1
|
Wongta A, Anand P, Aning NAA, Sawarng N, Hongsibsong S. Advancing micro-electrometric techniques for the detection of organophosphate and carbamate residues using cricket cholinesterase. PLoS One 2024; 19:e0308112. [PMID: 39083518 PMCID: PMC11290615 DOI: 10.1371/journal.pone.0308112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
The widespread use of organophosphate (OP) and carbamate (CM) pesticides requires efficient and cost-effective detection methods. This study introduces a micro-electrometric method using cricket cholinesterase (ChE) to detect OP and CM residues, providing a rapid and economical alternative to conventional chromatographic techniques. The parameters of the method, including the substrate concentration, incubation temperature, and incubation time, were optimized. By leveraging the sensitivity of cricket ChE to OP and CM inhibition, this approach translates enzyme inhibition into an electrical signal to quantify pesticide levels, achieving an impressive limit of detection (LOD) from 0.036 to 0.086 parts per million (ppm). This method demonstrated reproducibility and stability, making it suitable for field applications and on-site testing across various environmental matrices. This research represents a significant advancement in pesticide residue analysis with potential applications in the development of portable biosensor devices for real-time environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Anurak Wongta
- Research Institute for Health Sciences, School of Health Science Research, Chiang Mai University, Chiang Mai, Thailand
- Research Institute for Health Sciences, Environmental and Occupational Health Sciences Unit, Chiang Mai University, Chiang Mai, Thailand
| | - Priyanshi Anand
- Faculty of Science, Asia-Pacific International University, Saraburi, Thailand
| | - Nealler A. A. Aning
- Faculty of Science, Asia-Pacific International University, Saraburi, Thailand
| | - Nootchakarn Sawarng
- Faculty of Medicine, Department of Community Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Surat Hongsibsong
- Research Institute for Health Sciences, School of Health Science Research, Chiang Mai University, Chiang Mai, Thailand
- Research Institute for Health Sciences, Environmental and Occupational Health Sciences Unit, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Meier CJ, Hillyer JF. Larvicidal activity of the photosensitive insecticides, methylene blue and rose bengal, in Aedes aegypti and Anopheles gambiae mosquitoes. PEST MANAGEMENT SCIENCE 2024; 80:296-306. [PMID: 37682561 DOI: 10.1002/ps.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Insecticides are critical for controlling mosquito populations and mitigating the spread of vector-borne disease, but their overuse has selected for resistant populations. A promising alternative to classical chemical insecticides is photosensitive molecules - here called photosensitive insecticides or PSIs - that when ingested and activated by light, generate broadly toxic reactive oxygen species. This mechanism of indiscriminate oxidative damage decreases the likelihood that target site modification-based resistance evolves. Here, we tested whether the PSIs, methylene blue (MB) and rose bengal (RB), are viable insecticides across the mosquito lineage. RESULTS MB and RB are phototoxic to both Aedes aegypti and Anopheles gambiae at micromolar concentrations, with greatest toxicity when larvae are incubated in the dark with the PSIs for 2 h prior to photoactivation. MB is ten times more toxic than RB, and microscopy-based imaging suggests that this is because ingested MB escapes the larval gut and disperses throughout the hemocoel whereas RB remains confined to the gut. Adding food to the PSI-containing water has a bidirectional, concentration-dependent effect on PSI toxicity; toxicity increases at high concentrations but decreases at low concentrations. Finally, adding sand to the water increases the phototoxicity of RB to Ae. aegypti. CONCLUSION MB and RB are larvicidal via a light activated mechanism, and therefore, should be further investigated as an option for mosquito control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cole J Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Pavlović RZ, Finnegan TJ, Metlushko A, Hansen AL, Waudby CA, Wang X, Hoefer N, McComb DW, Pavić A, Plackić N, Novaković J, Bradić J, Jeremić N, Jakovljević V, Šmit B, Matić S, Alvarez-Saavedra MA, Čapo I, Moore CE, Stupp SI, Badjić JD. Dynamic and Assembly Characteristics of Deep-Cavity Basket Acting as a Host for Inclusion Complexation of Mitoxantrone in Biotic and Abiotic Systems. Chemistry 2023; 29:e202303374. [PMID: 37851342 DOI: 10.1002/chem.202303374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
We describe the preparation, dynamic, assembly characteristics of vase-shaped basket 13- along with its ability to form an inclusion complex with anticancer drug mitoxantrone in abiotic and biotic systems. This novel cavitand has a deep nonpolar pocket consisting of three naphthalimide sides fused to a bicyclic platform at the bottom while carrying polar glycines at the top. The results of 1 H Nuclear Magnetic Resonance (NMR), 1 H NMR Chemical Exchange Saturation Transfer (CEST), Calorimetry, Hybrid Replica Exchange Molecular Dynamics (REMD), and Microcrystal Electron Diffraction (MicroED) measurements are in line with 1 forming dimer [12 ]6- , to be in equilibrium with monomers 1(R) 3- (relaxed) and 1(S) 3- (squeezed). Through simultaneous line-shape analysis of 1 H NMR data, kinetic and thermodynamic parameters characterizing these equilibria were quantified. Basket 1(R) 3- includes anticancer drug mitoxantrone (MTO2+ ) in its pocket to give stable binary complex [MTO⊂1]- (Kd =2.1 μM) that can be precipitated in vitro with UV light or pH as stimuli. Both in vitro and in vivo studies showed that the basket is nontoxic, while at a higher proportion with respect to MTO it reduced its cytotoxicity in vitro. With well-characterized internal dynamics and dimerization, the ability to include mitoxantrone, and biocompatibility, the stage is set to develop sequestering agents from deep-cavity baskets.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Tyler J Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Anna Metlushko
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Nicole Hoefer
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Nikola Plackić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Jovana Novaković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Nevena Jeremić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Biljana Šmit
- University of Kragujevac, Institute for Information Technologies, Department of Science, Kragujevac, Serbia)
| | - Sanja Matić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Kragujevac, Serbia)
| | - Matias A Alvarez-Saavedra
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Ivan Čapo
- Department of Histology and Embryology, Medical Faculty of Novi Sad, Novi Sad, Serbia
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Beigmoradi F, Rohani Moghadam M, Garkani-Nejad Z, Bazmandegan-Shamili A, Masoodi HR. Dual-template imprinted polymer electrochemical sensor for simultaneous determination of malathion and carbendazim using graphene quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5027-5037. [PMID: 37740360 DOI: 10.1039/d3ay01054f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Malathion (MAL) and carbendazim (CBZ) are organophosphate pesticides and fungicides, respectively. They are often used simultaneously in agriculture, and both have been shown to have harmful effects on humans and animals. Therefore, it is important to be able to measure both of these toxins simultaneously in order to assess their potential risks. This study aims to design a dual template electrochemical sensor using a cost-effective graphite-epoxy composite electrode (GECE) modified with molecularly imprinted polymers (MIPs) coated on graphene quantum dots (GQDs) for simultaneous detection of MAL and CBZ in real samples. GQDs were synthesized initially, and their surface was coated with MIPs that were formed using MAL and CBZ as the template molecules, ethylene glycol dimethyl acrylate as the cross-linker, and methacrylic acid as the functional monomer. The GQDs@MIP were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and X-ray scattering spectroscopy. Parameters affecting the sensor response, such as the percentage of GQDs@MIP in the fabricated electrode, the pH of the rebinding solution and analysis solution, and the incubation time, were optimized. The optimum pH values of the rebinding solution were verified using density functional theory (DFT) calculations. Under the optimized conditions, differential pulse voltammetry (DPV) response calibration curves of MAL and CBZ were generated, and the results showed that the sensor had a linear response to MAL in the range of 0.02-55.00 μM with a limit of detection (LOD) of 2 nM (S/N = 3) and to CBZ in the range of 0.02-45.00 μM with a low LOD of 1 nM (S/N = 3). The results also demonstrated the proposed sensor's long-term stability and anti-interference capability. The practical applicability of the fabricated electrode was evaluated for real sample analysis, and good recovery values were obtained.
Collapse
Affiliation(s)
- Fariba Beigmoradi
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Masoud Rohani Moghadam
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Zahra Garkani-Nejad
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hamid Reza Masoodi
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| |
Collapse
|
5
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
6
|
Jokanović M, Oleksak P, Kuca K. Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 2023; 484:153407. [PMID: 36543276 DOI: 10.1016/j.tox.2022.153407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
This article reviews available data regarding the possible association of organophosphorus (OP) pesticides with neurological disorders such as dementia, attention deficit hyperactivity disorder, neurodevelopment, autism, cognitive development, Parkinson's disease and chronic organophosphate-induced neuropsychiatric disorder. These effects mainly develop after repeated (chronic) human exposure to low doses of OP. In addition, three well defined neurotoxic effects in humans caused by single doses of OP compounds are discussed. Those effects are the cholinergic syndrome, the intermediate syndrome and organophosphate-induced delayed polyneuropathy. Usually, the poisoning can be avoided by an improved administrative control, limited access to OP pesticides, efficient measures of personal protection and education of OP pesticide applicators and medical staff.
Collapse
Affiliation(s)
- Milan Jokanović
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech republic.
| |
Collapse
|
7
|
Meier CJ, Rouhier MF, Hillyer JF. Chemical Control of Mosquitoes and the Pesticide Treadmill: A Case for Photosensitive Insecticides as Larvicides. INSECTS 2022; 13:1093. [PMID: 36555003 PMCID: PMC9783766 DOI: 10.3390/insects13121093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Insecticides reduce the spread of mosquito-borne disease. Over the past century, mosquito control has mostly relied on neurotoxic chemicals-such as pyrethroids, neonicotinoids, chlorinated hydrocarbons, carbamates and organophosphates-that target adults. However, their persistent use has selected for insecticide resistance. This has led to the application of progressively higher amounts of insecticides-known as the pesticide treadmill-and negative consequences for ecosystems. Comparatively less attention has been paid to larvae, even though larval death eliminates a mosquito's potential to transmit disease and reproduce. Larvae have been targeted by source reduction, biological control, growth regulators and neurotoxins, but hurdles remain. Here, we review methods of mosquito control and argue that photoactive molecules that target larvae-called photosensitive insecticides or PSIs-are an environmentally friendly addition to our mosquitocidal arsenal. PSIs are ingested by larvae and produce reactive oxygen species (ROS) when activated by light. ROS then damage macromolecules resulting in larval death. PSIs are degraded by light, eliminating environmental accumulation. Moreover, PSIs only harm small translucent organisms, and their broad mechanism of action that relies on oxidative damage means that resistance is less likely to evolve. Therefore, PSIs are a promising alternative for controlling mosquitoes in an environmentally sustainable manner.
Collapse
Affiliation(s)
- Cole J. Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Jocić A, Breitenbach S, Pašti IA, Unterweger C, Fürst C, Lazarević-Pašti T. Viscose-derived activated carbons as adsorbents for malathion, dimethoate, and chlorpyrifos-screening, trends, and analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35138-35149. [PMID: 35044608 DOI: 10.1007/s11356-022-18721-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The release and accumulation of pesticides in the environment require the development of novel sustainable technologies for their removal. While adsorption is a classical approach, the design of new materials with enhanced adsorption properties could rationalize the remediation routes and decrease potential risks for their non-target organisms, including humans. More importantly, the use of adsorbents and their synthesis should be implemented in a sustainable and environmentally friendly manner. In this contribution, we studied the adsorption of organophosphorus pesticides (OPs) dimethoate, malathion, and chlorpyrifos on viscose fiber-derived activated carbon fibers (ACFs). The most efficient adsorption was found for chlorpyrifos, followed by malathion and dimethoate, while material properties were correlated with OP uptake. These ACFs are extremely efficient for chlorpyrifos adsorption, with experimentally observed adsorption capacitances reaching 240 mg g-1. Detailed analysis suggests that chlorpyrifos is physisorbed on ACF surfaces and that increased surface hydrophilicity reduces the uptake. Studied ACFs have great potential for practical application. They can reduce OPs' concentrations to such levels that no acute neurotoxic effects of the studied OPs in spiked tap water samples are seen, even for starting concentrations up to 104 times higher than the allowed ones. Finally, this study presents possible guidance for developing even more efficient and environmentally friendly adsorbents for chlorpyrifos, the most toxic among studied OPs.
Collapse
Affiliation(s)
- Ana Jocić
- University of Belgrade, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, 11000, Belgrade, Serbia
| | - Stefan Breitenbach
- Wood K plus -KompetenzzentrumHolz GmbH, Altenberger Strasse 69, 4040, Linz, Austria
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Igor A Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158, Belgrade, Serbia
| | - Christoph Unterweger
- Wood K plus -KompetenzzentrumHolz GmbH, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian Fürst
- Wood K plus -KompetenzzentrumHolz GmbH, Altenberger Strasse 69, 4040, Linz, Austria
| | - Tamara Lazarević-Pašti
- University of Belgrade, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
Organophosphorus Pesticides as Modulating Substances of Inflammation through the Cholinergic Pathway. Int J Mol Sci 2022; 23:ijms23094523. [PMID: 35562914 PMCID: PMC9104626 DOI: 10.3390/ijms23094523] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphorus pesticides (OPs) are widespread insecticides used for pest control in agricultural activities and the control of the vectors of human and animal diseases. However, OPs’ neurotoxic mechanism involves cholinergic components, which, beyond being involved in the transmission of neuronal signals, also influence the activity of cytokines and other pro-inflammatory molecules; thus, acute and chronic exposure to OPs may be related to the development of chronic degenerative pathologies and other inflammatory diseases. The present article reviews and discusses the experimental evidence linking inflammatory process with OP-induced cholinergic dysregulation, emphasizing the molecular mechanisms related to the role of cytokines and cellular alterations in humans and other animal models, and possible therapeutic targets to inhibit inflammation.
Collapse
|
10
|
Lopes-Ferreira M, Maleski ALA, Balan-Lima L, Bernardo JTG, Hipolito LM, Seni-Silva AC, Batista-Filho J, Falcao MAP, Lima C. Impact of Pesticides on Human Health in the Last Six Years in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063198. [PMID: 35328887 PMCID: PMC8951416 DOI: 10.3390/ijerph19063198] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Every year, Brazil intensifies its activity in agriculture and, as a result, it has become one of the biggest consumers of pesticides in the world. The high rate of these substances raises environmental and human health concerns. Therefore, we collected papers from PubMed, Scopus, Scielo, and Web of Science databases, from 2015 to 2021. After a blind selection using the software Rayyan QCRI by two authors, 51 studies were included. Researchers from the South and the Southeast Brazilian regions contributed to most publications, from areas that concentrate agricultural commodity complexes. Among the pesticides described in the studies, insecticides, herbicides, and fungicides were the most frequent. The articles reported multiple toxic effects, particularly in rural workers. The results obtained can be used to direct policies to reduce the use of pesticides, and to protect the health of the population.
Collapse
Affiliation(s)
- Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Correspondence:
| | - Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Lucas Marques Hipolito
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Ana Carolina Seni-Silva
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Joao Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| |
Collapse
|
11
|
Mustafa M, Dar SA, Azmi S, Haque S. The Role of Environmental Toxicant-Induced Oxidative Stress in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:17-32. [PMID: 36472814 DOI: 10.1007/978-3-031-12966-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a serious public health issue affecting around 15% of couples globally. Of the 60-80 million people of reproductive age affected by infertility, 40-50% are due to male factor while 30-40% of cases are still idiopathic. The recent global deterioration in sperm quality raises apprehensions regarding the toxic effects of environmental pollutants on reproductive health of males. Environmental toxicants have shown strong evidences for inducing oxidative stress affecting spermatogenesis severely, thereby leading to reduced sperm motility, count, and DNA damage. Reactive oxygen species (ROS) influences the spermatozoa development and transit process both internally and externally. Low level of ROS is indispensable for critical physiological sperm processes like sperm capacitation, motility, acrosome reaction, hyper-activation, sperm-oocyte interaction, etc., while excessive ROS disrupt antioxidant molecules which is detrimental to normal functioning of the sperm. Hence, identification of potential environmental toxicant may have clinical relevance for early screening and diagnosis of male infertility.
Collapse
Affiliation(s)
- Mohammad Mustafa
- Scientific Research Centre, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Centre, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
12
|
|
13
|
Paidi MK, Satapute P, Haider MS, Udikeri SS, Ramachandra YL, Vo DVN, Govarthanan M, Jogaiah S. Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers. ENVIRONMENTAL RESEARCH 2021; 200:111368. [PMID: 34081974 DOI: 10.1016/j.envres.2021.111368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus insecticides (OPIs) have low persistence and are easily biodegradable in nature. The United States and India are the major countries producing OPIs of about 25% and 17% of the world, respectively. OPIs commonly used for agricultural practices occupy a major share in the global market, which leads to the increasing contamination of OPIs residues in various food chains. To overcome this issue, an enzymatic degradation method has been approved by several environmental toxic, and controlling agencies, including United States Environmental Protection Agency (USEPA). Different catalytic enzymes have been isolated and identified from various microbial sources to neutralize the toxic pesticides and/or insecticides. In this review, we have gathered information on OPIs biotransformation and their residual toxicity in the environment. Particularly, it focuses on OPIs degrading enzymes such as chlorpyrifos hydrolase, diisopropylfluorophosphatase, organophosphate acid anhydrolase, organophosphate hydrolases, and phosphotriesterases like lactonasesspecific activity either P-O link group type or P-S link group of pesticides. To summarize, the catalytic degradation of organophosphorus insecticides is not only profitable but also environmentally friendly. Hence, the enzymatic catalyst is an ultimate and super bio-weapon to mitigate or decontaminate various OPIs residues in both terrestrial and aqueous environments.
Collapse
Affiliation(s)
- Murali Krishna Paidi
- AcSIR, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | | | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
14
|
Jacquet P, Rémy B, Bross RPT, van Grol M, Gaucher F, Chabrière E, de Koning MC, Daudé D. Enzymatic Decontamination of G-Type, V-Type and Novichok Nerve Agents. Int J Mol Sci 2021; 22:8152. [PMID: 34360916 PMCID: PMC8347808 DOI: 10.3390/ijms22158152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 min. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m-2 of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate that these enzymes can degrade ethyl-paraoxon down to sub-inhibitory concentrations of acetylcholinesterase, confirming their efficacy from high to micromolar doses.
Collapse
Affiliation(s)
- Pauline Jacquet
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| | - Benjamin Rémy
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| | - Rowdy P. T. Bross
- TNO Department CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands; (R.P.T.B.); (M.v.G.)
| | - Marco van Grol
- TNO Department CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands; (R.P.T.B.); (M.v.G.)
| | - Floriane Gaucher
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| | - Eric Chabrière
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Aix-Marseille Université, 13005 Marseille, France
- Institut de Recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Unité Microbe Evolution Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Martijn C. de Koning
- TNO Department CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands; (R.P.T.B.); (M.v.G.)
| | - David Daudé
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (P.J.); (B.R.); (F.G.)
| |
Collapse
|
15
|
Ramírez-Santana M, Zúñiga-Venegas L, Corral S, Roeleveld N, Groenewoud H, van der Velden K, Scheepers PTJ, Pancetti F. Association between cholinesterase's inhibition and cognitive impairment: A basis for prevention policies of environmental pollution by organophosphate and carbamate pesticides in Chile. ENVIRONMENTAL RESEARCH 2020; 186:109539. [PMID: 32361078 DOI: 10.1016/j.envres.2020.109539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND In Chile organophosphate pesticides are widely used in the production of fruits. Pesticides use is regulated for professional practice but there is no regulation regarding exposure to the general population. OBJECTIVE To relate exposure to cholinesterase's inhibitor pesticides during the spray season with neuropsychological impairment in occupationally exposed (OE) and environmentally exposed (EE) groups of people. METHODS Exposure was assessed through inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity and neuropsychological outcomes were evaluated through a large battery of tests covering general mental status, language, memory, attention, executive function, praxis and psychomotricity. Evaluations were carried out firstly in a period of no/low organophosphate pesticide use and subsequently during the spray season. All parameters were calculated as the relative change from baseline to spray season. RESULTS For this study in total 156 participants were recruited divided equally over participants with environmental exposures (EE) and participants with occupational exposure (OE). In the EE, BChE's enzyme activity inhibition ≥30% showed significant association with 10% or more decreased performance in several tests evaluating six of the eight cognitive areas (excepting psychomotricity and mood status); besides, for AChE inhibition in EE, the association was significant in three tests evaluating attention and one of executive function. Whereas, in OE, the inhibition of the BChE ≥30% was associated with a low performance of one attention test and for AChE the exceedance of the standard was associated with diminished performance in one test of memory and attention, respectively. The association between biomarkers of biological effect and cognitive impairment persisted among the EE group after removing confounders. No association was found between biomarkers of biological acute effect and decreased cognitive performance in the OE group. CONCLUSIONS Increased exposure to pesticides was confirmed by increased inhibition of cholinesterase's in both exposure groups; which was associated with a diminished neuropsychological performance, mainly in the environmentally exposed study group. [310 words].
Collapse
Affiliation(s)
- Muriel Ramírez-Santana
- Department of Public Health, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile. PhD Student Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Health Sciences, Radboud University Medical Center, Radboudumc, Nijmegen, the Netherlands.
| | - Liliana Zúñiga-Venegas
- Laboratory of Biomedical Investigations, Faculty of Medicine, Universidad Católica del Maule, Talca, Chile; Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog).Universidad Católica del Maule, Talca, Chile
| | - Sebastián Corral
- Laboratory of Translational Psychiatry, Department of Psychiatry and Mental Health. Faculty of Medicine, Universidad de Chile, Santiago, Chile; Facultad de Psicología, Universidad San Sebastián, Santiago, Chile
| | - Nel Roeleveld
- Radboud Institute for Health Sciences, Radboud University Medical Center, Radboudumc, Nijmegen, the Netherlands
| | - Hans Groenewoud
- Radboud Institute for Health Sciences, Radboud University Medical Center, Radboudumc, Nijmegen, the Netherlands
| | - Koos van der Velden
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboud University Medical Center, Radboudumc, Nijmegen, the Netherlands
| | - Floria Pancetti
- Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
16
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Gu J, Xu S, Liu Y, Chen X. Chlorpyrifos-induced toxicity has no gender selectivity in the early fetal brain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:803-812. [PMID: 32602772 DOI: 10.1080/03601234.2020.1786326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides induce gender-specific developmental neurotoxicity after birth, especially in adolescents and adults. However, whether and when the selectivity occurs in fetus remains unclear. In this study, we analyzed chlorpyrifos (CPF)-induced neurotoxicity in the early fetal brains of male and female mice. The gestational dams were administered 0, 1, 3, and 5 mg/(kg.d) CPF during gestational days (GD)7-11, and brains from the fetuses were isolated and analyzed on GD12. Fetal gender was identified by PCR technique based on male-specific Sry gene and Myog control gene. The body weight and head weight, the activity of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and the content of malondialdehyde (MDA), as well as the oxidative stress-related gene expression were examined. Our results showed that CPF pretreatment induced AChE inhibition in GD12 fetal brain. CPF treatment activated SOD and GPX but not CAT and MDA. For oxidative stress-related gene expression, CPF pretreatment increased mRNA expression of Sod1, Cat, Gpx1, and Gpx2 in the fetal brain on GD12. The statistical analysis did not show gender-selective CPF-induced toxicity. Moreover, our results showed that although the gestational exposure to CPF could elicit abnormalities in the early fetal brain, the toxicity observed was not gender-specific.
Collapse
Affiliation(s)
- Jiabin Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuqiong Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoping Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
18
|
Enzymatic decontamination of paraoxon-ethyl limits long-term effects in planarians. Sci Rep 2020; 10:3843. [PMID: 32123261 PMCID: PMC7052158 DOI: 10.1038/s41598-020-60846-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Organophosphorus compounds (OP) are highly toxic molecules used as insecticides that inhibit cholinesterase enzymes involved in neuronal transmission. The intensive use of OP for vector control and agriculture has led to environmental pollutions responsible for severe intoxications and putative long-term effects on humans and wild animals. Many in vivo models were studied over the years to assess OP acute toxicity, but the long-term effects are poorly documented. Planarian, a freshwater flatworm having a cholinergic system, has emerged as a new original model for addressing both toxicity and developmental perturbations. We used Schmidtea mediterranea planarians to evaluate long-term effects of paraoxon-ethyl at two sublethal concentrations over three generations. Toxicity, developmental perturbations and disruption of behavior were rapidly observed and higher sensitivity to paraoxon-ethyl of next generations was noticed suggesting that low insecticide doses can induce transgenerational effects. With the view of limiting OP poisoning, SsoPox, an hyperthermostable enzyme issued from the archaea Saccharolobus solfataricus, was used to degrade paraoxon-ethyl prior to planarian exposure. The degradation products, although not lethal to the worms, were found to decrease cholinesterase activities for the last generation of planarians and to induce abnormalities albeit in lower proportion than insecticides.
Collapse
|
19
|
Khan N, Kennedy A, Cotton J, Brumby S. A Pest to Mental Health? Exploring the Link between Exposure to Agrichemicals in Farmers and Mental Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1327. [PMID: 31013861 PMCID: PMC6517992 DOI: 10.3390/ijerph16081327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
Abstract
The current literature acknowledges that occupational exposures can adversely affect mental health. This review seeks to elucidate the current understanding of the effect of agrichemical exposure on mental health in the agricultural sector, including low-dose, chronic pesticide exposure. This scoping review adopted a snowballing and saturation approach. The review highlights inconsistencies in linking poor mental health and pesticide use. While some studies specifically showed that both high- and low-dose pesticide exposure were associated with poor mental health, consistent and rigorous research methods are lacking. The review also proposes terms to delineate exposure types described in the literature. The review outcomes direct efforts to protect the health, wellbeing and safety of farming communities across the globe.
Collapse
Affiliation(s)
- Nufail Khan
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| | - Alison Kennedy
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| | - Jacqueline Cotton
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| | - Susan Brumby
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
- National Centre for Farmer Health, Western District Health Service, Hamilton, VIC 3300, Australia.
| |
Collapse
|
20
|
Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 2018; 410:125-131. [DOI: 10.1016/j.tox.2018.09.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022]
|
21
|
Vanova N, Pejchal J, Herman D, Dlabkova A, Jun D. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J Appl Toxicol 2018. [DOI: 10.1002/jat.3605] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nela Vanova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - David Herman
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Alzbeta Dlabkova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| |
Collapse
|
22
|
Kim S, Nussbaum MA, Laurienti PJ, Chen H, Quandt SA, Barr DB, Arcury TA. Exploring Associations Between Postural Balance and Levels of Urinary Organophosphorus Pesticide Metabolites. J Occup Environ Med 2018; 60:174-179. [PMID: 29023345 PMCID: PMC5908472 DOI: 10.1097/jom.0000000000001194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Apply a data-driven approach to explore associations between postural balance and pesticide exposure among Latino farmworkers and non-farmworkers. METHODS Lasso-regularized, generalized linear models were used to examine associations between postural control measures in four experimental conditions (2 visual × 2 cognitive difficulty) and dialkylphosphate (DAP) urinary metabolite levels. RESULTS Obtained models generally performed poorly at explaining postural control measures. However, when both visual and cognitive conditions were altered-the most challenging balance condition-models for some postural balance measures contained several DAP metabolites and had relatively better fits. CONCLUSIONS The current results were equivocal regarding associations between postural control measures and DAP metabolite concentrations. However, farmworker status appears to be an important variable in understanding this association. Future work should use a posturally- and cognitively-challenging test condition to reveal any potential associations.
Collapse
Affiliation(s)
- Sunwook Kim
- Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia (Dr Kim, Dr Nussbaum); Department of Radiology (Dr Laurienti); Department of Biostatistical Science (Dr Chen); Department of Epidemiology and Prevention (Dr Quandt), Division of Public Health Sciences; Department of Environmental and Occupational Health, Rollins School of Public Health of Emory University, Atlanta, Georgia (Dr Barr); and Department of Family and Community Medicine (Dr Arcury), Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | |
Collapse
|
23
|
Fuentes-Delgado VH, Martínez-Saldaña MC, Rodríguez-Vázquez ML, Reyes-Romero MA, Reyes-Sánchez JL, Jaramillo-Juárez F. Renal damage induced by the pesticide methyl parathion in male Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:130-141. [PMID: 29319433 DOI: 10.1080/15287394.2017.1394948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Little information is apparently available regarding the nephrotoxic effects induced by pesticides. The aim of this study was to examine the influence of low doses of methyl parathion (MP) on the structure and function of the kidney of male Wistar rats. A corn oil (vehicle) was administered to control rats, whereas treated rats received MP at 0.56 mg/kg orally (1/25 of LD50), every third day, for 8 weeks. At the end of each week following MP exposure, creatinine and glucose levels were measured in plasma, while glucose, inorganic phosphate, total proteins, albumin, and activity of γ-glutamyltranspeptidase (GGT) were determined in urine. Kidney histological study was also performed. Compared with control rats, MP significantly increased plasma glucose and creatinine levels accompanied by decreased urinary flow rate and elevated urinary excretion rates of glucose, phosphate, and albumin. Further, the activity of GGT in urine was increased significantly. The proximal cells exhibited cytoplasmic vacuolization, positive periodic acid Schiff inclusions, and brush border edge loss after 2 or 4 weeks following MP treatment. Finally, renal cortex samples were obtained at 2, 4, 6, and 8 weeks of MP treatment, and the concentrations of reduced glutathione (GSH) and glutathione peroxidase (GPx) activity were measured. The mRNA expression levels of BAX and tumor necrosis factor-α (TNF-α) were also determined (RT-PCR). MP significantly decreased renal GSH levels, increased GPx activity, as well as downregulated the mRNA expression of TNF-α and BAX. Densitometry analysis showed a significant reduction in TNF-α and BAX mRNA expression levels at 2 and 4 weeks following MP treatment. Low doses of MP produced structural and functional damage to the proximal tubules of male rat kidney.
Collapse
Affiliation(s)
- Victor Hugo Fuentes-Delgado
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| | - María Consolación Martínez-Saldaña
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| | - María Luisa Rodríguez-Vázquez
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| | - Miguel Arturo Reyes-Romero
- b Facultad de Medicina. Departamento de Medicina Molecular , Universidad Juárez del Estado de Durango , Durango , México
| | | | - Fernando Jaramillo-Juárez
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| |
Collapse
|
24
|
Waheed S, Halsall C, Sweetman AJ, Jones KC, Malik RN. Pesticides contaminated dust exposure, risk diagnosis and exposure markers in occupational and residential settings of Lahore, Pakistan. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:375-382. [PMID: 29127912 DOI: 10.1016/j.etap.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 05/27/2023]
Abstract
There are few studies documenting the dust loaded with pesticides as a potential non-dietary exposure source for occupational worker and populations living near agricultural farms and pesticides formulation plants. In present study we have evaluated the pesticide concentration in dust from potential sites and relevant health risk from dust ingestion. Furthermore, the effect of currently used pesticides was investigated on blood and urine parameters of subjects: farmer, factory worker, urban resident and rural resident and controlled subjects with presumably different levels of exposure. The urinary metabolites (TCPY and IMPY) were quantified as biomarkers of exposure to chlorpyrifos and diazinon in relation with biomarkers of effect including BuChE, LH, FSH, testosterone and oxidative stress. Results showed that chlorpyrifos and diazinon were present in higher concentration in dust and posed a high health risk to exposed subjects. The mean SOD value was high among the farmer (3048U/g Hb) followed by factory worker (1677.6U/g Hb). The urinary biomarkers - TCPY and IMPY- were found higher in exposed subjects as compared to control. Furthermore, testosterone was found in higher concentration in factory worker than control (12.63ng/ml vs 4.61ng/ml respectively). A decreased BuChE activity was noticed in occupational group and significant differences were observed in control verses exposed subjects. The PCA analysis evidenced the impact of pesticides on exposure biomarkers and male reproductive hormones. The study suggests that dust contaminated with pesticides engenders significant health risk particularly related to the nervous and endocrine system, not only for occupational workers exposed to direct ingestion but also for nearby residential community. Succinctly putting: Pesticides loaded dust in the city of Lahore, being a high priority concern for the government of Pakistan, demands to be addressed.
Collapse
Affiliation(s)
- Sidra Waheed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, F Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Crispin Halsall
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Andrew J Sweetman
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Kevin C Jones
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, F Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
25
|
Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival. Sci Rep 2017; 7:15194. [PMID: 29123147 PMCID: PMC5680213 DOI: 10.1038/s41598-017-15209-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
Organophosphorus insecticides (OPs) are toxic compounds used for agricultural purposes and responsible for severe types of contamination worldwide. OPs may also induce chronic deleterious effects and developmental disruption. Finding remediation strategies is a major concern to diminish their impact on environment and human health. Enzymes have emerged as a promising eco-friendly route for decontaminating OPs. The enzyme SsoPox from the archaea Sulfolobus solfataricus has been particularly studied, considering both its tremendous stability and phosphotriesterase activity. However, the toxicity of the degradation products generated through enzyme hydrolysis has been poorly investigated. To address both neurotoxicity and developmental perturbation, freshwater planarians from Platyhelminthes were considered to evaluate the impact of OP and degradation product exposure. Planarians have a large proportion of stem cells that give them an unconventional capacity for regeneration. OPs were found to be highly toxic to planarians and enzyme decontamination drastically enhanced survival rate. Although not completely innocuous, the degradation products were found to be less toxic than insecticides and reduced poisoning effects by increasing NOEC values by up to eight-fold. SsoPox also limited detrimental consequences on planarian mobility and enabled them to recover a non-exposed type regeneration process suggesting that enzymatic decontamination is a promising alternative to bioremediation.
Collapse
|
26
|
Rim KT. Reproductive Toxic Chemicals at Work and Efforts to Protect Workers' Health: A Literature Review. Saf Health Work 2017; 8:143-150. [PMID: 28593069 PMCID: PMC5447413 DOI: 10.1016/j.shaw.2017.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022] Open
Abstract
A huge number of chemicals are produced and used in the world, and some of them can have negative effects on the reproductive health of workers. To date, most chemicals and work environments have not been studied for their potential to have damaging effects on the workers' reproductive system. Because of the lack of information, many workers may not be aware that such problems can be related to occupational exposures. Newly industrialized countries such as Republic of Korea have rapidly amassed chemicals and other toxicants that pose health hazards, especially to the reproductive systems of workers. This literature review provides an overview of peer-reviewed literature regarding the teratogenic impact and need for safe handling of chemicals. Literature searches were performed using PubMed, Google Scholar, and ScienceDirect. Search strategies were narrowed based on author expertise and 100 articles were chosen for detailed analysis. A total of 47 articles met prespecified inclusion criteria. The majority of papers contained studies that were descriptive in nature with respect to the Medical Subject Headings (MeSH) terms and keywords: “reproductive and heath or hazard and/or workplace or workers or occupations.” In the absence of complete information about the safe occupational handling of chemicals in Republic of Korea (other than a material safety data sheet), this review serves as a valuable reference for identifying and remedying potential gaps in relevant regulations. The review also proposes other public health actions including hazard surveillance and primary prevention activities such as reduction, substitution, ventilation, as well as protective equipment.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, 34122, Republic of Korea
| |
Collapse
|
27
|
Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:56-70. [PMID: 28292651 DOI: 10.1016/j.etap.2017.02.024] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 05/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system.
Collapse
Affiliation(s)
- Stavros Sifakis
- Department of Obstetrics and Gynecology, University of Crete, Medical School, Heraklion, GR 71003, Greece
| | | | - Aristeidis M Tsatsakis
- Department of Toxicology, University of Crete, Medical School, Heraklion, GR 71003, Greece
| | - Demetrios A Spandidos
- Department of Clinical Virology, University of Crete, Medical School, Heraklion, GR 71003, Greece
| |
Collapse
|
28
|
Harrison V, Mackenzie Ross S. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. ENVIRONMENTAL RESEARCH 2016; 151:528-536. [PMID: 27575752 DOI: 10.1016/j.envres.2016.08.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 05/03/2023]
Abstract
Previous research suggests that individuals with a prior history of pesticide poisoning are at increased risk of psychiatric disorder (Freire and Koifman, 2013), but findings regarding the impact of cumulative low-level exposure are inconsistent. The aim of the current study was to investigate whether sheep farmers with a history of low-level exposure to organophosphate pesticides (1) report a higher level of psychological distress on subjective symptom questionnaires, compared to unexposed controls (2) also meet internationally agreed diagnostic criteria for a psychiatric disorder more often than unexposed controls. 127sheep farmers were evaluated and compared to 78 unexposed controls, matched in terms of gender, education, level of intelligence, working status and area of residence. Both self-report measures and structured clinical interviews were used to assess mental health. The exposed cohort reported significantly higher rates of anxiety and depression when self-report questionnaires were used to evaluate mood, even when stressful life events, demographic and physical health factors were taken into account. However, when diagnostic interviews were used to assess mood, this pattern only held true for anxiety.
Collapse
Affiliation(s)
- Virginia Harrison
- Department of Psychology, Open University, Walton Hall, Milton Keynes MK76AA, UK.
| | - Sarah Mackenzie Ross
- Research Department of Clinical, Educational & Health Psychology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
29
|
Peris-Sampedro F, Reverte I, Basaure P, Cabré M, Domingo JL, Colomina MT. Apolipoprotein E (APOE) genotype and the pesticide chlorpyrifos modulate attention, motivation and impulsivity in female mice in the 5-choice serial reaction time task. Food Chem Toxicol 2016; 92:224-35. [PMID: 27106138 DOI: 10.1016/j.fct.2016.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 02/08/2023]
Abstract
Organophosphate pesticides - and chlorpyrifos (CPF) in particular - contribute to a wide range of neurobehavioural disorders. Most experimental research focuses on learning and memory processes, while other behaviours remain understudied. The isoforms of the human apolipoprotein E (apoE) confer different cognitive skills on their carriers, but data on this topic are still limited. The current study was performed to assess whether the APOE genotypic variability differently modulates the effects of CPF on attentional performance, inhibitory control and motivation. Human apoE targeted replacement adult female mice (apoE2, apoE3 and apoE4) were trained to stably perform the 5-choice serial reaction time task (5-CSRTT). Animals were then subjected to daily dietary CPF (3.75 mg/kg body weight) for 4 weeks. After CPF exposure, we established a 4-week CPF-free period to assess recovery. All individuals acquired the task, apoE2 mice showed enhanced learning, while apoE4 mice displayed increased premature and perseverative responding. This genotype-dependent lack of inhibitory control was reversed by CPF. Overall, the pesticide induced protracted impairments in sustained attention and motivation, and it reduced anticipatory responding. ApoE3 mice exhibited delayed attentional disruptions throughout the wash-out period. Taken together, these findings provide notable evidence on the emergence of CPF-related attentional and motivational deficits.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | - Ingrid Reverte
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
| | - Pia Basaure
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
30
|
Sinyangwe DM, Mbewe B, Sijumbila G. Determination of dichlorvos residue levels in vegetables sold in Lusaka, Zambia. Pan Afr Med J 2016; 23:113. [PMID: 27279940 PMCID: PMC4885704 DOI: 10.11604/pamj.2016.23.113.8211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/01/2016] [Indexed: 01/17/2023] Open
Abstract
Introduction Small scale and large scale farmers around Lusaka, the capital city of Zambia grow vegetables using intensive agriculture methods to satisfy the ever increasing demand. To ensure maximum yield they apply various types of pesticides to control pests and diseases that attack these vegetables. Organophosphate pesticides are widely used in agriculture for the control of various insect pests mainly in developing countries. The purpose of the study was to determine the residual levels of the most commonly used organophosphate, 2, 2-Dichlorovinyl dimethyl phosphate, in three commonestvegetables supplied at various markets around Lusaka. Methods Samples of 9 bunches of rape, 14 bunches lettuce and 15 rolls cabbage were randomly picked from several study sites around Lusaka. The vegetables were chopped into small pieces which were chemically treated to get methanol extracts. The extracts were then dissolved in an appropriate solvent and using Shimadzu High Performance Liquid Chromatography-Ultra-violet detector (HPLC-UV) levels of 2, 2-Dichlorovinyl dimethyl phosphate were determined. Results The analysis showed that the average levels of dichlorvos were significantly above the maximum accepted limit as set by Zambian Food and Drugs Act on vegetables. Conclusion Locally grown vegetables from around Lusaka have higher than maximum acceptable limits. This may have implications on human health as the cumulative effect of organophosphates in human body has potential to cause long term health problems.
Collapse
Affiliation(s)
| | - Boniface Mbewe
- Department of Chemistry, University of Zambia, Lusaka, Zambia
| | - Gibson Sijumbila
- Department of Physiological Science, University of Zambia, Lusaka, Zambia
| |
Collapse
|
31
|
Effects of Lifetime Occupational Pesticide Exposure on Postural Control Among Farmworkers and Non-Farmworkers. J Occup Environ Med 2016; 58:133-9. [PMID: 26849257 DOI: 10.1097/jom.0000000000000655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. METHODS Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). RESULTS Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. CONCLUSIONS Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Collapse
|
32
|
Pourtaji A, Robati RY, Lari P, Hosseinzadeh H, Ramezani M, Abnous K. Proteomics screening of adenosine triphosphate-interacting proteins in the liver of diazinon-treated rats. Hum Exp Toxicol 2015; 35:1084-92. [PMID: 26721910 DOI: 10.1177/0960327115619771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Diazinon (DZN) is one of the most important organophosphorus compounds used to control pests in agriculture in many countries. Several studies have shown that exposure to DZN may alter protein expression in the liver. In order to further investigate the mechanism of DZN toxicity, differentially expressed ATP-interacting proteins, following subacute exposure to toxin, were separated and identified in rat liver. MAIN METHODS Male rats were equally divided into four groups: control (corn oil) and DZN (15 mg/kg) by gavage once a day for 4 weeks. After homogenization of liver tissue, lysates were incubated ATP-sepharose beads. After several washes, ATP-interacting proteins were eluted and separated on 2-D polyacrylamide gels. Deferentially expressed proteins were cut and identified using matrix-assisted laser desorption/ionization/time-of-flight and Mascot database. Identified proteins were classified according to their biological process using protein analysis through evolutionary relationships (PANTHER) Web site. KEY FINDING In this work, we showed that several key proteins involved in biological processes such as antioxidant system, oxidative stress, apoptosis, and metabolism were differentially expressed after subacute exposure to DZN.
Collapse
Affiliation(s)
- A Pourtaji
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - R Yazdian Robati
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - P Lari
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Ramezani
- Nanotechnology Research Center, Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - K Abnous
- Pharmaceutical Research Center, Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
El-Maghraby S, Nawwar GA, Bakr RFA, Helmy N, Kamel OMHM. Toxicological studies for some agricultural waste extracts on mosquito larvae and experimental animals. Asian Pac J Trop Biomed 2015; 2:558-63. [PMID: 23569971 DOI: 10.1016/s2221-1691(12)60097-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 10/27/2011] [Accepted: 12/16/2011] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate some agricultural waste extracts as insecticide and their effects on enzyme activities in liver and kidney of male mice. METHODS The insecticidal activity of five tested compounds (one crude extract and 4 waste compounds) was bioassay against the 3rd instars of the Culex pipiens (Cx. pipiens) larvae in the laboratory. The LC50 values of eucalyptol, apricot kernel, Rice bran, corn, black liquor and white liquor are 91.45, 1 166.1, 1 203.3, 21 449.65, 4 025.78 and 6 343.18 ppm, respectively. Selection of the compounds for the subsequent studies was not only dependent on LC50 values but also on the persistence of these wastes products on large scale. RESULTS White and black liquor did not produce any gross effect at 200 mg/Kg body weight. No apparent toxic symptoms were observed in tested animals during the whole period of the experiment which run out for 14 days. No statistically significance was observed in the enzyme cholinesterase activity, the activities of liver enzymes and kidney function in treated mice with black and white liquors. While, no and slight inhibition was observed after the 2 weeks of treatment period with deltamethrin and fenitrothion reached to about 24% in plasma cholinesterase enzyme activity. Significantly increase in the activities of liver enzymes and kidney function in treated mice with deltamethrin and fenitrothion. CONCLUSIONS Black liquor can be used efficiently to control Cx. pipiens larvae under laboratory condition. Environmental problem caused by rice straw can be solved by converting the waste material to beneficial natural selective insecticide.
Collapse
Affiliation(s)
- Somia El-Maghraby
- Applied organic chemistry Department, National Research Centre, Cairo, Egypt
| | | | | | | | | |
Collapse
|
34
|
Hanssen VM, Nigatu AW, Zeleke ZK, Moen BE, Bråtveit M. High Prevalence of Respiratory and Dermal Symptoms Among Ethiopian Flower Farm Workers. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2015; 70:204-213. [PMID: 24428185 DOI: 10.1080/19338244.2013.853645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The flower industry is among the most important export industries in Ethiopia, employing more than 50,000 workers. The working conditions and health status among workers in Ethiopian flower industry are not documented. A questionnaire-based interview was conducted among 213 flower industry workers from 3 flower farms and 60 control workers from supermarkets from February to March 2012. A walk-through survey was also performed on the 3 flower farms. Interviewed flower farm workers have high prevalences of respiratory and dermal symptoms, which are rarely reported among controls. Female workers inside the greenhouses on the 3 flower farms have significantly more respiratory and dermal symptoms than workers outside the greenhouse, also when adjusting for age and education. Limited access to personal protection equipment (PPE) and unsafe pesticide routines are documented. This study indicates that working in these flower greenhouses might be associated with adverse health effects.
Collapse
Affiliation(s)
- Vegard Mjelde Hanssen
- a Department of Global Public Health and Primary Care, Occupational and Environmental Medicine, University of Bergen , Bergen , Norway
| | | | | | | | | |
Collapse
|
35
|
Terry AV, Callahan PM, Beck WD, Vandenhuerk L, Sinha S, Bouchard K, Schade R, Waller JL. Repeated exposures to diisopropylfluorophosphate result in impairments of sustained attention and persistent alterations of inhibitory response control in rats. Neurotoxicol Teratol 2014; 44:18-29. [PMID: 24819591 PMCID: PMC4099306 DOI: 10.1016/j.ntt.2014.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/30/2022]
Abstract
Organophosphate (OP)-based chemicals are used worldwide for many purposes and they have likely saved millions of people from starvation and disease. However, due to their toxicity they can also pose a significant environmental risk. While considerable research has focused on the acute symptoms and long-term consequences of overtly toxic exposures to OPs, less attention has been given to the subject of repeated exposures to levels that are not associated with acute symptoms (subthreshold exposures). There is clinical evidence indicating that this type of OP exposure can lead to prolonged deficits in cognition; however only a few studies have addressed this issue prospectively in animal models. In this study, repeated subthreshold exposures to the OP nerve agent diisopropylfluorophosphate (DFP) were evaluated in a 5-Choice Serial Reaction Time Task (5C-SRTT), an animal model of sustained attention. Adult rats were trained to stably perform the 5C-SRTT and then injected subcutaneously with vehicle or DFP of 0.5mg/kg every other day for 30days. Behavioral testing occurred daily during the DFP-exposure period and throughout a 45day (OP-free) washout period. Compared to vehicle-treated controls, DFP-treated rats exhibited deficits in accuracy, increases in omissions and timeout responses during the OP exposure period, while no significant effects on premature responses, perseverative responses, or response latencies were noted. While the increase in timeout responses remained detectible during washout, all other DFP-related alterations in 5C-SRTT performance abated. When the demands of the task were increased by the presentation of variable intertrial intervals, premature responses were also elevated in DFP-treated rats during the washout period. These results indicate that repeated exposures to subthreshold doses of DFP lead to reversible impairments in sustained attention as well as persistent impairments of inhibitory response control in rats.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States; Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States.
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States; Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Leah Vandenhuerk
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Samantha Sinha
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Kristy Bouchard
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Rose Schade
- Small Animal Behavior Core, Georgia Regents University, Augusta, GA 30912, United States
| | - Jennifer L Waller
- Department of Biostatistics, Georgia Regents University, Augusta, GA 30912, United States
| |
Collapse
|
36
|
Exposition to tannery wastewater did not alter behavioral and biochemical parameters in Wistar rats. Physiol Behav 2014; 129:160-6. [DOI: 10.1016/j.physbeh.2014.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022]
|
37
|
Mehrpour O, Karrari P, Zamani N, Tsatsakis AM, Abdollahi M. Occupational exposure to pesticides and consequences on male semen and fertility: a review. Toxicol Lett 2014; 230:146-56. [PMID: 24487096 DOI: 10.1016/j.toxlet.2014.01.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/26/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023]
Abstract
Exposure to pesticides affects many body organs including reproductive system. Disorder of the reproductive system leads to infertility and therefore has been in the center of attention within the recent decades. Pesticides are one of the compounds that might reduce the semen quality in the exposed workers according to current knowledge. Although many underlying mechanisms have been proposed, the mechanisms of action are not clarified yet. The object of the present review was to criticize all the results of studies which evaluated the pesticide effects on male reproductive system. Results indicate that semen changes are multifactorial in the workers exposed to pesticides as there are numerous factors affecting sperm quality in occupational exposures. Majority of pesticides including organophosphoruses affect the male reproductive system by mechanisms such as reduction of sperm density and motility, inhibition of spermatogenesis, reduction of testis weights, reduction of sperm counts, motility, viability and density, and inducing sperm DNA damage, and increasing abnormal sperm morphology. Reduced weight of testes, epididymis, seminal vesicle, and ventral prostate, seminiferous tubule degeneration, change in plasma levels of testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), decreased level and activity of the antioxidant enzymes in testes, and inhibited testicular steroidogenesis are other possible mechanisms. Moreover, DDT and its metabolites have estrogenic effects on males. Although effect of pesticides on sperm quality is undeniable, well-designed long-term studies are needed to elucidate all the possible affecting variables such as socioeconomic, cultural, nutritional, occupational, physical, and clinical characteristics alongside pesticides.
Collapse
Affiliation(s)
- Omid Mehrpour
- Atherosclerosis and Coronary Artery Research Center, Birjand University of Medical Science, Birjand, Iran; Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Science, Pasdaran Avenue, Birjand, Iran; Addiction Research Centre, Mashhad University of Medial Toxicology, Mashhad, Iran
| | - Parissa Karrari
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Science, Pasdaran Avenue, Birjand, Iran
| | - Nasim Zamani
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Department of Medicine, University of Crete, Heraklion, Greece
| | - Mohammad Abdollahi
- Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Yu Y, Yang A, Zhang J, Hu S. Maternal exposure to the mixture of organophosphorus pesticides induces reproductive dysfunction in the offspring. ENVIRONMENTAL TOXICOLOGY 2013; 28:507-515. [PMID: 21793158 DOI: 10.1002/tox.20741] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/05/2011] [Accepted: 05/07/2011] [Indexed: 05/31/2023]
Abstract
Organophosphorus pesticide residues are found in many food samples due to increasing use of multiple organophosphorus pesticides (OPs) in agriculture. Toxicity of individual organophosphorus has been well-studied in previous epidemiological and laboratory investigations. This study focused on reproductive toxicity of perinatal exposure to the mixture of organophosphorus pesticides (MOPs). The MOPs consists of three most commonly used pesticides, i.e., Dichlorovos, Dimethoate, and Malathion which individually does not cause significant effects on the reproductive system at the similar concentration levels based on previous studies. Using the Sprague-Dawley rats, we established a perinatal exposure model by oral gavage and observed significant endometrial hyperplasia and thickened uterine walls in the F0 rats after administration of high doses of the MOPs. We further monitored several key developmental and behavioral indices in the F1 generation after maternal exposure to the MOPs, and observed significantly delayed physical development and weakened mental development. Moreover, we found increased weights of the reproductive organs (the uterus and the testis) and abnormal levels of key sex hormones (progestin and testosterone) in the MOPs groups. It is more important that we observed a significantly lower pregnancy rate and live birth rate in the high-dose MOPs group. These results indicate that the MOPs may be more detrimental to the maternal endometria and the reproductive functions in the offspring than individual organophosphorus.
Collapse
Affiliation(s)
- Yan Yu
- Department of Public Health, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China.
| | | | | | | |
Collapse
|
39
|
Blanc-Lapierre A, Bouvier G, Gruber A, Leffondré K, Lebailly P, Fabrigoule C, Baldi I. Cognitive disorders and occupational exposure to organophosphates: results from the PHYTONER study. Am J Epidemiol 2013; 177:1086-96. [PMID: 23535900 DOI: 10.1093/aje/kws346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The involvement of organophosphate insecticides in cognitive disorders is supported by epidemiologic and biological evidence, but the effects of long-term exposure remain debated. We studied the association between organophosphate exposure and cognitive performance in vine workers from the PHYTONER study cohort in the Bordeaux area of France. Results from interviews of 614 subjects conducted at the 4-year follow-up between 2001 and 2003 were analyzed. Exposure to pesticides since 1950 was assessed with cumulative exposure scores for 34 organophosphates combining an historical crop-exposure pesticide matrix and field exposure studies, taking into account the characteristics of treatment (mixing, spraying, equipment cleaning) and reentry tasks. For the 11 organophosphates retained in the analysis, exposure (ever vs. never) was associated with low cognitive performance. No dose-effect relationship was found, but an increased risk was observed with a 50-mg increase in the cumulative score, which was greater with mevinphos (Benton Visual Retention Test: odds ratio = 3.26, 95% confidence interval: 1.54, 6.88; Trail Making Test, part A: odds ratio = 3.03, 95% confidence interval: 1.39, 6.62). Our results support the hypothesis that cognitive disorders observed in vine workers may be associated with exposure to specific organophosphates.
Collapse
Affiliation(s)
- Audrey Blanc-Lapierre
- Equipe Santé Travail Environnement, INSERM U 897, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ross SM, McManus IC, Harrison V, Mason O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol 2012; 43:21-44. [DOI: 10.3109/10408444.2012.738645] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Blanc-Lapierre A, Bouvier G, Garrigou A, Canal-Raffin M, Raherison C, Brochard P, Baldi I. Effets chroniques des pesticides sur le système nerveux central : état des connaissances épidémiologiques. Rev Epidemiol Sante Publique 2012; 60:389-400. [DOI: 10.1016/j.respe.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 02/23/2012] [Accepted: 03/26/2012] [Indexed: 12/14/2022] Open
|
42
|
Wang JL, Xia Q, Zhang AP, Hu XY, Lin CM. Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α-naphthyl acetate esterase extracted from wheat flour. J Zhejiang Univ Sci B 2012; 13:267-73. [PMID: 22467368 DOI: 10.1631/jzus.b11a0180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The widespread use of organophosphorus pesticides (OPs) poses a great threat to human health and has made the detection of OP residues in food an important task, especially in view of the fact that easy and rapid detection methods are needed. Because OPs have inhibitory effects on the activity of α-naphthyl acetate esterase (ANAE) in plants, in this work we evaluated the possibility of detecting OPs in vegetables with ANAE extracted from commercial flour. The limits of detection (LODs) obtained for methamidophos, dichlorvos, phoxim, dimethoate, and malathion in lettuce samples with crude ANAE were 0.17, 0.11, 0.11, 0.96, and 1.70 mg/kg, respectively. Based on the maximum residue limits (MRLs) for OPs in food stipulated by Chinese laws which are 0.05, 0.20, 0.05, 1.00, and 8.00 mg/kg for methamidophos, dichlorvos, phoxim, dimethoate, and malathion, respectively, the esterase inhibition method with crude ANAE had sufficient sensitivity to detect the residues of dichlorvos, dimethoate, and malathion in lettuce, but it could not be used to guarantee the safety of the same samples if methamidophos or phoxim residue was present. The sensitivity of the method was improved by the use of esterase purified by ammonium sulfate salting-out. The LODs obtained for methamidophos and phoxim with purified esterase were lower than the MRLs for these OPs in food. This is a very promising method for the detection of OP residues in vegetables using crude or purified esterase because of its cheapness, sensitivity, and convenience.
Collapse
Affiliation(s)
- Jun-liang Wang
- International Joint Research Center for Persistent Toxic Substances, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | | | | | | | | |
Collapse
|
43
|
Roomaney R, Ehrlich R, Rother HA. The acceptability of rat trap use over pesticides for rodent control in two poor urban communities in South Africa. Environ Health 2012; 11:32. [PMID: 22554267 PMCID: PMC3508837 DOI: 10.1186/1476-069x-11-32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/03/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Rodent infestations are a public health problem in poor urban communities. The use of illegal street pesticides to control rodent infestations with resulting poisonings is an additional public health concern receiving limited attention in many developing countries, including South Africa. METHODS Participants in a household intervention in two poor urban areas of Cape Town, South Africa, received two high quality rat traps. Reported in this article are the results of a follow-up survey conducted six months after distribution to assess community perceived acceptability of using rat traps instead of toxic pesticides (N = 175). RESULTS Of the 175 respondents that were followed up, 88% used the traps and only 35% continued using pesticides after the intervention. The analysis identified perceived effectiveness of the traps (prevalence odds ratio 18.00, 95% confidence interval 4.62 to 70.14), being male (prevalence odds ratio 8.86, 95% confidence interval 1.73 to 45.19), and the willingness to buy traps from an informal market (prevalence odds ratio 17.75, 95% confidence interval 4.22 to 74.57) as significantly associated with the acceptance of trap use. CONCLUSIONS Rat traps, when introduced to poor urban communities, are acceptable as an alternative to toxic pesticides for rodent control. Sustainability of trap use, however, needs to be researched, especially cost and cost-benefit.
Collapse
Affiliation(s)
- Rifqah Roomaney
- School of Public Health and Family Medicine, University of Cape Town, Anzio Rd., Observatory, 7925, Cape Town, South Africa
- Population Health, Health Systems and Innovation, Human Sciences Research Council, Cape Town, South Africa
| | - Rodney Ehrlich
- School of Public Health and Family Medicine, University of Cape Town, Anzio Rd., Observatory, 7925, Cape Town, South Africa
| | - Hanna-Andrea Rother
- School of Public Health and Family Medicine, University of Cape Town, Anzio Rd., Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
44
|
Terry AV. Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 2012; 134:355-65. [PMID: 22465060 DOI: 10.1016/j.pharmthera.2012.03.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
The class of chemicals known as the "organophosphates" (OPs) comprises many of the most common agricultural and commercial pesticides that are used worldwide as well as the highly toxic chemical warfare agents. The mechanism of the acute toxicity of OPs in both target and non-target organisms is primarily attributed to inhibitory actions on various forms of cholinesterase leading to excessive peripheral and central cholinergic activity. However, there is now substantial evidence that this canonical (cholinesterase-based) mechanism cannot alone account for the wide-variety of adverse consequences of OP exposure that have been described, especially those associated with repeated exposures to levels that produce no overt signs of acute toxicity. This type of exposure has been associated with prolonged impairments in attention, memory, and other domains of cognition, as well as chronic illnesses where these symptoms are manifested (e.g., Gulf War Illness, Alzheimer's disease). Due to their highly reactive nature, it is not surprising that OPs might alter the function of a number of enzymes and proteins (in addition to cholinesterase). However, the wide variety of long-term neuropsychiatric symptoms that have been associated with OPs suggests that some basic or fundamental neuronal process was adversely affected during the exposure period. The purpose of this review is to discuss several non-cholinesterase targets of OPs that might affect such fundamental processes and includes cytoskeletal and motor proteins involved in axonal transport, neurotrophins and their receptors, and mitochondria (especially their morphology and movement in axons). Potential therapeutic implications of these OP interactions are also discussed.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, USA.
| |
Collapse
|
45
|
Terry AV, Beck WD, Warner S, Vandenhuerk L, Callahan PM. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate. Neurotoxicol Teratol 2011; 34:1-8. [PMID: 22024239 DOI: 10.1016/j.ntt.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
46
|
Zhang J, Stewart R, Phillips M, Shi Q, Prince M. Pesticide exposure and suicidal ideation in rural communities in Zhejiang province, China. Bull World Health Organ 2011; 87:745-53. [PMID: 19876541 DOI: 10.2471/blt.08.054122] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 01/23/2009] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the association between pesticide exposure and suicidal ideation in rural areas of China. METHODS The analysis involved data from a survey of a representative sample of 9811 rural residents in Zhejiang province who had been asked about the storage of pesticides at home and about whether or not they had considered suicide within the 2 years before the interview. The Chinese version of the 12-item General Health Questionnaire (GHQ) was administered to screen for mental disorder. FINDINGS The unadjusted odds ratio (OR) for the association between pesticide storage at home and suicidal ideation over the prior 2 years was 2.12 (95% confidence interval, CI: 1.54-2.93). After adjusting for gender, age, education, socioeconomic status, marital status, physical health, family history of suicidal behaviour, GHQ caseness and study design effects, the OR was 1.63 (95% CI: 1.13-2.35). CONCLUSION A potential marker of chronic pesticide exposure was found to be associated with suicidal ideation, which supports findings from previous studies. Given the high level of pesticide exposure and the high suicide risk in rural China, clarification of the causal mechanisms underlying this association and the development of appropriate interventions are priorities for public health and health policy.
Collapse
Affiliation(s)
- Jianmin Zhang
- Office of Mental Health, Zhejiang Provincial Tongde Hospital, Hangzhou, China
| | | | | | | | | |
Collapse
|
47
|
Raynes JK, Pearce FG, Meade SJ, Gerrard JA. Immobilization of organophosphate hydrolase on an amyloid fibril nanoscaffold: towards bioremediation and chemical detoxification. Biotechnol Prog 2010; 27:360-7. [PMID: 21485029 DOI: 10.1002/btpr.518] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/22/2010] [Indexed: 11/07/2022]
Abstract
Organophosphate hydrolase has potential as a bioremediation and chemical detoxification enzyme, but the problems of reusability and stability need to be addressed to use this enzyme on an industrial scale. Immobilizing the enzyme to a nanoscaffold may help to solve these problems. Amyloid fibrils generated from insulin and crystallin provided a novel nanoscaffold for the immobilization of organophosphate hydrolase, using glutaraldehyde as the crosslinking reagent. Electrophoretic, centrifugation, and temperature stability experiments, together with transmission electron microscopy were undertaken to verify that crosslinking had successfully occurred. The resulting fibrils remained active towards the substrate paraoxon and when immobilized to the insulin amyloid fibrils, the enzyme exhibited a significant (∼ 300%) increase in the relative temperature stability at 40, 45, and 50°C (as measured by comparing the initial enzyme activity to the activity remaining after heating), compared to free enzyme. This confirms that amyloid fibrils could provide a new type of nanoscaffold for enzyme immobilization.
Collapse
Affiliation(s)
- Jared K Raynes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
48
|
Kimura H, Tsukagoshi H, Aoyama Y, Nishina A, Yamaguchi T, Iijima A, Kato M, Kozawa K. Relationships between cellular events and signaling pathways in various pesticide-affected neural cells. TOXIN REV 2010. [DOI: 10.3109/15569543.2010.483533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Jokanović M, Kosanović M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:195-201. [PMID: 21787602 DOI: 10.1016/j.etap.2010.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/07/2010] [Accepted: 01/26/2010] [Indexed: 05/31/2023]
Abstract
In this paper we review neurotoxic disorders appearing in patients poisoned with organophosphorus pesticides. These compounds cause four important neurotoxic effects in humans: the cholinergic syndrome, the intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP) and chronic organophosphate-induced neuropsychiatric disorder (COPIND). Compared to the cholinergic syndrome, that causes millions of cases of poisoning each year, other disorders involve much smaller numbers of patients. The review is focused on the neurotoxic effects appearing after acute and chronic exposure to organophosphates with emphasis on clinical presentation, pathogenesis, molecular mechanisms, and possibilities for prevention/therapy.
Collapse
Affiliation(s)
- Milan Jokanović
- Faculty of Medicine, University of Nish, Nish, Serbia; Academy of Sciences and Arts of Republic Srpska, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
50
|
Repeated exposures to low-level chlorpyrifos results in impairments in sustained attention and increased impulsivity in rats. Neurotoxicol Teratol 2010; 32:415-24. [PMID: 20350597 DOI: 10.1016/j.ntt.2010.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/10/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Organophosphates such as chlorpyrifos (CPF) are among the most commonly used pesticides in the world. Therefore, it is not surprising that measurable levels of organophosphates (including CPF) are found in over 50% of fresh fruits, vegetables and grains that we consume and that approximately 80% of adults in the US have detectable levels of CPF metabolites in their urine. It is well known that acute exposure to organophosphates can cause cognitive deficits; however, the effects of daily or intermittent contact with low levels of organophosphates (often reflective of environmental exposures) are not well understood. The objective of this study was to determine if repeated low-level exposures to CPF impaired the performance of the 5-Choice Serial Reaction Time Task (5C-SRTT), an animal model of sustained attention. Adult rats were trained to stably perform the 5C-SRTT, then treated with vehicle or CPF 18.0 mg/kg daily for 14 consecutive days or every other day for 30 days. Behavioral testing occurred daily during the CPF-exposure period and throughout a 30 day washout period to assess recovery. All CPF-treated animals exhibited deficits in percent correct, an increase in omissions and premature responses without signs of impaired motivation or overt toxicity. Deficits in 5C-SRTT accuracy were apparent well into the 30 day washout period despite significant recovery of cholinesterase activity. These results indicate that repeated exposures to relatively low levels of chlorpyrifos lead to protracted impairments of sustained attention and an increase in impulsive behaviors in rats.
Collapse
|