assays tested, but strongly resisted ligand-dependent down-regulation. AMD3100 was equipotent and equieffective as an antagonist at CXCR4R334X and CXCR4WT. Together, our data provide further evidence that CXCR4R334X is a gain-of-function mutation, and support clinical evaluation of AMD3100 as mechanism-based treatment in patients with WHIM syndrome.
Collapse
Affiliation(s)
- David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brotin E, Carthagena L, Chow KYC, Bachelerie F. [WHIM syndrome: on the track of an interplay between human papillomavirus and the CXCL12 chemokine]. Med Sci (Paris) 2011; 27:341-3. [PMID: 21524391 DOI: 10.1051/medsci/2011274002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emilie Brotin
- Laboratoire cytokines, chimiokines et immunopathologie, UMR-S996, Université Paris-Sud 11, 32, rue des Carnets, 92140 Clamart, France
| | | | | | | |
Collapse
|