1
|
Maahs DM, Svensson J. Prevention of Cardiovascular Disease in Type 1 Diabetes. N Engl J Med 2024; 390:2226-2227. [PMID: 38899714 DOI: 10.1056/nejmc2405604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
|
2
|
Ciou JJ, Chien MW, Hsu CY, Liu YW, Dong JL, Tsai SY, Yang SS, Lin SH, Yen BLJ, Fu SH, Sytwu HK. Excess Salt Intake Activates IL-21-Dominant Autoimmune Diabetogenesis via a Salt-Regulated Ste20-Related Proline/Alanine-Rich Kinase in CD4 T Cells. Diabetes 2024; 73:592-603. [PMID: 38241027 PMCID: PMC11031440 DOI: 10.2337/db23-0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/19/2023] [Indexed: 03/22/2024]
Abstract
The fundamental mechanisms by which a diet affects susceptibility to or modifies autoimmune diseases are poorly understood. Excess dietary salt intake acts as a risk factor for autoimmune diseases; however, little information exists on the impact of salt intake on type 1 diabetes. To elucidate the potential effect of high salt intake on autoimmune diabetes, nonobese diabetic (NOD) mice were fed a high-salt diet (HSD) or a normal-salt diet (NSD) from 6 to 12 weeks of age and monitored for diabetes development. Our results revealed that the HSD accelerated diabetes progression with more severe insulitis in NOD mice in a CD4+ T-cell-autonomous manner when compared with the NSD group. Moreover, expression of IL-21 and SPAK in splenic CD4+ T cells from HSD-fed mice was significantly upregulated. Accordingly, we generated T-cell-specific SPAK knockout (CKO) NOD mice and demonstrated that SPAK deficiency in T cells significantly attenuated diabetes development in NOD mice by downregulating IL-21 expression in CD4+ T cells. Furthermore, HSD-triggered diabetes acceleration was abolished in HSD-fed SPAK CKO mice when compared with HSD-fed NOD mice, suggesting an essential role of SPAK in salt-exacerbated T-cell pathogenicity. Finally, pharmacological inhibition of SPAK activity using a specific SPAK inhibitor (closantel) in NOD mice ameliorated diabetogenesis, further illuminating the potential of a SPAK-targeting immunotherapeutic approach for autoimmune diabetes. Here, we illustrate that a substantial association between salt sensitivity and the functional impact of SPAK on T-cell pathogenicity is a central player linking high-salt-intake influences to immunopathophysiology of diabetogenesis in NOD mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jing-Jie Ciou
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Ming-Wei Chien
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yuan Hsu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wen Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Jia-Ling Dong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Ying Tsai
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - B. Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Shin-Huei Fu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
4
|
Huang J, Pang X, Zhang X, Qiu W, Zhang X, Wang R, Xie W, Bai Y, Zhou S, Liao J, Xiong Z, Tang Z, Su R. N-acetylcysteine combined with insulin attenuates myocardial injury in canines with type 1 diabetes mellitus by modulating TNF-α-mediated apoptotic pathways and affecting linear ubiquitination. Transl Res 2023; 262:1-11. [PMID: 37422055 DOI: 10.1016/j.trsl.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The exact pathogenesis of type 1 diabetes mellitus (DM) is still unclear. Numerous organs, including the heart, will suffer damage and malfunction as a result of long-term hyperglycemia. Currently, insulin therapy alone is still not the best treatment for type 1 DM. In order to properly treat and manage patients with type 1 DM, it is vital to seek a combination that includes both insulin and additional medications. This study aims to explore the therapeutic effect and mechanism of N-acetylcysteine (NAC) combined with insulin on type 1 DM. By giving beagle canines injections of streptozotocin (STZ) and alloxan (ALX) (20 mg/kg each), a model of type 1 DM was created. The results showed that this combination could effectively control blood sugar level, improve heart function, avoid the damage of mitochondria and myocardial cells, and prevent the excessive apoptosis of myocardial cells. Importantly, the combination can activate nuclear factor kappa-B (NF-κB) by promoting linear ubiquitination of receptor-interacting protein kinase 1 (RIPK1) and NF-κB-essential modulator (NEMO) and inhibitor of NF-κB (IκB) phosphorylation. The combination can increase the transcription and linear ubiquitination of Cellular FLICE (FADD-like IL-1β-converting enzyme) -inhibitory protein (c-FLIP), diminish the production of cleaved-caspase-8 p18 and cleaved-caspase-3 to reduce apoptosis. This study confirmed that NAC combined with insulin can promote the linear ubiquitination of RIPK1, NEMO and c-FLIP and regulate the apoptosis pathway mediated by TNF-α to attenuate the myocardial injury caused by type 1 DM. Meanwhile, the research served as a resource when choosing a clinical strategy for DM cardiac complications.
Collapse
Affiliation(s)
- Jianjia Huang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoyue Pang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinting Zhang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenyue Qiu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuluan Zhang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rongmei Wang
- Department of Animal Science, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Wenting Xie
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuman Bai
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuilian Zhou
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianzhao Liao
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoxin Tang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rongsheng Su
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Oppelaar JJ, Bouwmeester TA, Silova AA, Collard D, Wouda RD, van Duin RE, Rorije NMG, Olde Engberink RHG, Danser AHJ, van den Born BJH, Vogt L. Salt-sensitive trait of normotensive individuals is associated with altered autonomous cardiac regulation: a randomized controlled intervention study. Am J Physiol Renal Physiol 2023; 325:F707-F716. [PMID: 37795535 DOI: 10.1152/ajprenal.00076.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Blood pressure (BP) responses to sodium intake show great variation, discriminating salt-sensitive (SS) from salt-resistant (SR) individuals. The pathophysiology behind salt sensitivity is still not fully elucidated. We aimed to investigate salt-induced effects on body fluid, vascular tone, and autonomic cardiac response with regard to BP change in healthy normotensive individuals. We performed a randomized crossover study in 51 normotensive individuals with normal body mass index and estimated glomerular filtration rate. Subjects followed both a low-Na+ diet (LSD, <50 mmol/day) and a high-Na+ diet (HSD, >200 mmol/day). Cardiac output, systemic vascular resistance (SVR), and cardiac autonomous activity, through heart rate variability and cross-correlation baroreflex sensitivity (xBRS), were assessed with noninvasive continuous finger BP measurements. In a subset, extracellular volume (ECV) was assessed by iohexol measurements. Subjects were characterized as SS if mean arterial pressure (MAP) increased ≥3 mmHg after HSD. After HSD, SS subjects (25%) showed a 6.1-mmHg (SD 1.9) increase in MAP. No differences between SS and SR in body weight, cardiac output, or ECV were found. SVR was positively correlated with Delta BP (r = 0.31, P = 0.03). xBRS and heart rate variability were significantly higher in SS participants compared to SR participants after both HSD and LSD. Sodium loading did not alter heart rate variability within groups. Salt sensitivity in normotensive individuals is associated with an inability to decrease SVR upon high salt intake that is accompanied by alterations in autonomous cardiac regulation, as reflected by decreased xBRS and heart rate variability. No discriminatory changes upon high salt were observed among salt-sensitive individuals in body weight and ECV.NEW & NOTEWORTHY Extracellular fluid expansion in normotensive individuals after salt loading is present in both salt-sensitive and salt-resistant individuals and is not discriminatory to the blood pressure response to sodium loading in a steady-state measurement. In normotensive subjects, the ability to sufficiently vasodilate seems to play a pivotal role in salt sensitivity. In a normotensive cohort, differences in sympathovagal balance are also present in low-salt conditions rather than being affected by salt loading. Whereas treatment and prevention of salt-sensitive blood pressure increase are mostly focused on renal sodium handling and extracellular volume regulation, our study suggests that an inability to adequately vasodilate and altered autonomous cardiac functioning are additional key players in the pathophysiology of salt-sensitive blood pressure increase.
Collapse
Affiliation(s)
- Jetta J Oppelaar
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Thomas A Bouwmeester
- Section of Vascular Medicine, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Anastasia A Silova
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| | - Didier Collard
- Section of Vascular Medicine, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Rosa D Wouda
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Robert E van Duin
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bert-Jan H van den Born
- Section of Vascular Medicine, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Liffert Vogt
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Vogt L, Marques FZ, Fujita T, Hoorn EJ, Danser AHJ. Novel mechanisms of salt-sensitive hypertension. Kidney Int 2023; 104:690-697. [PMID: 37454911 DOI: 10.1016/j.kint.2023.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
A high dietary sodium-consumption level is considered the most important lifestyle factor that can be modified to help prevent an increase in blood pressure and the development of hypertension. Despite numerous studies over the past decades, the pathophysiology explaining why some people show a salt-sensitive blood pressure response and others do not is incompletely understood. Here, a brief overview of the latest mechanistic insights is provided, focusing on the mononuclear phagocytic system and inflammation, the gut-kidney axis, and epigenetics. The article also discusses the effects of 3 types of novel drugs on salt-sensitive hypertension-sodium-glucose cotransporter 2 inhibitors, nonsteroidal mineralocorticoid receptor antagonists, and aldosterone synthase inhibitors. The conclusion is that besides kidney-centered mechanisms, vasoconstrictor mechanisms are also relevant for both the understanding and treatment of this blood pressure phenotype.
Collapse
Affiliation(s)
- Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, and Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Toshiro Fujita
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
7
|
Zhang L, Gould J, Wolf B. Formulation engineering of water-in-oil-in-water emulsions for salt reduction with sucrose oleate as a PGPR-alternative lipophilic emulsifier. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Hasselbach L, Weidner J, Elsässer A, Theilmeier G. Heart Failure Relapses in Response to Acute Stresses - Role of Immunological and Inflammatory Pathways. Front Cardiovasc Med 2022; 9:809935. [PMID: 35548445 PMCID: PMC9081344 DOI: 10.3389/fcvm.2022.809935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases continue to be the most imminent health care problems in the western world, accounting for numerous deaths per year. Heart failure (HF), namely the reduction of left ventricular function, is one of the major cardiovascular disease entities. It is chronically progressing with relapsing acute decompensations and an overall grave prognosis that is little different if not worse than most malignant diseases. Interestingly acute metabolically and/or immunologically challenging events like infections or major surgical procedures will cause relapses in the course of preexisting chronic heart failure, decrease the patients wellbeing and worsen myocardial function. HF itself and or its progression has been demonstrated to be driven at least in part by inflammatory pathways that are similarly turned on by infectious or non-infectious stress responses. These thus add to HF progression or relapse. TNF-α plasma levels are associated with disease severity and progression in HF. In addition, several cytokines (e.g., IL-1β, IL-6) are involved in deteriorating left ventricular function. Those observations are based on clinical studies using inhibitors of cytokines or their receptors or they stem from animal studies examining the effect of cytokine mediated inflammation on myocardial remodeling in models of heart failure. This short review summarizes the known underlying immunological processes that are shared by and drive all: chronic heart failure, select infectious diseases, and inflammatory stress responses. In conclusion the text provides a brief summary of the current development in immunomodulatory therapies for HF and their overlap with treatments of other disease entities.
Collapse
Affiliation(s)
- Lisa Hasselbach
- Division of Cardiology and Division of Perioperative Inflammation and Infection, Department Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Johannes Weidner
- Division of Perioperative Inflammation and Infection, Department Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Albrecht Elsässer
- Division of Cardiology, Department Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Gregor Theilmeier
- Division of Perioperative Inflammation and Infection, Department Human Medicine, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Oppelaar JJ, Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, Verberne HJ, van den Born BJH, Vogt L. Perturbed body fluid distribution and osmoregulation in response to high salt intake in patients with hereditary multiple exostoses. Mol Genet Metab Rep 2021; 29:100797. [PMID: 34815940 PMCID: PMC8591465 DOI: 10.1016/j.ymgmr.2021.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Hereditary Multiple Exostoses (HME) is a rare autosomal disorder characterized by the presence of multiple exostoses (osteochondromas) caused by a heterozygous loss of function mutation in EXT1 or EXT2; genes involved in heparan sulfate (HS) chain elongation. Considering that HS and other glycosaminoglycans play an important role in sodium and water homeostasis, we hypothesized that HME patients have perturbed whole body volume regulation and osmolality in response to high sodium conditions. Methods We performed a randomized cross-over study in 7 male HME patients and 12 healthy controls, matched for age, BMI, blood pressure and renal function. All subjects followed both an 8-day low sodium diet (LSD, <50 mmol/d) and high sodium diet (HSD, >200 mmol/d) in randomized order. After each diet, blood and urine samples were collected. Body fluid compartment measurements were performed by using the distribution curve of iohexol and 125I-albumin. Results In HME patients, HSD resulted in significant increase of intracellular fluid volume (ICFV) (1.2 L, p = 0.01). In this group, solute-mediated water clearance was significantly lower after HSD, and no changes in interstitial fluid volume (IFV), plasma sodium, and effective osmolality were observed. In healthy controls, HSD did not influence ICFV, but expanded IFV (1.8 L, p = 0.058) and increased plasma sodium and effective osmolality. Conclusion HME patients show altered body fluid distribution and osmoregulation after HSD compared to controls. Our results might indicate reduced interstitial sodium accumulation capacity in HME, leading to ICFV increase. Therefore, this study provides additional support that HS is crucial for maintaining constancy of the internal environment.
Collapse
Key Words
- BMI, Body mass index
- BP, Blood pressure
- ECFV, Extracellular fluid volume
- EXT1/EXT2, Extosin-1 / Extosin-2
- GAG, Glycosaminoglycan
- Glycosaminoglycans
- HME, Hereditary Multiple Exostoses
- HSD, High sodium diet
- Heparan sulfate
- Hereditary Multiple Exostoses
- ICFV, Intracellular fluid volume
- IFV, Interstital fluid volume
- LSD, Low sodium diet
- Osmoregulation
- PV, Plasma volume
- Sodium
- TBW, Total body water
- Water balance
Collapse
Affiliation(s)
- Jetta J Oppelaar
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Nienke M G Rorije
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rik H G Olde Engberink
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Youssef Chahid
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Naomi van Vlies
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, the Netherlands
| | - Hein J Verberne
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Wenstedt EFE, Oppelaar JJ, Besseling S, Rorije NMG, Olde Engberink RHG, Oosterhof A, van Kuppevelt TH, van den Born BJH, Aten J, Vogt L. Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial. J Transl Med 2021; 19:38. [PMID: 33472641 PMCID: PMC7816310 DOI: 10.1186/s12967-021-02700-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 (https://www.trialregister.nl/trial/4645 at 2014-09-12).
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stijn Besseling
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arie Oosterhof
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Bert-Jan H van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, Room D3-324, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2020; 12:CD004022. [PMID: 33314019 PMCID: PMC8094404 DOI: 10.1002/14651858.cd004022.pub5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent cohort studies show that salt intake below 6 g is associated with increased mortality. These findings have not changed public recommendations to lower salt intake below 6 g, which are based on assumed blood pressure (BP) effects and no side-effects. OBJECTIVES To assess the effects of sodium reduction on BP, and on potential side-effects (hormones and lipids) SEARCH METHODS: The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to April 2018 and a top-up search in March 2020: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also contacted authors of relevant papers regarding further published and unpublished work. The searches had no language restrictions. The top-up search articles are recorded under "awaiting assessment." SELECTION CRITERIA Studies randomizing persons to low-sodium and high-sodium diets were included if they evaluated at least one of the outcome parameters (BP, renin, aldosterone, noradrenalin, adrenalin, cholesterol, high-density lipoprotein, low-density lipoprotein and triglyceride,. DATA COLLECTION AND ANALYSIS Two review authors independently collected data, which were analysed with Review Manager 5.3. Certainty of evidence was assessed using GRADE. MAIN RESULTS Since the first review in 2003 the number of included references has increased from 96 to 195 (174 were in white participants). As a previous study found different BP outcomes in black and white study populations, we stratified the BP outcomes by race. The effect of sodium reduction (from 203 to 65 mmol/day) on BP in white participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.14 mmHg (95% confidence interval (CI): -1.65 to -0.63), 5982 participants, 95 trials; DBP: MD + 0.01 mmHg (95% CI: -0.37 to 0.39), 6276 participants, 96 trials. Hypertension: SBP: MD -5.71 mmHg (95% CI: -6.67 to -4.74), 3998 participants,88 trials; DBP: MD -2.87 mmHg (95% CI: -3.41 to -2.32), 4032 participants, 89 trials (all high-quality evidence). The largest bias contrast across studies was recorded for the detection bias element. A comparison of detection bias low-risk studies versus high/unclear risk studies showed no differences. The effect of sodium reduction (from 195 to 66 mmol/day) on BP in black participants was as follows: Normal blood pressure: SBP: mean difference (MD) -4.02 mmHg (95% CI:-7.37 to -0.68); DBP: MD -2.01 mmHg (95% CI:-4.37, 0.35), 253 participants, 7 trials. Hypertension: SBP: MD -6.64 mmHg (95% CI:-9.00, -4.27); DBP: MD -2.91 mmHg (95% CI:-4.52, -1.30), 398 participants, 8 trials (low-quality evidence). The effect of sodium reduction (from 217 to 103 mmol/day) on BP in Asian participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.50 mmHg (95% CI: -3.09, 0.10); DBP: MD -1.06 mmHg (95% CI:-2.53 to 0.41), 950 participants, 5 trials. Hypertension: SBP: MD -7.75 mmHg (95% CI:-11.44, -4.07); DBP: MD -2.68 mmHg (95% CI: -4.21 to -1.15), 254 participants, 8 trials (moderate-low-quality evidence). During sodium reduction renin increased 1.56 ng/mL/hour (95%CI:1.39, 1.73) in 2904 participants (82 trials); aldosterone increased 104 pg/mL (95%CI:88.4,119.7) in 2506 participants (66 trials); noradrenalin increased 62.3 pg/mL: (95%CI: 41.9, 82.8) in 878 participants (35 trials); adrenalin increased 7.55 pg/mL (95%CI: 0.85, 14.26) in 331 participants (15 trials); cholesterol increased 5.19 mg/dL (95%CI:2.1, 8.3) in 917 participants (27 trials); triglyceride increased 7.10 mg/dL (95%CI: 3.1,11.1) in 712 participants (20 trials); LDL tended to increase 2.46 mg/dl (95%CI: -1, 5.9) in 696 participants (18 trials); HDL was unchanged -0.3 mg/dl (95%CI: -1.66,1.05) in 738 participants (20 trials) (All high-quality evidence except the evidence for adrenalin). AUTHORS' CONCLUSIONS In white participants, sodium reduction in accordance with the public recommendations resulted in mean arterial pressure (MAP) decrease of about 0.4 mmHg in participants with normal blood pressure and a MAP decrease of about 4 mmHg in participants with hypertension. Weak evidence indicated that these effects may be a little greater in black and Asian participants. The effects of sodium reduction on potential side effects (hormones and lipids) were more consistent than the effect on BP, especially in people with normal BP.
Collapse
Affiliation(s)
- Niels Albert Graudal
- Department of Rheumatology VRR4242, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Gesche Jurgens
- Clinical Pharmacology Unit, Roskilde Hospital, Roskilde, Denmark
| |
Collapse
|
12
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|