1
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2024. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Li W, Ali T, He K, Zheng C, Li N, Yu Z, Li S. ApoE4 dysregulation incites depressive symptoms and mitochondrial impairments in mice. J Cell Mol Med 2024; 28:e18160. [PMID: 38506067 PMCID: PMC10951871 DOI: 10.1111/jcmm.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/21/2024] Open
Abstract
Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.
Collapse
Affiliation(s)
- Weifen Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research CentreThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhi‐Jian Yu
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
- Campbell Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Jin U, Park SJ, Lee BG, Kim JB, Kim SJ, Joe EH, Woo HG, Park SM. Critical roles of parkin and PINK1 in coxsackievirus B3-induced viral myocarditis. Microbes Infect 2023; 25:105211. [PMID: 37574181 DOI: 10.1016/j.micinf.2023.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Viral myocarditis is an inflammatory disease of the myocardium, often leads to cardiac dysfunction and death. PARKIN (PRKN) and PINK1, well known as Parkinson's disease-associated genes, have been reported to be involved in innate immunity and mitochondrial damage control. Therefore, we investigated the role of parkin and PINK1 in coxsackievirus B3 (CVB3)-induced viral myocarditis because the etiology of myocarditis is related to abnormal immune response to viral infection and mitochondrial damage. After viral infection, the survival was significantly lower and myocardial damage was more severe in parkin knockout (KO) and PINK1 KO mice compared to wild-type (WT) mice. Parkin KO and PINK1 KO showed defective immune cell recruitment and impaired production of antiviral cytokines such as interferon-gamma, allowing increased viral replication. In addition, parkin KO and PINK1 KO mice were more susceptible to CVB3-induced mitochondrial damage than WT mice, resulting in susceptibility to viral-induced cardiac damage. Finally, using publicly available RNA-seq data, we found that pathogenic mutants of the PRKN gene are more common in patients with dilated cardiomyopathy and myocarditis than in controls or the general population. This study will help elucidate the molecular mechanism of CVB3-induced viral myocarditis.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Cardiology, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Byoung Gil Lee
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
4
|
Dimasuay KG, Schaunaman N, Berg B, Nichols T, Chu HW. Parkin Promotes Airway Inflammatory Response to Interferon Gamma. Biomedicines 2023; 11:2850. [PMID: 37893223 PMCID: PMC10604769 DOI: 10.3390/biomedicines11102850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Increased type 2 interferon (i.e., IFN-γ) signaling has been shown to be involved in airway inflammation in a subset of asthma patients who often show high levels of airway neutrophilic inflammation and poor response to corticosteroid treatment. How IFN-γ mediates airway inflammation in a mitochondrial dysfunction setting (e.g., Parkin up-regulation) remains poorly understood. The goal of this study was to determine the role of Parkin, an E3 ubiquitin ligase, in IFN-γ-mediated airway inflammation and the regulation of Parkin by IFN-γ. METHODS A mouse model of IFN-γ treatment in wild-type and Parkin knockout mice, and cultured human primary airway epithelial cells with or without Parkin gene deficiency were used. RESULTS Parkin was found to be necessary for the production of neutrophil chemokines (i.e., LIX and IL-8) and airway neutrophilic inflammation following IFN-γ treatment. Mechanistically, Parkin was induced by IFN-γ treatment both in vivo and in vitro, which was associated with less expression of a Parkin transcriptional repressor Thap11. Overexpression of Thap11 inhibited Parkin expression in IFN-γ-stimulated airway epithelial cells. CONCLUSIONS Our data suggest a novel mechanism by which IFN-γ induces airway neutrophilic inflammation through the Thap11/Parkin axis. Inhibition of Parkin expression or activity may provide a new therapeutic target for the treatment of excessive neutrophilic inflammation in an IFN-γ-high environment.
Collapse
Affiliation(s)
| | | | | | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
5
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
6
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
7
|
Dimasuay KG, Berg B, Schaunaman N, Nichols T, Chu HW. Parkin promotes airway inflammatory response to interferon gamma. RESEARCH SQUARE 2023:rs.3.rs-2838551. [PMID: 37163023 PMCID: PMC10168459 DOI: 10.21203/rs.3.rs-2838551/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Increased type 2 interferon (i.e., IFN-γ) signaling has been shown to be involved in airway inflammation in a subset of asthma patients who often show high levels of airway neutrophilic inflammation and poor response to corticosteroid treatment. How IFN-γ mediates airway inflammation in a mitochondrial dysfunction setting (e.g., Parkin up-regulation) remains poorly understood. The goal of this study was to determine the role of Parkin, an E3 ubiquitin ligase, in IFN-γ-mediated airway inflammation and the regulation of Parkin by IFN-γ. Results Using a mouse model of IFN-γ treatment in wild-type and Parkin knockout mice, and cultured human primary airway epithelial cells with or without Parkin gene deficiency, we found that Parkin was necessary for the production of neutrophil chemokines (i.e., KC and IL-8) and airway neutrophilic inflammation. Mechanistically, Parkin was induced by IFN-γ treatment both in vivo and in vitro, which was associated with less expression of a Parkin transcriptional repressor Thap11. Overexpression of Thap11 inhibited Parkin expression in IFN-γ-stimulated airway epithelial cells. Conclusions Our data suggests a novel mechanism by which IFN-γ induces airway neutrophilic inflammation through the Thap11/Parkin axis. Inhibition of Parkin expression or activity may provide a new therapeutic target for the treatment of excessive neutrophilic inflammation in an IFN-γ high environment.
Collapse
|
8
|
Kim EY, Kim JE, Kim YE, Choi B, Sohn DH, Park SO, Chung YH, Kim Y, Robinson WH, Kim YG, Chang EJ. Dysfunction in parkin aggravates inflammatory bone erosion by reinforcing osteoclast activity. Cell Biosci 2023; 13:48. [PMID: 36882866 PMCID: PMC9993703 DOI: 10.1186/s13578-023-00973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Parkin dysfunction associated with the progression of parkinsonism contributes to a progressive systemic skeletal disease characterized by low bone mineral density. However, the role of parkin in bone remodeling has not yet been elucidated in detail. RESULT We observed that decreased parkin in monocytes is linked to osteoclastic bone-resorbing activity. siRNA-mediated knockdown of parkin significantly enhanced the bone-resorbing activity of osteoclasts (OCs) on dentin without any changes in osteoblast differentiation. Moreover, Parkin-deficient mice exhibited an osteoporotic phenotype with a lower bone volume accompanied by increased OC-mediated bone-resorbing capacity displaying increased acetylation of α-tubulin compared to wild-type (WT) mice. Notably, compared to WT mice, the Parkin-deficient mice displayed increased susceptibility to inflammatory arthritis, reflected by a higher arthritis score and a marked bone loss after arthritis induction using K/BxN serum transfer, but not ovariectomy-induced bone loss. Intriguingly, parkin colocalized with microtubules and parkin-depleted-osteoclast precursor cells (Parkin-/- OCPs) displayed augmented ERK-dependent acetylation of α-tubulin due to failure of interaction with histone deacetylase 6 (HDAC6), which was promoted by IL-1β signaling. The ectopic expression of parkin in Parkin-/- OCPs limited the increase in dentin resorption induced by IL-1β, accompanied by the reduced acetylation of α-tubulin and diminished cathepsin K activity. CONCLUSION These results indicate that a deficiency in the function of parkin caused by a decrease in parkin expression in OCPs under the inflammatory condition may enhance inflammatory bone erosion by altering microtubule dynamics to maintain OC activity.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young-Eun Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Bongkun Choi
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, 50612, Korea
| | - Si-On Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Yeon-Ho Chung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Yongsub Kim
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yong-Gil Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea. .,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
9
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Wang J, Fu H, Wang B, Yu JG, Liu X, Liu Y, Xu C, Zhang Y. Carbazochrome attenuates acute lung injury in septic rats by inhibition of Parkin-mediated mitochondrial autophagy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Bai Q, Wang Z, Piao Y, Zhou X, Piao Q, Jiang J, Liu H, Piao H, Li L, Song Y, Yan G. Sesamin Alleviates Asthma Airway Inflammation by Regulating Mitophagy and Mitochondrial Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4921-4933. [PMID: 35420033 DOI: 10.1021/acs.jafc.1c07877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bronchial asthma poses a considerable burden on both individual patients and public health. Sesamin is a natural lignan that relieves asthma. However, the potential regulatory mechanism has not been fully validated. In this study, we revealed the mechanism of sesamin in inhibiting airway inflammation of asthma. In cockroach extract (CRE)-induced asthmatic mice, sesamin efficiently inhibited inflammatory cell infiltration, expressions of total and CRE-specific IgE in serum, and inflammatory cytokines (including IL-4, 5, 13) in bronchoalveolar lavage fluid. Further study revealed that sesamin inhibited Th2 cells in the mediastinal lymph nodes and spleen, the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin, and apoptosis of lung airway epithelial cells. In vitro, sesamin had no significant cytotoxicity to BEAS-2B cells. Sesamin significantly increased TNF-α/IL-4-induced superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 related factor 2 (Nrf2), and decreased malondialdehyde. Sesamin also inhibited TNF-α/IL-4-induced mitochondrial reactive oxygen species, increased mitochondrial membrane potential, and reduced cell apoptosis as well as PINK1/Parkin expression and translocation to mitochondria. Conclusively, sesamin may relieve asthma airway inflammation by inhibiting mitophagy and mitochondrial apoptosis. Thus, sesamin may become a potential therapeutic agent for asthma.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P. R. China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Xiao Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Qinji Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P. R. China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P. R. China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin 133002, P.R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
12
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
13
|
Pan P, Chen J, Liu X, Fan J, Zhang D, Zhao W, Xie L, Su L. FUNDC1 Regulates Autophagy by Inhibiting ROS-NLRP3 Signaling to Avoid Apoptosis in the Lung in a Lipopolysaccharide-Induced Mouse Model. Shock 2021; 56:773-781. [PMID: 34238903 DOI: 10.1097/shk.0000000000001835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The incidence and mortality of acute respiratory distress syndrome (ARDS) are high, but the relevant mechanism for this disorder remains unclear. Autophagy plays an important role in the development of ARDS. The mitochondrial outer membrane protein FUNDC1 is involved in hypoxia-mediated mitochondrial autophagy, which may contribute to ARDS development. This study explored whether FUNDC1 regulates autophagy by inhibiting ROS-NLRP3 signaling to avoid apoptosis in the lung in a lipopolysaccharide-induced mouse model. In this study, FUNDC1 knockout mice were constructed, and a lipopolysaccharide-induced mouse model was generated. HE staining of pathological sections from the lung, wet/dry lung measurements, myeloperoxidase concentration/neutrophil counts in BALF and survival time of mice were examined to determine the effect of modeling. The release of cytokines (TNF-α, IL-1β, IL-6, and IL-10) in response to LPS in the BALF and plasma was assessed using ELISA. The effects of oxidative stress (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase) in lung tissue in response to LPS were detected by biochemical analysis. Oxidative stress damage was validated by iNOS staining, and apoptosis was assessed by TUNEL staining after LPS. Finally, the expression of autophagy-associated proteins and inflammasome-associated proteins in lung tissue after LPS intervention was analyzed by western blot. We found that wild-type control, FUNDC1 knockout control, lipopolysaccharide-induced wild-type, and FUNDC1 knockout mouse models were used to investigate whether FUNDC1-mediated autophagy is involved in lung injury and its possible molecular mechanisms. Compared with the normal control group, lung tissue FUNDC1 and LC3 II increased and p62/SQSTM1 decreased after LPS intervention, and increased ROS levels led to a decrease in corresponding antioxidant enzymes along with an increased inflammatory response and apoptosis. Levels of autophagy in lipopolysaccharide-induced mice deficient in FUNDC1 were significantly decreased, but the expression of ROS and inflammatory factors in lung tissue was more severe than in lipopolysaccharide-induced wild-type mice, and the survival rate was significantly decreased. Western blot analysis showed that autophagy was significantly inhibited in the FUNDC1 KO+LPS group, and there was a significant increase in NLRP3, caspase-1, IL-1β, and ASC compared with the lipopolysaccharide-induced wild-type group. In summary, lipopolysaccharide-induced wild-type mice exhibit ROS-dependent activation of autophagy, and knocking out FUNDC1 promotes inflammasome activation and exacerbates lung injury.
Collapse
Affiliation(s)
- Pan Pan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jie Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xudong Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junping Fan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Zhang
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiguo Zhao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Ji H, Wu D, Kimberlee O, Li R, Qian G. Molecular Perspectives of Mitophagy in Myocardial Stress: Pathophysiology and Therapeutic Targets. Front Physiol 2021; 12:700585. [PMID: 34276422 PMCID: PMC8279814 DOI: 10.3389/fphys.2021.700585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
A variety of complex risk factors and pathological mechanisms contribute to myocardial stress, which ultimately promotes the development of cardiovascular diseases, including acute cardiac insufficiency, myocardial ischemia, myocardial infarction, high-glycemic myocardial injury, and acute alcoholic cardiotoxicity. Myocardial stress is characterized by abnormal metabolism, excessive reactive oxygen species production, an insufficient energy supply, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. Mitochondria, the main organelles contributing to the energy supply of cardiomyocytes, are key determinants of cell survival and death. Mitophagy is important for cardiomyocyte function and metabolism because it removes damaged and aged mitochondria in a timely manner, thereby maintaining the proper number of normal mitochondria. In this review, we first introduce the general characteristics and regulatory mechanisms of mitophagy. We then describe the three classic mitophagy regulatory pathways and their involvement in myocardial stress. Finally, we discuss the two completely opposite effects of mitophagy on the fate of cardiomyocytes. Our summary of the molecular pathways underlying mitophagy in myocardial stress may provide therapeutic targets for myocardial protection interventions.
Collapse
Affiliation(s)
- Haizhe Ji
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - O'Maley Kimberlee
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Center, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
15
|
Wu D, Zhang H, Wu Q, Li F, Wang Y, Liu S, Wang J. Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sci 2020; 267:118941. [PMID: 33359748 DOI: 10.1016/j.lfs.2020.118941] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
AIMS Acute lung injury (ALI) / acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with complex pathology and pathogenesis. Since there is no specific treatment for ALI, it is important to study the mechanism of how ALI develop. Sestrin2 (Sesn2) plays a critical role in the regulation of cellular stress response and oxidant defense. However, the potential function of Sesn2 in ALI/ARDS and the associated mechanism remains unclear. MAIN METHODS Lipopolysaccharide (LPS) induced ALI model was performed in the wild-type and Sesn2 knockout (Sesn2-/-) mice. The nod-like receptor protein 3 (NLRP3) inflammasome, cell pyroptosis and mitophagy were detected by western blots, immunofluorescent staining, flow cytometry. Lung injury were measured by histopathology and electron microscopy. KEY FINDINGS Knockout of Sesn2 enhanced LPS-induced ALI. As detailed in Sesn2-/- mice, NLRP3 inflammasome and cell pyroptosis were increased in lungs; IL-1β and IL-18 in serum and bronchoalveolar lavage fluid (BALF) were further promoted; In the isolated alveolar macrophages from Sesn2-/- mice, mitophagy induced by LPS was markedly inhibited, while reactive oxygen species (ROS), mitochondrial damage and cell pyroptosis were enhanced. Knocking down or overexpressing Sensn2 in J774.A1 cells demonstrated Sesn2 promoted Sequestosome1 (SQSTM1) expression and mitophagy by PTEN-induced putative kinase 1 (Pink1)/Parkin pathway. SIGNIFICANCE Sesn2 protected ALI by promoting mitophagy that exerts protection of AMs pyroptosis and negative regulation of NLRP3 inflammasomes. These data indicated Sesn2 might be a potential target for ALI treatment.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuge Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Dimasuay KG, Schaunaman N, Martin RJ, Pavelka N, Kolakowski C, Gottlieb RA, Holguin F, Chu HW. Parkin, an E3 ubiquitin ligase, enhances airway mitochondrial DNA release and inflammation. Thorax 2020; 75:717-724. [PMID: 32499407 DOI: 10.1136/thoraxjnl-2019-214158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Parkin (Park2), an E3 ubiquitin ligase, is critical to maintain mitochondrial function by regulating mitochondrial biogenesis and degradation (mitophagy), but recent evidence suggests the involvement of Parkin in promoting inflammation. In the present study, we determined if Parkin regulates airway mitochondrial DNA (mtDNA) release and inflammatory responses to type 2 cytokine interleukin (IL)-13 and allergens. METHODS We measured Parkin mRNA expression in brushed bronchial epithelial cells and mtDNA release in the paired bronchoalveolar lavage fluid (BALF) from normal subjects and asthmatics. Parkin-deficient primary human tracheobronchial epithelial (HTBE) cells generated using the CRISPR-Cas9 system were stimulated with IL-13. To determine the in vivo function of Parkin, Parkin knockout (PKO) and wild-type (WT) mice were treated with IL-13 or allergen (house dust mite, HDM) in the presence or absence of mtDNA isolated from normal mouse lungs. RESULTS Parkin mRNA expression in asthmatic airway epithelium was upregulated, which positively correlated with the levels of released mtDNA in BALF. IL-13-stimulated HTBE cells increased Parkin expression. Moreover, IL-13 induced mtDNA release in Parkin-sufficient, but not in Parkin-deficient HTBE cells. PKO (vs WT) mice attenuated airway mtDNA release and inflammation following IL-13 or HDM treatments. mtDNA amplified airway inflammation in mice treated with IL-13 or HDM. Notably, Parkin also mediated mtDNA-induced exacerbation of airway inflammation. CONCLUSION Our research findings suggest that Parkin promotes mtDNA release and inflammation in airways, thus improving our understanding of the complex role of Parkin and mitochondrial dysfunction in asthma pathogenesis.
Collapse
Affiliation(s)
| | | | - Richard J Martin
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Nicole Pavelka
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Roberta A Gottlieb
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
17
|
Li Q, Chen X, Li J. Marrow-derived mesenchymal stem cells regulate the inflammatory response and repair alveolar type II epithelial cells in acute lung injury of rats. J Int Med Res 2020; 48:300060520909027. [PMID: 32314638 PMCID: PMC7175070 DOI: 10.1177/0300060520909027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective We investigated the effect of untransplantable bone marrow-derived mesenchymal stem cells (BMSCs) in acute lung injury (ALI) and whether BMSCs attenuate damage of lipopolysaccharide (LPS) to alveolar type II epithelial cells (AECIIs). Methods ALI models were prepared by nebulizing LPS and then BMSCs were infused 1 hour later. We observed histopathological changes of lung tissue and evaluated inflammatory exudation by the wet/dry weight ratio, bronchiolar lavage fluid cell count, and protein concentration determination. Inflammatory and vascular factors were detected by immunohistochemistry and western blotting. For in vitro experiments, AECIIs were stimulated with 10 μg/mL LPS for 4 hours and then BMSCs were seeded in transit inserts to co-culture for 24 hours. The activity of AECIIs was detected. Results In the LPS + BMSCs group, histopathological examination showed that the degree of lung injury was significantly reduced compared with the LPS group. Protein expression of inflammatory and vascular factors was significantly lower with treatment. Optical density values and cell viability of the LPS + BMSCs group were significantly higher than those of the LPS group. Conclusions Untransplanted-BMSCs can inhibit the inflammatory response in ALI and promote repair of AECIIs. This might be due to substances secreted by BMSCs and interaction between these substances.
Collapse
Affiliation(s)
- Qianying Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric Intensive Care Unit (PICU), Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | | | - Jiujun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Rizzo AN, Belvitch P, Demeritte R, Garcia JGN, Letsiou E, Dudek SM. Arg mediates LPS-induced disruption of the pulmonary endothelial barrier. Vascul Pharmacol 2020; 128-129:106677. [PMID: 32240815 DOI: 10.1016/j.vph.2020.106677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/23/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a devastating disease process that involves dysregulated inflammation and decreased alveolar-capillary barrier function. Despite increased understanding of the pathophysiology, no effective targeted therapies exist to treat ARDS. Recent preclinical studies suggest that the multi-tyrosine kinase inhibitor, imatinib, which targets the Abl kinases c-Abl and Arg, has the potential to restore endothelial dysfunction caused by inflammatory agonists. Prior work demonstrates that imatinib attenuates LPS (lipopolysaccharide)-induced vascular leak and inflammation; however, the mechanisms underlying these effects remain incompletely understood. In the current study, we demonstrate that imatinib inhibits LPS-induced increase in the phosphorylation of CrkL, a specific substrate of Abl kinases, in human pulmonary endothelial cells. Specific silencing of Arg, and not c-Abl, attenuated LPS-induced pulmonary vascular permeability as measured by electrical cellular impedance sensing (ECIS) and gap formation assays. In addition, direct activation of Abl family kinases with the small molecule activator DPH resulted in endothelial barrier disruption that was attenuated by Arg siRNA. In complementary studies to characterize the mechanisms by which Arg mediates endothelial barrier function, Arg silencing was found to inhibit LPS-induced disruption of adherens junctions and phosphorylation of myosin light chains (MLC). Overall, these results characterize the mechanisms by which imatinib protects against LPS-induced endothelial barrier disruption and suggest that Arg inhibition may represent a novel strategy to enhance endothelial barrier function.
Collapse
Affiliation(s)
- Alicia N Rizzo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Regaina Demeritte
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
19
|
Bcl-2 Proteins Regulate Mitophagy in Lipopolysaccharide-Induced Acute Lung Injury via PINK1/Parkin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6579696. [PMID: 32148654 PMCID: PMC7054785 DOI: 10.1155/2020/6579696] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Mitophagy is involved in sepsis-induced acute lung injury (ALI). Bcl-2 family proteins play an important role in mitochondrial homeostasis. However, whether targeting Bcl-2 proteins (Bcl-2 and Bad) could influence mitophagy in ALI remains unclear. In this study, lipopolysaccharide (LPS) was used to induce injury in A549 cells and ALI in mice. LPS treatment resulted in elevated cell apoptosis, enhanced mitophagy, decreased Bcl-2 expression, increased Bad expression, and activation of PINK1/Parkin signaling in cells and lung tissues. Both Bcl-2 overexpression and Bad knockdown attenuated LPS-induced injury, inhibited cell apoptosis and mitophagy, and improved survival. Atg5 knockout (KO) inhibited LPS-induced cell apoptosis. Furthermore, Bcl-2 proteins regulated mitophagy by modulating the recruitment of Parkin from the cytoplasm to mitochondria via direct protein-protein interactions. These results were further confirmed in Park2 KO cells and Park2−/− mice. This is the first study to demonstrate that Bcl-2 proteins regulated mitophagy in LPS-induced ALI via modulating the PINK1/Parkin signaling pathway, promoting new insights into the mechanisms and investigation of therapeutic strategies for a septic patient with ALI.
Collapse
|
20
|
Yuan M, Peng LY, Wei Q, Li JH, Song K, Chen S, Huang JN, Yu JL, An Q, Yi PF, Shen HQ, Fu BD. Schizandrin attenuates lung lesions induced by Avian pathogenic Escherichia coli in chickens. Microb Pathog 2020; 142:104059. [PMID: 32058027 DOI: 10.1016/j.micpath.2020.104059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) can cause serious pathological changes and inflammation in chickens. Schizandrin has anti-inflammatory activity and can prevent damage to various tissues and organs. The purpose of this study was to investigate the protective effect of schizandrin on APEC-induced lung lesions in chickens and explore the potential mechanism of schizandrin protection. The schizandrin (50, 100, and 200 mg/kg) was intragastrically administered for 3 days. APEC was administered using intraperitoneal (i.p.) injection to induce lung lesions. Then, chickens were sacrificed by CO2 inhalation 24 h later and the lung tissues were collected for examining histopathological changes, wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, malondialdehyde (MDA), levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 and activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Our findings showed that schizandrin markedly inhibited pathological changes, pulmonary edema, MPO activity and MDA content. Moreover, schizandrin markedly reduced the levels of TNF-α, IL-1β, IL-6 and IL-8 in lung tissue. Importantly, the mechanism responsible for these effects was attributed to the inhibitory effect of schizandrin on NF-κB and MAPK signaling activation. In conclusion, our findings reveal that schizandrin displays anti-oxidant and anti-inflammatory activity against APEC-induced lung lesions in chickens, paving the way for rational use of schizandrin as a protective agent against lung-related inflammatory disease.
Collapse
Affiliation(s)
- Meng Yuan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Qian Wei
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, 130062, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuang Chen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jia-Lin Yu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Qiang An
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
21
|
Mechanistic target of rapamycin-mediated autophagy is involved in the alleviation of lipopolysaccharide-induced acute lung injury in rats. Int Immunopharmacol 2020; 78:105790. [DOI: 10.1016/j.intimp.2019.105790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
|
22
|
Yun HK, Park J, Chae U, Lee HS, Huh JW, Lee SR, Bae YC, Lee DS. Parkin in early stage LPS-stimulated BV-2 cells regulates pro-inflammatory response and mitochondrial quality via mitophagy. J Neuroimmunol 2019; 336:577044. [DOI: 10.1016/j.jneuroim.2019.577044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022]
|
23
|
Lawrence DW, Shornick LP, Kornbluth J. Mice deficient in NKLAM have attenuated inflammatory cytokine production in a Sendai virus pneumonia model. PLoS One 2019; 14:e0222802. [PMID: 31539400 PMCID: PMC6754162 DOI: 10.1371/journal.pone.0222802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have begun to elucidate a role for E3 ubiquitin ligases as important mediators of the innate immune response. Our previous work defined a role for the ubiquitin ligase natural killer lytic-associated molecule (NKLAM/RNF19b) in mouse and human innate immunity. Here, we present novel data describing a role for NKLAM in regulating the immune response to Sendai virus (SeV), a murine model of paramyxoviral pneumonia. NKLAM expression was significantly upregulated by SeV infection. SeV-infected mice that are deficient in NKLAM demonstrated significantly less weight loss than wild type mice. In vivo, Sendai virus replication was attenuated in NKLAM-/- mice. Autophagic flux and the expression of autophagy markers LC3 and p62/SQSTM1 were also less in NKLAM-/- mice. Using flow cytometry, we observed less neutrophils and macrophages in the lungs of NKLAM-/- mice during SeV infection. Additionally, phosphorylation of STAT1 and NFκB p65 was lower in NKLAM-/- than wild type mice. The dysregulated phosphorylation profile of STAT1 and NFκB in NKLAM-/- mice correlated with decreased expression of numerous proinflammatory cytokines that are regulated by STAT1 and/or NFκB. The lack of NKLAM and the resulting attenuated immune response is favorable to NKLAM-/- mice receiving a low dose of SeV; however, at a high dose of virus, NKLAM-/- mice succumbed to the infection faster than wild type mice. In conclusion, our novel results indicate that NKLAM plays a role in regulating the production of pro-inflammatory cytokines during viral infection.
Collapse
Affiliation(s)
- Donald W. Lawrence
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Laurie P. Shornick
- Department of Biology, Saint Louis University, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Veterans Affairs Saint Louis Health Care System, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
25
|
Xiang Y, Zhang S, Lu J, Zhang W, Cai M, Qiu D, Cai D. USP9X promotes LPS-induced pulmonary epithelial barrier breakdown and hyperpermeability by activating an NF-κBp65 feedback loop. Am J Physiol Cell Physiol 2019; 317:C534-C543. [PMID: 31216195 DOI: 10.1152/ajpcell.00094.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NF-κB is a central regulator of inflammatory and immune responses and has been shown to regulate transcription of several inflammatory factors as well as promote acute lung injury. However, the regulation of NF-κB signaling in acute lung injury has yet to be investigated. Human pulmonary alveolar epithelial cells (HPAEpiC) were treated with LPS to establish an acute lung injury model in vitro in which LPS stimulation resulted in pulmonary epithelial barrier breakdown and hyperpermeability. Cell viability was measured by CCK-8, and the transepithelial permeability was examined by measurement of transepithelial electrical resistance (TEER) and the transepithelial flux. Expression of ubiquitin-specific peptidase 9 X-linked (USP9X), zonula occludens (ZO-1), occludin and NF-κBp65, and the secretion of TNF-α and IL-1β were measured by Western blotting and ELISA, respectively. For in vivo studies, mice were intraperitoneally injected with LPS and/or NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Lung tissues were harvested for hematoxylin-eosin staining and Western blotting, and bronchoalveolar lavage fluid (BALF) was harvested for ELISA. We found that treatment with LPS in HPAEpiC inhibited cell viability and induced the expression of USP9X. Interestingly, knockdown of USP9X and treatment with PDTC suppressed LPS-induced HPAEpiC injury. USP9X overexpression promoted NF-κB activation, while NF-κB inactivation inhibited USP9X transcription and HPAEpiC injury induced by USP9X overexpression. Furthermore, LPS also induced the expression of USP9X in lungs, which was inhibited by PDTC. Taken together, these results demonstrate a critical role of USP9X-NF-κBp65 loop in mediating LPS-induced acute lung injury and may serve as a potential therapeutic target in acute lung injury.
Collapse
Affiliation(s)
- Yijin Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shaoyan Zhang
- Department of Respiratory, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Lu
- Department of Traditional Chinese Medicine, Shanghai Jiangwan Town Community Health Service Center, Shanghai, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dongze Qiu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Yang F, Li Y, Duan H, Wang H, Pei F, Chen Z, Zhang L. Activation of mitophagy in inflamed odontoblasts. Oral Dis 2019; 25:1581-1588. [PMID: 31009146 DOI: 10.1111/odi.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/16/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Fuhua Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Huiling Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Haisheng Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Fei Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
- Department of Endodontics, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of StomatologyWuhan University Wuhan China
- Department of Endodontics, School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
27
|
Oliveira LM, Oliveira MA, Moriya HT, Moreira TS, Takakura AC. Respiratory disturbances in a mouse model of Parkinson's disease. Exp Physiol 2019; 104:729-739. [PMID: 30758090 DOI: 10.1113/ep087507] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 μg μl-1 ; 0.5 μl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H, Hosaka Y, Ichikawa A, Saito N, Kadota T, Yoshida M, Fujita Y, Utsumi H, Kobayashi K, Yanagisawa H, Hashimoto M, Wakui H, Ishikawa T, Numata T, Kaneko Y, Asano H, Yamashita M, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2018; 15:510-526. [PMID: 30290714 DOI: 10.1080/15548627.2018.1532259] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Cigarette smoke (CS)-induced accumulation of mitochondrial damage has been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Mitophagy plays a crucial role in eliminating damaged mitochondria, and is governed by the PINK1 (PTEN induced putative protein kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) pathway. Although both increased PINK1 and reduced PRKN have been implicated in COPD pathogenesis in association with mitophagy, there are conflicting reports for the role of mitophagy in COPD progression. To clarify the involvement of PRKN-regulated mitophagy in COPD pathogenesis, prkn knockout (KO) mouse models were used. To illuminate how PINK1 and PRKN regulate mitophagy in relation to CS-induced mitochondrial damage and cellular senescence, overexpression and knockdown experiments were performed in airway epithelial cells (AEC). In comparison to wild-type mice, prkn KO mice demonstrated enhanced airway wall thickening with emphysematous changes following CS exposure. AEC in CS-exposed prkn KO mice showed accumulation of damaged mitochondria and increased oxidative modifications accompanied by accelerated cellular senescence. In vitro experiments showed PRKN overexpression was sufficient to induce mitophagy during CSE exposure even in the setting of reduced PINK1 protein levels, resulting in attenuation of mitochondrial ROS production and cellular senescence. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, indicating that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy during CSE exposure. These results suggest that PRKN levels may play a pivotal role in COPD pathogenesis by regulating mitophagy, suggesting that PRKN induction could mitigate the progression of COPD. Abbreviations: AD: Alzheimer disease; AEC: airway epithelial cells; BALF: bronchoalveolar lavage fluid; AKT: AKT serine/threonine kinase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; COPD: chronic obstructive pulmonary disease; CS: cigarette smoke; CSE: CS extract; CXCL1: C-X-C motif chemokine ligand 1; CXCL8: C-X-C motif chemokine ligand 8; HBEC: human bronchial epithelial cells; 4-HNE: 4-hydroxynonenal; IL: interleukin; KO: knockout; LF: lung fibroblasts; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PCD: programmed cell death; PFD: pirfenidone; PIK3C: phosphatidylinositol-4:5-bisphosphate 3-kinase catalytic subunit; PINK1: PTEN induced putative kinase 1; PTEN: phosphatase and tensin homolog; RA: rheumatoid arthritis; ROS: reactive oxygen species; SA-GLB1/β-Gal: senescence-associated-galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SNP: single nucleotide polymorphism; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Jun Araya
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Kazuya Tsubouchi
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan.,b Research Institute for Diseases of the Chest, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Nahoko Sato
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan.,c Department of Respiratory Medicine, Faculty of Life Science , Kumamoto University , Kumamoto , Japan
| | - Saburo Ito
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Shunsuke Minagawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hiromichi Hara
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yusuke Hosaka
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Akihiro Ichikawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Nayuta Saito
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Tsukasa Kadota
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Masahiro Yoshida
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yu Fujita
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hirofumi Utsumi
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Kenji Kobayashi
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Haruhiko Yanagisawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Mitsuo Hashimoto
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hiroshi Wakui
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Takeo Ishikawa
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Takanori Numata
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yumi Kaneko
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hisatoshi Asano
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Yamashita
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Odaka
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Toshiaki Morikawa
- d Division of Chest Diseases, Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Stephen L Nishimura
- e Department of Pathology , University of California, San Francisco , San Francisco , CA , USA
| | - Katsutoshi Nakayama
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Kazuyoshi Kuwano
- a Division of Respiratory Diseases, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
29
|
Dionísio PEA, Oliveira SR, Amaral JSJD, Rodrigues CMP. Loss of Microglial Parkin Inhibits Necroptosis and Contributes to Neuroinflammation. Mol Neurobiol 2018; 56:2990-3004. [DOI: 10.1007/s12035-018-1264-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/18/2018] [Indexed: 02/05/2023]
|
30
|
Zhao Y, Huang S, Liu J, Wu X, Zhou S, Dai K, Kou Y. Mitophagy Contributes to the Pathogenesis of Inflammatory Diseases. Inflammation 2018; 41:1590-1600. [DOI: 10.1007/s10753-018-0835-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Lawrence DW, Kornbluth J. Reduced inflammation and cytokine production in NKLAM deficient mice during Streptococcus pneumoniae infection. PLoS One 2018. [PMID: 29518136 PMCID: PMC5843292 DOI: 10.1371/journal.pone.0194202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and a significant economic burden. Antibiotic-resistant S. pneumoniae has become more prevalent in recent years and many pneumonia cases are caused by S. pneumoniae that is resistant to at least one antibiotic. The ubiquitin ligase natural killer lytic-associated molecule (NKLAM/RNF19b) plays a role in innate immunity and studies using NKLAM-knockout (NKLAM-KO) macrophages have demonstrated that NKLAM positively affects the transcriptional activity of STAT1. Using an inhalation infection model, we found that NKLAM-KO mice had a significantly higher lung bacterial load than WT mice but had less lung inflammation. Coincidently, NKLAM-KO mice had fewer neutrophils and NK cells in their lungs. NKLAM-KO mice also expressed less iNOS in their lungs as well as less MCP-1, MIP1α, TNFα, IL-12, and IFNγ. Both neutrophils and macrophages from NKLAM-KO mice were defective in killing S. pneumoniae as compared to wild type cells (WT). The phosphorylation of STAT1 and STAT3 in NKLAM-KO lungs was lower than in WT lungs at 24 hours post-infection. NKLAM-KO mice were afforded some protection against a lethal dose of S. pneumoniae compared to WT mice. In summary, our novel data demonstrate a role for E3 ubiquitin ligase NKLAM in modulating innate immunity via the positive regulation of inflammatory cytokine expression and bactericidal activity.
Collapse
Affiliation(s)
- Donald W. Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- VA St. Louis Health Care System, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
32
|
Protostemonine effectively attenuates lipopolysaccharide-induced acute lung injury in mice. Acta Pharmacol Sin 2018; 39:85-96. [PMID: 29047459 DOI: 10.1038/aps.2017.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Protostemonine (PSN) is the main anti-inflammatory alkaloid extracted from the roots of Stemona sessilifolia (known as "Baibu" in traditional Chinese medicine). Here, we reported the inhibitory effects of PSN on lipopolysaccharide (LPS)-induced macrophage activation in vitro and LPS-induced acute lung injury in mice. Macrophage cell line RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs) were treated with PSN (1, 3, 10, 30 and 100 μmol/L) for 0.5 h and then challenged with LPS (0.1 μg/mL) for 24 h. Pretreatment with PSN significantly inhibited LPS-induced phosphorylation of MAPKs and AKT, iNOS expression and NO production in the macrophages. C57BL/6 mice were intratracheally injected with LPS (5 mg/kg) to induce acute lung injury (ALI). The mice were subsequently treated with PSN (10 mg/kg, ip) at 4 and 24 h after LPS challenge. PSN administration significantly attenuated LPS-induced inflammatory cell infiltration, reduced pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) production and eliminated LPS-mediated lung edema. Furthermore, PSN administration significantly inhibited LPS-induced pulmonary MPO activity. Meanwhile, LPS-induced phosphorylation of p38 MAPK, iNOS expression and NO production in the lungs were also suppressed. The results demonstrate that PSN effectively attenuates LPS-induced inflammatory responses in vitro and in vivo; the beneficial effects are associated with the decreased phosphorylation of MAPK and AKT and the reduced expression of pro-inflammatory mediators, such as iNOS, NO and cytokines. These data suggest that PSN may be a potential therapeutic agent in the treatment of ALI.
Collapse
|