1
|
Li N, Su S, Xie X, Yang Z, Li Z, Lu D. Tsantan Sumtang, a traditional Tibetan medicine, protects pulmonary vascular endothelial function of hypoxia-induced pulmonary hypertension rats through AKT/eNOS signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117436. [PMID: 37979813 DOI: 10.1016/j.jep.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tsantan Sumtang (TS), originated from the Four Tantras, is an empirical Tibetan medicine prescription, which has been widely used for treating cardiovascular diseases in the clinic in Qinghai Province of China. Our previous studies found that TS alleviated hypoxia-induced pulmonary hypertension (HPH) in rats. However, the effect and bioactive fractions of TS on hypoxia-injured pulmonary vascular endothelium are unknown. AIM OF THE STUDY To investigate the effect, bioactive fractions and pharmacological mechanism of TS on hypoxia-injured pulmonary vascular endothelium in vivo and in vitro. MATERIALS AND METHODS In vivo studies, HPH animal model was established, and TS was administrated for four weeks. Then, hemodynamic indexes, ex vivo pulmonary artery perfusion experiment, morphological characteristics, nitric oxide (NO) production, and the protein expression of protein kinase B (AKT)/endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK)/eNOS signaling were determined. In vitro studies, 1% O2-induced pulmonary artery endothelial cells (PAECs) injury model was applied for screening bioactive fractions of TS by cell proliferation assay and NO production measurement. The associated proteins of AKT/eNOS signaling were further measured to elucidate underlying mechanism of bioactive fraction of TS via using phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. Ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS) was used to reveal the chemical profile of bioactive fraction of TS. RESULTS TS showed protective effect on the integrity of distal pulmonary arterial endothelium in HPH rats. Tsantan Sumtang dilated pulmonary arterial rings in HPH rats. TS enhanced NO bioavailability in lung tissue via regulating AKT/eNOS signaling. Furthermore, in the cellular level, cell viability as well as NO content of hypoxia-injured PAECs were elevated by fraction 17 of water extract of TS (WTS), through activating the AKT/eNOS signaling. Ellagic acid could be one of compositions in fraction 17 of WTS to produce NO in hypoxia-injured PAECs. CONCLUSION TS restored pulmonary arterial endothelial function in HPH rats. The bioactive fraction 17 was screened, which protected hypoxia-injured PAECs via upregulating AKT/eNOS signaling.
Collapse
Affiliation(s)
- Na Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Affiliated Hospital of Qinghai University, Xining, 810001, PR China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, 810003, PR China
| | - Xin Xie
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanting Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610086, PR China.
| |
Collapse
|
2
|
Hu Y, Jin L, Pan Y, Zou J, Wang Z. Apela gene therapy alleviates pulmonary hypertension in rats. FASEB J 2022; 36:e22431. [PMID: 35747913 DOI: 10.1096/fj.202200266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Pulmonary artery hypertension (PAH) is a common disease that threatens human health. At present, no treatment can cure PAH, and the prognosis is poor. Therefore, it is important to determine new targets for PAH treatment. Recently, a novel endogenous ligand Apela (ELABELA/Toddler/ELA32) of apelin peptide jejunum (APJ) receptor was identified as a possible PAH target. This study explored the potential effect of Apela gene therapy on rats with PAH. An AAV-ELA32 recombinant expression vector was constructed by molecular cloning. Purified adeno-associated virus (AAV) was injected into monocrotaline (MCT)-induced PAH rats via tail vein 1 and 2 weeks after modeling. Apela gene therapy significantly reduced the increased right ventricular systolic pressure and N-terminal pro-brain natriuretic peptide (NT-proBNP) in PAH rats. The results of histopathology and immunofluorescence showed that Apela gene therapy not only reduced the rate of pulmonary arteriole muscularization and media thickening in PAH rats but also inhibited the endothelial-to-mesenchymal transition of the pulmonary arteriole. Western blotting showed that Apela gene therapy up-regulated the expression of KLF2/eNOs and BMPRII/SMAD4 in pulmonary arterioles of PAH rats. Overall, the results show that Apela gene therapy can inhibit pulmonary arteriolar vascular remodeling and reduce pulmonary artery pressure in PAH rats. These effects may be related to KLF2/eNOs and BMPRII/SMAD4 signaling pathways. The apelinergic system may be a potential new target for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Hooshdaran B, Pressly BB, Alferiev IS, Smith JD, Zoltick PW, Tschabrunn CM, Wilensky RL, Gorman RC, Levy RJ, Fishbein I. Stent-based delivery of AAV2 vectors encoding oxidation-resistant apoA1. Sci Rep 2022; 12:5464. [PMID: 35361857 PMCID: PMC8971450 DOI: 10.1038/s41598-022-09524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
In-stent restenosis (ISR) complicates revascularization in the coronary and peripheral arteries. Apolipoprotein A1 (apoA1), the principal protein component of HDL possesses inherent anti-atherosclerotic and anti-restenotic properties. These beneficial traits are lost when wild type apoA1(WT) is subjected to oxidative modifications. We investigated whether local delivery of adeno-associated viral (AAV) vectors expressing oxidation-resistant apoA1(4WF) preserves apoA1 functionality. The efflux of 3H-cholesterol from macrophages to the media conditioned by endogenously produced apoA1(4WF) was 2.1-fold higher than for apoA1(WT) conditioned media in the presence of hypochlorous acid emulating conditions of oxidative stress. The proliferation of apoA1(WT)- and apoA1(4FW)-transduced rat aortic smooth muscle cells (SMC) was inhibited by 66% ± 10% and 65% ± 11%, respectively, in comparison with non-transduced SMC (p < 0.001). Conversely, the proliferation of apoA1(4FW)-transduced, but not apoA1(WT)-transduced rat blood outgrowth endothelial cells (BOEC) was increased 41% ± 5% (p < 0.001). Both apoA1 transduction conditions similarly inhibited basal and TNFα-induced reactive oxygen species in rat aortic endothelial cells (RAEC) and resulted in the reduced rat monocyte attachment to the TNFα-activated endothelium. AAV2-eGFP vectors immobilized reversibly on stainless steel mesh surfaces through the protein G/anti-AAV2 antibody coupling, efficiently transduced cells in culture modeling stent-based delivery. In vivo studies in normal pigs, deploying AAV2 gene delivery stents (GDS) preloaded with AAV2-eGFP in the coronary arteries demonstrated transduction of the stented arteries. However, implantation of GDS formulated with AAV2-apoA1(4WF) failed to prevent in-stent restenosis in the atherosclerotic vasculature of hypercholesterolemic diabetic pigs. It is concluded that stent delivery of AAV2-4WF while feasible, is not effective for mitigation of restenosis in the presence of severe atherosclerotic disease.
Collapse
Affiliation(s)
- Bahman Hooshdaran
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Benjamin B Pressly
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, USA
| | - Philip W Zoltick
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Cory M Tschabrunn
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert L Wilensky
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ilia Fishbein
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
4
|
miR-1226-3p Promotes eNOS Expression of Pulmonary Arterial Endothelial Cells to Mitigate Hypertension in Rats via Targeting Profilin-1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1724722. [PMID: 34778448 PMCID: PMC8580645 DOI: 10.1155/2021/1724722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022]
Abstract
In pulmonary arterial hypertension (PAH), microRNAs (miRNAs) are related with dysfunction of pulmonary arterial endothelial cells. miR-1226-3p was found to be downregulated in the serum of PAH patients, while few studies have illustrated the regulation mechanism of miR-1226-3p on PAH. In this study, we aimed to systematically investigate the role of miR-1226-3p in PAH. Sprague-Dawley (SD) rats were treated with monocrotaline (MCT) to establish the PAH models. The right ventricular systolic pressure (RVSP), ratio of the right ventricle to the left ventricle with septum (RV/(LV+S) ratio), and nitric oxide (NO) content were used to reflect the symptom of the rats. The rat models were used to observe the regulation mechanism of miR-1226-3p on PAH, and dual-luciferase reporter assay was used to verify the binding effect of miR-1226-3p to Pfn1. Besides, the qRT-PCR and western blot were used to measure the expression levels of miR-1226-3p and some keys proteins such as eNOS and Pfn1, respectively. The results showed that the PAH models were established successfully. The RVSP levels and the RV/(LV+S) ratio of the PAH rats were higher than those indexes in normal rats, while the NO content showed the opposite trends. Besides, the decreased miR-1226-3p and eNOS were, respectively, found in the PAH rats and rPAECs, and overexpressed miR-1226-3p could reverse the disadvantages of the PAH rats including increased RVSP, high RV/(LV+S) ratio, and decreased NO content. Furthermore, miR-1226-3p could directly target the 3'-UTR of Profilin-1 (Pfn1). Overexpressed Pfn1 led to decreased eNOS, while miR-1226-3p could partly inhibit the expression of Pfn1 and increase the expression level of eNOS in rPAECs. In summary, this study suggests miR-1226-3p as a protector to increase eNOS, improve NO content in rPAECs of the PAH rats via targeting Pfn, and finally protect the rats from the injury induced by PAH.
Collapse
|
5
|
Dhoble S, Ghodake V, Peshattiwar V, Patravale V. Site-specific delivery of inhalable antiangiogenic liposomal dry powder inhaler technology ameliorates experimental pulmonary hypertension. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Li M, Xia M, Chen W, Wang J, Yin Y, Guo C, Li C, Tang X, Zhao H, Tan Q, Chen Y, Jia Z, Liu X, Feng H. Lithium treatment mitigates white matter injury after intracerebral hemorrhage through brain-derived neurotrophic factor signaling in mice. Transl Res 2020; 217:61-74. [PMID: 31951826 DOI: 10.1016/j.trsl.2019.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
Intracerebral hemorrhage (ICH), a subtype of stroke with high morbidity and mortality, occurs mainly in the basal ganglia and causes white matter injury (WMI), resulting in severe motor dysfunction and poor prognosis in patients. The preservation of the white matter around the hematoma is crucial for motor function recovery, but there is currently no effective treatment for WMI following ICH. Lithium has been widely used for the treatment of bipolar disorder for decades. Although the protective effects of lithium on neurodegenerative diseases and cerebral trauma have been studied in recent years, whether it can be used to alleviate WMI after ICH remains to be researched. The results of this study revealed that ICH caused significant functional and pathological abnormalities in mice. After LiCl was administered to mice with ICH, behavioural performance and electrophysiological functions were improved and ICH-induced white matter pathological injury, including myelin sheath and axonal degeneration, was ameliorated. Furthermore, LiCl treatment decreased the death of mature oligodendrocytes (OLGs) in ICH mice, which may have been attributed to the enhanced expression of brain-derived neurotrophic factor (BDNF) regulated by the LiCl-induced inhibition of glycogen synthase kinase-3β (GSK-3β). The decreased death of OLGs was closely associated with decreased destruction of the myelin sheath and alleviated degradation of the axons. In summary, this study suggests that the protective effect of lithium on WMI after ICH might be related to an increased level of BDNF and that LiCl treatment may be a potential therapeutic method to palliate WMI after ICH.
Collapse
Affiliation(s)
- Mingxi Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Min Xia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Weixiang Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jie Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Guo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chengcheng Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiaoqin Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hengli Zhao
- Department of Neurology, The Second Medical Central, Chinese PLA (People's Liberation Army) General Hospital, Beijing, PR China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; State Key Laboratory of Trauma, Burn, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, PR China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhengcai Jia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; State Key Laboratory of Trauma, Burn, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, PR China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China.
| |
Collapse
|