1
|
Osmanoglu Ö, Gupta SK, Almasi A, Yagci S, Srivastava M, Araujo GHM, Nagy Z, Balkenhol J, Dandekar T. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection. Front Immunol 2023; 14:1285345. [PMID: 38187394 PMCID: PMC10768010 DOI: 10.3389/fimmu.2023.1285345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.
Collapse
Affiliation(s)
- Özge Osmanoglu
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Shishir K. Gupta
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Almasi
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Seray Yagci
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Gabriel H. M. Araujo
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Zoltan Nagy
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Johannes Balkenhol
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Chair of Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- European Molecular Biology Laboratory (EMBL) Heidelberg, BioComputing Unit, Heidelberg, Germany
| |
Collapse
|
2
|
Cui W, Wang J, Nie RM, Zhao LL, Gao MQ, Zhu HM, Chen L, Hu J, Li JM, Shen ZX, Wang ZY, Chen SJ, Chen Z, Wang KK, Xi XD, Mi JQ. Arsenic trioxide at conventional dosage does not aggravate hemorrhage in the first-line treatment of adult acute promyelocytic leukemia. Eur J Haematol 2018; 100:344-350. [DOI: 10.1111/ejh.13018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Wen Cui
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
- Department of Clinical Laboratory; Shanghai Municipal Hospital of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Jin Wang
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Rui-Min Nie
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ling-Ling Zhao
- Department of Clinical Laboratory; Shanghai Xuhui Central Hospital; Shanghai China
| | - Meng-Qing Gao
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Hong-Ming Zhu
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Li Chen
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jiong Hu
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jun-Min Li
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhi-Xiang Shen
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhen-Yi Wang
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhu Chen
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Kan-Kan Wang
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Xiao-Dong Xi
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
- Collaborative Innovation Center of Hematology; Shanghai China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology; State Key Laboratory for Medical Genomics and Department of Hematology; Collaborative Innovation Center of Systems Biomedicine; Pôle Sino-Français des Sciences du Vivant et Genomique; Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
4
|
Wu Y, Dai J, Zhang W, Yan R, Zhang Y, Ruan C, Dai K. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation. PLoS One 2014; 9:e86445. [PMID: 24466103 PMCID: PMC3899281 DOI: 10.1371/journal.pone.0086445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Arsenic trioxide (ATO), one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL). However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS) exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK) activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO.
Collapse
Affiliation(s)
- Yicun Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jin Dai
- School of Life Sciences, Peking University, Beijing, China
| | - Weilin Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yiwen Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
- * E-mail:
| |
Collapse
|
5
|
Stea F, Bianchi F, Cori L, Sicari R. Cardiovascular effects of arsenic: clinical and epidemiological findings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:244-51. [PMID: 24019140 DOI: 10.1007/s11356-013-2113-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/29/2013] [Indexed: 05/20/2023]
Abstract
Several population studies relate exposure to high levels of arsenic with an increased incidence of ischemic heart disease and cardiovascular mortality. An association has been shown between exposure to high levels of arsenic and cardiovascular risk factors such as hypertension and diabetes mellitus, and vascular damage such as subclinical carotid atherosclerosis. The mechanisms underlying these phenomena are currently being studied and appear to indicate an alteration of vascular function. However, the effects of low levels of exposure to arsenic and their potential detrimental cardiovascular effect are less explored. The article provides an overview of the pathophysiologic mechanisms linking low-level arsenic exposure to the occurrence of cardiovascular disease and its complications, and some potential preventive strategies to implement.
Collapse
Affiliation(s)
- Francesco Stea
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | | | | | | |
Collapse
|