1
|
Ren Y, Huang P, Zhang L, Tang Y, He S, Li H, Huang X, Ding Y, Liu L, Liu L, He X. Multi-omics landscape of childhood simple obesity: novel insights into pathogenesis and biomarkers discovery. Cell Biosci 2024; 14:145. [PMID: 39609876 PMCID: PMC11606102 DOI: 10.1186/s13578-024-01322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The increasing incidence of childhood obesity annually has led to a surge in physical and mental health risks, making it a significant global public health concern. This study aimed to discover novel biomarkers of childhood simple obesity through integrative multi-omics analysis, uncovering their potential connections and providing fresh research directions for the complex pathogenesis and treatment strategies. METHODS Transcriptome, untargeted metabolome, and 16 S rDNA sequencing were conducted on subjects to examine transcripts, metabolites in blood, and gut microflora in stool. RESULTS Transcriptomic analysis identified 599 differentially expressed genes (DEGs), of which 25 were immune-related genes, and participated in immune pathways such as antimicrobial peptides, neutrophil degranulation, and interferons. The optimal random forest model based on these genes exhibited an AUC of 0.844. The metabolomic analysis examined 71 differentially expressed metabolites (DEMs), including 12 immune-related metabolites. Notably, lauric acid showed an extremely strong positive correlation with BMI and showed a good discriminative power for obesity (AUC = 0.82). DEMs were found to be significantly enriched in four metabolic pathways, namely "Aminoacyl-tRNA biosynthesis", "Valine leucine and isoleucine biosynthesis, and Glycine", "Serine and threonine metabolism", and "Biosynthesis of unsaturated fatty acids". Microbiome analysis revealed 12 differential gut microbiotas (DGMs) at the phylum and genus levels, with p_Firmicutes dominating in the obese group and g_Escherichia-Shigella in the normal group. Subsequently, a Random Forest model was developed based on the DEMs, immune-related DEGs, and metabolites with an AUC value of 0.912. The 14 indicators identified by this model could potentially serve as a set of biomarkers for obesity. The analysis of the inter-omics correlation network found 233 pairs of significant correlations. DEGs BPIFA1, BPI, and SAA1, DEMs Dimethy(tetradecyl)amine, Deoxycholic acid, Pathalic anhydride, and DL-Alanine, and DGMs g_Intestinimonas and g_Turicibacter showed strong connectivity within the network, constituting a large proportion of interactions. CONCLUSION This study presents the first comprehensive description of the multi-omics characteristics of childhood simple obesity, recognizing promising biomarkers. Immune-related markers offer a new perspective for researching the immunological mechanisms underlying obesity and its associated complications. The revealed interactions among these biomarkers contribute to a deeper understanding the intricate biological regulatory networks associated with obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, 570100, China
- Department of Pediatrics, Hainan Modern Women and Children's. Medical, Haikou, 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Siyi He
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, 570311, China
- Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - HaiDan Li
- Department of Pediatrics, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - XiaoYan Huang
- Department of Pediatrics, Hainan Women and Children's Medical Center, Hainan, 570100, China
| | - Yan Ding
- Department of Dermatology, Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Laboratory of Pediatric Nephrology, Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
2
|
Tong X, Cui Y. Mendelian randomization analysis of the causal relationship between serum metabolites and thoracic aortic aneurysm. Medicine (Baltimore) 2024; 103:e39686. [PMID: 39287234 PMCID: PMC11404878 DOI: 10.1097/md.0000000000039686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) is associated with changes in the levels of metabolites; however, the exact causal relationships remain unclear. Identifying this complex relationship may provide new insights into the pathogenesis of TAA. We used genome-wide association studies to investigate the relationship between metabolites and TAA in this study. A total of 1400 serum metabolites were investigated for their potential causal effects on the risk of TAA. We performed bidirectional and 2-sample Mendelian randomization (MR) analysis using 5 MR tests: MR-Egger, weighted mode, weighted median, inverse variance weighted (IVW), and simple mode. We also performed sensitivity analysis to verify our findings, including heterogeneity analysis using IVW and MR-Egger tests and pleiotropy analysis using the MR-Egger test. Multiple metabolites were identified as having a causal effect on the risk of TAA, particularly those related to lipid metabolites; the top 2 risk factors identified using the IVW test were 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (P = .019) and 5alpha-androstan-3alpha,17alpha-diol (P = .021), whereas the 2 top protective factors were 1-stearoyl-2-docosahexaenoyl-gpc (P = .023) and 1-oleoyl-2-docosahexaenoyl-GPC (P = .005). Sensitivity analysis verified the lack of heterogeneity (P = .499, .584, .232, and .624, respectively; IVW test) or pleiotropy (P = .621, .483, .598, and .916, respectively; Egger test). Our study provides new evidence of a causal relationship between metabolites and the risk of TAA, thus providing new insights into the pathogenesis of this disease. These findings suggest a promising approach for metabolite-based therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoshan Tong
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yu Cui
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Gu Y, Du L, Wu Y, Qin J, Gu X, Guo Z, Li Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024; 14:960. [PMID: 39199348 PMCID: PMC11352341 DOI: 10.3390/biom14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs.
Collapse
Affiliation(s)
- Yunan Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Yuxin Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Juan Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| |
Collapse
|
4
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
5
|
Actis Dato V, Lange S, Cho Y. Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. Int J Mol Sci 2024; 25:1211. [PMID: 38279217 PMCID: PMC10816475 DOI: 10.3390/ijms25021211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
This comprehensive review explores the critical role of fatty acid (FA) metabolism in cardiac diseases, particularly heart failure (HF), and the implications for therapeutic strategies. The heart's reliance on ATP, primarily sourced from mitochondrial oxidative metabolism, underscores the significance of metabolic flexibility, with fatty acid oxidation (FAO) being a dominant source. In HF, metabolic shifts occur with an altered FA uptake and FAO, impacting mitochondrial function and contributing to disease progression. Conditions like obesity and diabetes also lead to metabolic disturbances, resulting in cardiomyopathy marked by an over-reliance on FAO, mitochondrial dysfunction, and lipotoxicity. Therapeutic approaches targeting FA metabolism in cardiac diseases have evolved, focusing on inhibiting or stimulating FAO to optimize cardiac energetics. Strategies include using CPT1A inhibitors, using PPARα agonists, and enhancing mitochondrial biogenesis and function. However, the effectiveness varies, reflecting the complexity of metabolic remodeling in HF. Hence, treatment strategies should be individualized, considering that cardiac energy metabolism is intricate and tightly regulated. The therapeutic aim is to optimize overall metabolic function, recognizing the pivotal role of FAs and the need for further research to develop effective therapies, with promising new approaches targeting mitochondrial oxidative metabolism and FAO that improve cardiac function.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
- Department of Biomedicine, Aarhus University, DK 8000 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, DK 8200 Aarhus, Denmark
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
| |
Collapse
|