1
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2020; 20:102743. [PMID: 33333232 DOI: 10.1016/j.autrev.2020.102743] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Autoantibodies are abnormal antibodies which are generated by pathogenic B cells when targeting an individual's own tissue. Autoantibodies have been identified as a symbol of autoimmune disorders and are frequently considered a clinical marker of these disorders. Autoimmune diseases, including system lupus erythematosus and rheumatoid arthritis, consist of a series of disorders that share some similarities and differences. They are characterized by chronic, systemic, excessive immune activation and inflammation and involve in almost all body tissues. Autoimmune diseases occur more frequently in women than men due to hormonal impacts. In this review we systemically introduce and summarize the latest advances of various autoantibodies in multiple autoimmune diseases.
Collapse
|
3
|
Xiao ZX, Hu X, Jarjour W, Zheng SG. The role of B7 family members in the generation of Immunoglobulin. J Leukoc Biol 2020; 109:377-382. [PMID: 33118237 DOI: 10.1002/jlb.1mr0420-003rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 10/23/2022] Open
Abstract
Ig is a Y-shaped protein produced by plasma cells and exerts multiple functions in humoral immunity. There are five groups of Igs including IgA, IgD, IgE, IgG, and IgM, which differ in their heavy chain class. The primary function of Igs includes the neutralization of extrinsic pathogens, agglutination of foreign cells for phagocytosis, precipitation of soluble antigens in serum, and complement fixation. The B cells activated by antigen(s) can differentiate into antibody-producing cells that are called plasma cells and usually matured in the germinal center (GC). Follicular T helper (Tfh) cells crosstalk with antigen-presenting cells and play a crucial role in the development of the GC. Moreover, Tfh cells regulate trafficking through the GC to allow formative interaction with GC B cells that ultimately results in affinity maturation, B-cell memory, and Ig class switching. The B7 family is a series of number of structurally related membrane proteins that bind with a specific receptor to deliver costimulatory or co-inhibitory signals that regulate the activation of T cells in GC. Here, we review and summarize the recent advance of the effects of B7 family members on Ig production and relative diseases.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaojiang Hu
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
4
|
Liu XK, Zhao HM, Wang HY, Ge W, Zhong YB, Long J, Liu DY. Regulatory Effect of Sishen Pill on Tfh Cells in Mice With Experimental Colitis. Front Physiol 2020; 11:589. [PMID: 32581849 PMCID: PMC7290041 DOI: 10.3389/fphys.2020.00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The T follicular helper T (Tfh) cells play a significant role in the pathogenesis of inflammatory bowel disease (IBD), which is regulated by the Bcl-6/Blimp-1 pathway. Some studies have suggested that regulating activation of the Bcl-6/Blimp-1 pathway should be an effective method to treat IBD. Sishen Pill (SSP) has been used frequently to treat chronic colitis. Its mechanism is related to the downstream proteins in the Bcl-6/Blimp-1 pathway. However, it is unknown whether SSP regulates the function and differentiation of Tfh cells to treat IBD. In the present study, chronic colitis was induced by dextran sodium sulfate and treated with SSP for 7 days. SSP effectively treated chronic colitis, regulated the balance between Tfh10, Tfh17 and T follicular regulatory cells, while SSP increased the Blimp-1 level, inhibited expressions of Bcl-6, T-cell costimulator, programmed death (PD)-1 and PD-ligand 1 on the surface of Tfh cells. SSP inhibited activation of BcL-6, phosphorylated signal transducer and activator of transcription (p-STAT)3, signal lymphocyte activation molecule (SLAM)-associated protein but improved Blimp-1 and STAT3 expression in colonic tissues. The results indicated that SSP regulated the differentiation and function of Tfh cells to treat IBD, which was potentially related with inhibiting the Bcl-6/Blimp-1 pathway.
Collapse
Affiliation(s)
- Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Yan Wang
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Pharmacology Office, Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
5
|
Fang Q, Bellanti JA, Zheng SG. Advances on the role of the deleted in breast cancer (DBC1) in cancer and autoimmune diseases. J Leukoc Biol 2020; 109:449-454. [PMID: 32337788 DOI: 10.1002/jlb.6mr0320-086r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
DBC1 (deleted in breast cancer 1) is a human nuclear protein that modulates the activities of various proteins. Most of the research on DBC1 has focused on metabolism and epigenetics because it is a crucial endogenic inhibitor of deacetylase Sirtuin1 (SIRT1). In this review, we have discussed and summarized the new advances in DBC1 research, mostly focusing on its structure, regulatory function, and significance in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Clinical Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
6
|
High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther 2020; 5:34. [PMID: 32296043 PMCID: PMC7145808 DOI: 10.1038/s41392-020-0139-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/05/2023] Open
Abstract
The increased incidence of systemic lupus erythematosus (SLE) in recent decades might be related to changes in modern dietary habits. Since sodium chloride (NaCl) promotes pathogenic T cell responses, we hypothesize that excessive salt intake contributes to the increased incidence of autoimmune diseases, including SLE. Given the importance of dendritic cells (DCs) in the pathogenesis of SLE, we explored the influence of an excessive sodium chloride diet on DCs in a murine SLE model. We used an induced lupus model in which bone marrow-derived dendritic cells (BMDCs) were incubated with activated lymphocyte-derived DNA (ALD-DNA) and transferred into C57BL/6 recipient mice. We observed that a high-salt diet (HSD) markedly exacerbated lupus progression, which was accompanied by increased DC activation. NaCl treatment also stimulated the maturation, activation and antigen-presenting ability of DCs in vitro. Pretreatment of BMDCs with NaCl also exacerbated BMDC-ALD-DNA-induced lupus. These mice had increased production of autoantibodies and proinflammatory cytokines, more pronounced splenomegaly and lymphadenopathy, and enhanced pathological renal lesions. The p38 MAPK–STAT1 pathway played an important role in NaCl-induced DC immune activities. Taken together, our results demonstrate that HSD intake promotes immune activation of DCs through the p38 MAPK–STAT1 signaling pathway and exacerbates the features of SLE. Thus, changes in diet may provide a novel strategy for the prevention or amelioration of lupus or other autoimmune diseases.
Collapse
|
7
|
Altered ratio of circulating follicular regulatory T cells and follicular helper T cells during primary EBV infection. Clin Exp Med 2020; 20:373-380. [PMID: 32206927 PMCID: PMC7366583 DOI: 10.1007/s10238-020-00621-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022]
Abstract
Follicular help T cells (Tfh) play an important role in the activation and differentiation of B cells, while follicular regulatory T cells (Tfr) control Tfh and resulting humoral immune responses. Accumulating evidence has demonstrated that the dysregulation of Tfr contributed to the pathogenesis of infectious diseases. However, the role of Tfr in Epstein-Barr virus (EBV) infection remains lacking. Fifty-five EBV-infected infectious mononucleosis (IM) patients and 21 healthy individuals (HIs) were recruited in the study. We investigated the number of Tfr (FoxP3+CXCR5+PD-1+CD4+) and Tfh (FoxP3-CXCR5+PD-1+CD4+) of peripheral blood in IM patients at diagnosis (D0) and day 15 after diagnosis (D15) via multicolor flow cytometry. Results revealed that circulating Tfh (cTfh) and Tfr (cTfr) of IM at D0 were both increased compared to HIs, and cTfr began to decline and return to normal at D15, while cTfh was still higher than those of HIs. More interestingly, the cTfr/cTfh ratio of IM at D0 and D15 was lower than that of HIs, suggesting that the balance between cTfh and cTfr was disturbed during primary EBV infection. Correlation analysis showed a positive correlation between cTfr with CD19+IgD+CD27- naive B cells, CD19+IgD-CD27hi plasmablasts or CD19+CD24hiCD27hi B cells. Moreover, both cTfr and the cTfr/cTfh ratio of IM at D0 were negatively correlated with EBV DNA virus load. These results indicate that an imbalance of cTfr and cTfh cells may be involved in the immunopathogenesis of EBV-infected IM patients and may provide novel strategies for controlling EBV-related disease.
Collapse
|
8
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|