1
|
Isolation and Characterization of NpCI, a New Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita peloronta with Anti- Plasmodium falciparum Activity. Mar Drugs 2023; 21:md21020094. [PMID: 36827135 PMCID: PMC9966942 DOI: 10.3390/md21020094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 μmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.
Collapse
|
2
|
Asayesh G, Mohebbi GH, Nabipour I, Rezaei A, Vazirizadeh A. Secondary Metabolites from the Marine Tunicate “Phallusia nigra” and Some Biological Activities. BIOL BULL+ 2021; 48:263-273. [DOI: 10.1134/s1062359021030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 12/08/2023]
|
3
|
Arumugam V, Venkatesan M, Saravanan N, Ramachandran S, Sengodan K, Sundaresan U, Palanisamy SK. Tunicates as a biocontrol tool for larvicides acute toxicity of Zika virus vector Aedes aegypti. 3 Biotech 2019; 9:172. [PMID: 30997309 PMCID: PMC6456632 DOI: 10.1007/s13205-019-1699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
In this present study, we conducted untargeted metabolic profiling using gas chromatography-mass spectrometry (GC-MS) analysis of ascidian Didemnum bistratum to assess the chemical constituents by searching in NIST library with promising biological properties against anti-bacterial and Zika virus vector mosquitocidal properties. Metabolites, steroids and fatty acids are abundant in crude compounds of ascidian D. bistratum and showed potential zone growth inhibition against bacterial strains Kluyvera ascorbate (10 mm). The active crude compounds of D. bistratum exhibited prominent larvicidal activity against the Zika vector mosquitoes of Aedes aegypti (LC50 values of 0.44 mg/ml) and Cluex quinquefasciatus (LC50 values of 2.23 mg/ml). The findings of this study provide a first evidence of the biological properties exhibited by D. bistratum extracts, thus increasing the knowledge about the Zika virus vector mosquitocidal properties of ascidian. Overall, ascidian D. bistratum is promising and biocontrol or eco-friendly tool against A. aegypti and C. quinquefasciatus with prospective toxicity against non-target organisms.
Collapse
Affiliation(s)
- Velusamy Arumugam
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Manigandan Venkatesan
- Native Medicine and Marine Pharmacology Laboratory, Department of Medical Biotechnology, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu 603 013 India
| | - Nishakavya Saravanan
- Native Medicine and Marine Pharmacology Laboratory, Department of Medical Biotechnology, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu 603 013 India
| | - Saravanan Ramachandran
- Native Medicine and Marine Pharmacology Laboratory, Department of Medical Biotechnology, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu 603 013 India
| | - Karthi Sengodan
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal, Tamil Nadu 637 215 India
| | - Umamaheswari Sundaresan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Satheesh Kumar Palanisamy
- Department of Zoology, Ryan Institute, School of Natural Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
4
|
Acute salinity and temperature challenges during early development of zebrafish: Differential gene expression of PTHs, PTHrPs and their receptors. AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:1-111. [PMID: 28097641 PMCID: PMC5315671 DOI: 10.1007/s13659-016-0115-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994-2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from <3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11-12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized.
Collapse
Affiliation(s)
- Satheesh Kumar Palanisamy
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy.
| | - N M Rajendran
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy
| |
Collapse
|
6
|
Vandepas LE, Oliveira LM, Lee SSC, Hirose E, Rocha RM, Swalla BJ. Biogeography of Phallusia nigra: is it really black and white? THE BIOLOGICAL BULLETIN 2015; 228:52-64. [PMID: 25745100 DOI: 10.1086/bblv228n1p52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ascidians (Chordata, Tunicata) are an important group for the study of invasive species biology due to rapid generation times, potential for biofouling, and role as filter feeders in an ecosystem. Phallusia nigra is a putative cosmopolitan ascidian that has been described as introduced or invasive in a number of regions in the Indo-Pacific Ocean (India, Japan, and Hawaii) and in the Mediterranean. The taxonomic description of P. nigra includes a striking smooth, black tunic and large size. However, there are at least two similar Phallusia species-P. philippinensis and P. fumigata-which also have dark black tunics and can be difficult to discern from P. nigra. The distribution of P. nigra broadly overlaps with P. philippinensis in the Indo-Pacific and P. fumigata in the Mediterranean. A morphological comparison of P. nigra from Japan, the Caribbean coast of Panama, and Brazil found that Atlantic and Pacific samples were different species and led us to investigate the range of P. nigra using morphological and molecular analyses. We sequenced 18S rDNA and cytochrome oxidase B of individual ascidians from the Red Sea, Greece, Singapore, Japan, Caribbean Panama, Florida, and Brazil. Our results show that identification of the disparate darkly pigmented species has been difficult, and that several reports of P. nigra are likely either P. fumigata or P. philippinensis. Here we include detailed taxonomic descriptions of the distinguishing features of these three species and sequences for molecular barcoding in an effort to have ranges and potential invasions corrected in the ascidian literature.
Collapse
Affiliation(s)
- Lauren E Vandepas
- Biology Department, University of Washington, and Friday Harbor Laboratories, Seattle, Washington
| | - Livia M Oliveira
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Serina S C Lee
- Tropical Marine Science Institute, National University of Singapore, Singapore; and
| | - Euichi Hirose
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Rosana M Rocha
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Billie J Swalla
- Biology Department, University of Washington, and Friday Harbor Laboratories, Seattle, Washington;
| |
Collapse
|
7
|
Luo L, Chen A, Hu C, Lu W. Dynamic expression pattern of corticotropin-releasing hormone, urotensin I and II genes under acute salinity and temperature challenge during early development of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1877-1886. [PMID: 25154920 DOI: 10.1007/s10695-014-9975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
Corticotropin-releasing hormone (CRH), urotensin I (UI) and urotensin II (UII) are found throughout vertebrate species from fish to human. To further understand the role of crh, uI and uII in teleosts during development, we investigated the expression pattern of crh, uI, uIIα and uIIβ genes, and their response to acute salinity and temperature challenge during early development of zebrafish, Danio rerio. The results reveal that crh, uI, uIIα and uIIβ mRNA are detected from 0hpf, and the expression levels increase to a maximum at 6 days post fertilization (dpf), with the exception of uIIα that peak at 5dpf. Exposure of zebrafish embryos and larvae to acute osmotic (30ppt) stress for 15 min failed to modify expression levels of crh, uI, uIIα and uIIβ mRNA from levels in control fish except at 6dpf when uIIα and uIIβ were significantly (P < 0.05) modified. Exposure of embryos and larvae to a cold (18 °C) or hot stress (38 °C) generally down-regulated mRNA levels of crh, uI, uIIα and uIIβ apart from at 3dpf. The results indicate that the contribution of crh, uI, uIIα and uIIβ genes to the stress response in zebrafish may be stressor-specific during early development. Overall, the results from this study provide a basis for further research into the developmental and stressor-specific function of crh, uI, uIIα and uIIβ in zebrafish.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | | | | | | |
Collapse
|
8
|
|
9
|
Abstract
The class Ascidiacea presents fundamental opportunities for research in the fields of development, evolution, ecology, natural products and more. This review provides a comprehensive overview of the current knowledge regarding the global biodiversity of the class Ascidiacea, focusing in their taxonomy, main regions of biodiversity, and distribution patterns. Based on analysis of the literature and the species registered in the online World Register of Marine Species, we assembled a list of 2815 described species. The highest number of species and families is found in the order Aplousobranchia. Didemnidae and Styelidae families have the highest number of species with more than 500 within each group. Sixty percent of described species are colonial. Species richness is highest in tropical regions, where colonial species predominate. In higher latitudes solitary species gradually contribute more to the total species richness. We emphasize the strong association between species richness and sampling efforts, and discuss the risks of invasive species. Our inventory is certainly incomplete as the ascidian fauna in many areas around the world is relatively poorly known, and many new species continue to be discovered and described each year.
Collapse
Affiliation(s)
- Noa Shenkar
- Department of Biology, University of Washington, Seattle, Washington, United States of America.
| | | |
Collapse
|
10
|
Parra MG, Fidalgo LM, Martinez JM, Alvarez AMM, Iglesias OV. Leishmanicidal activity of Echinaster (Othilia) echinophorus crude extract. Rev Inst Med Trop Sao Paulo 2010; 52:89-93. [DOI: 10.1590/s0036-46652010000200005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/12/2009] [Indexed: 11/21/2022] Open
Abstract
In this study, a methanolic extract from Echinaster (Othilia) echinophorus was evaluated for activity against Leishmania amazonensis. The extract showed activity against the promastigote and amastigote forms with IC50 values of 62.9 and 37.5 μg.mL-1 respectively. This extract showed a moderate toxicity on macrophages from BALB/c mice. A dose of 100 mg/kg/day was effective when administered during 15 days by intraperitoneal route to BALB/c mice infected experimentally.
Collapse
|
11
|
|
12
|
Kaur K, Jain M, Kaur T, Jain R. Antimalarials from nature. Bioorg Med Chem 2009; 17:3229-56. [DOI: 10.1016/j.bmc.2009.02.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
13
|
Rivero LR, Fernández FAN, Robertson LJ. Cuban parasitology in review: a revolutionary triumph. Trends Parasitol 2008; 24:440-8. [DOI: 10.1016/j.pt.2008.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/11/2008] [Accepted: 06/24/2008] [Indexed: 11/16/2022]
|