1
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
2
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
3
|
Fawzy EM, Selim MA, Mostafa NE, Abdelhameed RM, Darwish AM, Yousef AM, Alabiad MA, Ibrahim MN, Fawzy HM, Abdel Hamed EF. The prophylactic and therapeutic impact of Trichinella spiralis larvae excretory secretory antigens- loaded Ca-BTC metal organic frameworks on induced murine colitis. J Helminthol 2024; 98:e41. [PMID: 38785193 DOI: 10.1017/s0022149x24000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Background: Inflammatory bowel disease is an autoimmune disease that affects the gut. T. spiralis larvae (E/S Ags) loaded on calcium-benzene-1,3,5-tricarboxylate metal-organic frameworks (Ca-BTC MOFs) were tested to determine whether they might prevent or cure acetic acid-induced murine colitis. Methods: T. spiralis larvae E/S Ags/Ca-BTC MOFs were used in prophylactic and therapeutic groups to either precede or follow the development of murine colitis. On the seventh day after colitis, mice were slaughtered. The effect of our target antigens on the progress of the colitis was evaluated using a variety of measures, including survival rate, disease activity index, colon weight/bodyweight, colon weight/length) ratios, and ratings for macroscopic and microscopic colon damage. The levels of inflammatory cytokines (interferon-γ and interleukin-4), oxidative stress marker malondialdehyde, and glutathione peroxidase in serum samples were evaluated. Foxp3 T-reg expression was carried out in colonic and splenic tissues. Results: T. spiralis larvae E/S Ags/Ca-BTC MOFs were the most effective in alleviating severe inflammation in murine colitis. The survival rate, disease activity index score, colon weight/length and colon weight/bodyweight ratios, and gross and microscopic colon damage scores have all considerably improved. A large decrease in proinflammatory cytokine (interferon-γ) and oxidative stress marker (malondialdehyde) expression and a significant increase in interleukin-4 and glutathione peroxidase expression were obtained. The expression of Foxp3+ Treg cells was elevated in colonic and splenic tissues. Conclusion: T. spiralis larvae E/S Ags/Ca-BTC MOFs had the highest anti-inflammatory, antioxidant, and cytoprotective capabilities against murine colitis and might be used to develop new preventative and treatment strategies.
Collapse
Affiliation(s)
- E M Fawzy
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - M A Selim
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - N E Mostafa
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - R M Abdelhameed
- Department of Applied Organic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - A M Darwish
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - A M Yousef
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - M A Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt
| | - M N Ibrahim
- Department of Clinical Laboratories, College of applied Medical Sciences, Jouf University, Qurrayat77451, KSA
| | - H M Fawzy
- Department of Community, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - E F Abdel Hamed
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
4
|
Alghanmi M, Minshawi F, Altorki TA, Zawawi A, Alsaady I, Naser AY, Alwafi H, Alsulami SM, Azhari AA, Hashem AM, Alhabbab R. Helminth-derived proteins as immune system regulators: a systematic review of their promise in alleviating colitis. BMC Immunol 2024; 25:21. [PMID: 38637733 PMCID: PMC11025257 DOI: 10.1186/s12865-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.
Collapse
Grants
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
Collapse
Affiliation(s)
- Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa A Altorki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdallah Y Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Soa'ad M Alsulami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ala A Azhari
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Jones KM, Zhan B, Ernste KJ, Villar MJ, Bisht N, Nguyen D, Chang LY, Poveda C, Robinson GJ, Trivedi AJ, Hofferek CJ, Decker WK, Konduri V. Immunomodulatory proteins from hookworms reduce cardiac inflammation and modulate regulatory responses in a mouse model of chronic Trypanosoma cruzi infection. FRONTIERS IN PARASITOLOGY 2023; 2:1244604. [PMID: 38239430 PMCID: PMC10795693 DOI: 10.3389/fpara.2023.1244604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Introduction Hookworms are parasitic helminths that secrete a variety of proteins that induce anti-inflammatory immune responses, stimulating increased CD4 + Foxp3+ regulatory T cells and IL-10 production. Hookworm-derived recombinant proteins AIP-1 and AIP-2 have been shown to reduce inflammation in mouse models of inflammatory bowel disease and inflammatory airway disease by inducing CD4+Foxp3+ cells and IL-10 production. In contrast, chronic infection with the protozoal parasite Trypanosoma cruzi, the causative agent of Chagas disease, leads to chronic inflammation in tissues. Persistence of the parasites in tissues drives chronic low-grade inflammation, with increased infiltration of inflammatory cells into the heart, accompanied by increased production of inflammatory cytokines. There are no current antiparasitic drugs that effectively reduce or prevent chronic myocarditis caused by the onset of Chagas disease, thus new therapies are urgently needed. Therefore, the impact of AIP-1 and AIP-2 on myocarditis was investigated in a mouse model of chronic T. cruzi infection. Methods Female BALB/c mice infected with bioluminescent T. cruzi H1 strain trypomastigotes for 70 days were treated once daily for 7 days with 1mg/kg AIP-1 or AIP-2 protein by intraperitoneal injection. Control mice were left untreated or treated once daily for 14 days with 25mg/kg aspirin in drinking water. At 84 days of infection, splenocytes, cardiac tissue and serum were collected for evaluation. Results Treatment with both AIP-1 and AIP-2 proteins significantly reduced cardiac cellular infiltration, and reduced cardiac levels of IFNγ, IL-6 and IL-2. AIP-2 treatment reduced cardiac expression of COX-2. Further, while incubation with AIP-1 and AIP-2 proteins did not induce a significant upregulation of an immunoregulatory phenotype in dendritic cells (DC), there was a modest upregulation of CD11c +CD11b+MHCII+SIRPα+ expression, suggesting a regulatory phenotype. Ex-vivo stimulation of splenocytes from the treatment groups with AIP-1 loaded DC induced reduced levels of cytotoxic and pro-inflammatory T cells, stimulation with AIP-2 loaded DC specifically induced enhanced levels of CD4+CD25+Foxp3+ regulatory T cells among treatment groups. Discussion All in vivo and in vitro results demonstrate that hookworm-derived AIP-1 and AIP-2 proteins reduce T. cruzi induced cardiac inflammation, possibly through multiple anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Kathryn M. Jones
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Bin Zhan
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Maria Jose Villar
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Duc Nguyen
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Li-Yen Chang
- Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cristina Poveda
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, United States
| | - Gonteria J. Robinson
- Molecular & Human Genetics Department, Baylor College of Medicine, Houston, TX, United States
| | - Akshar J. Trivedi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Colby J. Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Buitrago G, Harnett MM, Harnett W. Conquering rheumatic diseases: are parasitic worms the answer? Trends Parasitol 2023; 39:739-748. [PMID: 37487870 DOI: 10.1016/j.pt.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Despite the introduction of novel treatment strategies, management of rheumatic disorders remains associated with substantial unmet clinical need. Of interest therefore, it has recently become apparent that there is a global inverse relationship between the incidence of such conditions and parasitic helminth infection, with striking examples involving rheumatoid arthritis (RA)/systemic lupus erythematosus (SLE) patients and filarial nematode worm infection in studies in India. Such findings reflect that helminths are master manipulators of the immune system, particularly in being able to modulate proinflammatory responses. The aim of this article is thus to consider findings to date on this exciting and intriguing research area to form an opinion on whether parasitic worms may be exploited to generate novel therapies for rheumatic diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Margaret M Harnett
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
7
|
Lu Z, Liu J, Zhao L, Wang C, Shi F, Li Z, Liu X, Miao Z. Enhancement of oral bioavailability and anti-colitis effect of luteolin-loaded polymer micelles with RA (rosmarinic acid)-SS-mPEG as carrier. Drug Dev Ind Pharm 2023; 49:17-29. [PMID: 36730369 DOI: 10.1080/03639045.2023.2175850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Polymer micelles were prepared (L-RSPMs) with luteolin and synthetic RA-SS-mPEG polymeric material before evaluation of their anti-inflammatory effect on 2, 4, 6-trinitro-benzene-sulfonic acid (TNBS)-induced ulcerative colitis (UC) model in rats. METHODS The synthetic RA-SS-mPEG was characterized with NMR spectroscopy, before preparation of luteolin-coated RA-SS-mPEG polymer micelles. The in vitro characterization and evaluation of the formulation were accomplished, couple with its pharmacokinetic parameters. The levels of PEG2, MDA, CRP and GSH, as well as concentrations of TNF-α, IL1-β, IL-6 and IL-10 in serum and colon tissue were detected via ELISA kit. The degree of colon injury and inflammation was evaluated via histopathologic examination. RESULTS L-RSPMs displayed small average droplet size (133.40 ± 4.52 nm), uniformly dispersed (PDI: 0.163 ± 0.011), good stability, slow release and enhanced solubility. We observed 353.28% increase in the relative bioavailability of L-RSPMs compared to free luteolin, while the half-life of the micelle was extended by 6.16h. Compared to model (M) group, luteolin (low and high doses) and L-RSPMs (low and high doses) significantly reduced levels of MDA, PEG2, CRP, TNF-α, IL-6 and IL-1β in colon tissue and serum of colitic rats but dose dependently increased IL-10 and SOD levels (p < 0.01). Histopathologic examination of colon showed that luteolin (low and high doses) and L-RSPMs (low and high doses) improved colonic inflammation in colitic rats to varying degrees compared to M group. CONCLUSION L-RSPMs could improve TNBS-induced colon inflammation by enhancing bioavailability, promoting antioxidant effects and regulating cytokine release, which may become a potential agent for UC treatment in clinical settings.
Collapse
Affiliation(s)
- Zhaomin Lu
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Juan Liu
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Liangjian Zhao
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Chenli Wang
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Feng Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhengqi Li
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Xuesong Liu
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
8
|
Cobos C, Bansal PS, Wilson DT, Jones L, Zhao G, Field MA, Eichenberger RM, Pickering DA, Ryan RYM, Ratnatunga CN, Miles JJ, Ruscher R, Giacomin PR, Navarro S, Loukas A, Daly NL. Peptides derived from hookworm anti-inflammatory proteins suppress inducible colitis in mice and inflammatory cytokine production by human cells. Front Med (Lausanne) 2022; 9:934852. [PMID: 36186812 PMCID: PMC9524151 DOI: 10.3389/fmed.2022.934852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
A decline in the prevalence of parasites such as hookworms appears to be correlated with the rise in non-communicable inflammatory conditions in people from high- and middle-income countries. This correlation has led to studies that have identified proteins produced by hookworms that can suppress inflammatory bowel disease (IBD) and asthma in animal models. Hookworms secrete a family of abundant netrin-domain containing proteins referred to as AIPs (Anti-Inflammatory Proteins), but there is no information on the structure-function relationships. Here we have applied a downsizing approach to the hookworm AIPs to derive peptides of 20 residues or less, some of which display anti-inflammatory effects when co-cultured with human peripheral blood mononuclear cells and oral therapeutic activity in a chemically induced mouse model of acute colitis. Our results indicate that a conserved helical region is responsible, at least in part, for the anti-inflammatory effects. This helical region has potential in the design of improved leads for treating IBD and possibly other inflammatory conditions.
Collapse
Affiliation(s)
- Claudia Cobos
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paramjit S. Bansal
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Linda Jones
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Guangzu Zhao
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matthew A. Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Darren A. Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Rachael Y. M. Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Champa N. Ratnatunga
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - John J. Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul R. Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Health, Woolworths Centre for Childhood Nutrition Research, Queensland University of Technology, South Brisbane, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- *Correspondence: Alex Loukas,
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Norelle L. Daly,
| |
Collapse
|
9
|
Na-AIP-1 secreted by human hookworms suppresses collagen-induced arthritis. Inflammopharmacology 2022; 30:527-535. [PMID: 35031905 DOI: 10.1007/s10787-021-00909-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/05/2022]
Abstract
Proteins from helminths have been posed as new immunomodulatory agents with exciting potential in the treatment of immune-mediated diseases including rheumatoid arthritis (RA). In this study we assess the effects of a helminthic excretory/secretory (ES) protein Na-AIP-1 as monotherapy and in combination with methotrexate (MTX) in the well-described collagen-induced arthritis (CIA) model of RA. CIA was induced in DBA/1 J mice which were treated after the onset of arthritis with Na-AIP-1 monotherapy, MTX or Na-AIP-1 + MTX. The clinical scores for weight, arthritis and paw width were recorded along with joint histology as outcome measures. For the clinical parameters of weight, paw score and paw width, none of the Na-AIP-1 monotherapy, MTX therapy or Na-AIP-1 + MTX combination therapy groups displayed any significant difference when compared to the arthritis control. However, a significant reduction in histological score was identified after both monotherapy (Na-AIP-1: 0.83 ± 0.24 vs Arthritis control: 5.58 ± 1.49, p = 0.0277) and combination therapy (Na-AIP-1 + MTX: 0.55 ± 0.28 vs Arthritis control: 5.58 ± 1.49, p = 0.0233) when compared to arthritis control. Furthermore, Na-AIP-1 as both monotherapy (Na-AIP-1: 0.83 ± 0.24 vs MTX: 5.73 ± 1.82 p = 0.0261) and combination therapy (Na-AIP-1 + MTX: 0.55 ± 0.28 vs MTX: 5.73 ± 1.82, p = 0.0221) also significantly reduced histological score when compared to MTX monotherapy. Na-AIP-1 significantly reduced joint pathology in CIA. The hookworm protein Na-AIP-1 seems to be effective in the treatment of RA as monotherapy and when dosed together with MTX, constituting a potential new candidate for drug development. Research should focus on elucidating the mechanism of Na-AIP-1 action as a means to identify novel targets for therapeutics and to further our current understanding of immunobiology in RA.
Collapse
|
10
|
Bungiro RD, Harrison LM, Dondji B, Cappello M. Comparison of percutaneous vs oral infection of hamsters with the hookworm Ancylostoma ceylanicum: Parasite development, pathology and primary immune response. PLoS Negl Trop Dis 2022; 16:e0010098. [PMID: 34986139 PMCID: PMC8765627 DOI: 10.1371/journal.pntd.0010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/18/2022] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hundreds of millions of people in poor countries continue to suffer from disease caused by bloodfeeding hookworms. While mice and rats are not reliably permissive hosts for any human hookworm species, adult Golden Syrian hamsters are fully permissive for the human and animal pathogen Ancylostoma ceylanicum. Similar to humans, hamsters may be infected with A. ceylanicum third-stage larvae orally or percutaneously. Oral infection typically leads to consistent worm yields in hamsters but may not accurately reflect the clinical and immunological manifestations of human infection resulting from skin penetration. METHODOLOGY/PRINCIPAL FINDINGS In this study we compared host responses following percutaneous infection to those utilizing an established oral infection protocol. Infected hamsters exhibited a dose-dependent pathology, with 1000 percutaneous larvae (L3) causing anemia and adult worm recovery comparable to that of 50 orally administered L3. A delayed arrival and maturity of worms in the intestine was observed, as was variation in measured cellular immune responses. A long-term study found that the decline in blood hemoglobin was more gradual and did not reach levels as low, with the nadir of disease coming later in percutaneously infected hamsters. Both groups exhibited moderate growth delay, an effect that was more persistent in the percutaneously infected group. Fecal egg output also peaked later and at lower levels in the percutaneously infected animals. In contrast to orally infected hamsters, antibody titers to larval antigens continued to increase throughout the course of the experiment in the percutaneous group. CONCLUSIONS/SIGNIFICANCE These results demonstrate that the route of infection with A. ceylanicum impacts disease pathogenesis, as well as humoral and cellular immune responses in an experimental setting. These data further validate the utility of the Golden Syrian hamster as a model of both oral and percutaneous infection with human hookworms.
Collapse
Affiliation(s)
- Richard D. Bungiro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lisa M. Harrison
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Blaise Dondji
- Laboratory of Cellular Immunology and Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
| | - Michael Cappello
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
11
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|