1
|
Litov AG, Shchetinin AM, Kholodilov IS, Belova OA, Gadzhikurbanov MN, Ivannikova AY, Kovpak AA, Gushchin VA, Karganova GG. High-Throughput Sequencing Reveals Three Rhabdoviruses Persisting in the IRE/CTVM19 Cell Line. Viruses 2024; 16:576. [PMID: 38675918 PMCID: PMC11054507 DOI: 10.3390/v16040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Alexey M. Shchetinin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.M.S.); (V.A.G.)
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
| | - Anastasia A. Kovpak
- Laboratory of Biochemistry, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Vladimir A. Gushchin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.M.S.); (V.A.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Shehla S, Almutairi MM, Alouffi A, Tanaka T, Chang SC, Chen CC, Ali A. Molecular Survey of Rickettsia raoultii in Ticks Infesting Livestock from Pakistan with Notes on Pathogen Distribution in Palearctic and Oriental Regions. Vet Sci 2023; 10:636. [PMID: 37999459 PMCID: PMC10675567 DOI: 10.3390/vetsci10110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Ticks are hematophagous ectoparasites that transmit different pathogens such as Rickettsia spp. to domestic and wild animals as well as humans. Genetic characterizations of Rickettsia spp. from different regions of Pakistan are mostly based on one or two genetic markers and are confined to small sampling areas and limited host ranges. Therefore, this study aimed to molecularly screen and genetically characterize Rickettsia spp. in various tick species infesting camels, sheep, and goats. All the collected tick specimens were morphologically identified, and randomly selected tick species (148) were screened molecularly for the detection of Rickettsia spp. by amplifying three rickettsial DNA fragments, namely, the citrate-synthase gene (gltA), outer-membrane protein A (ompA), and outer-membrane protein B (ompB). After examining 261 hosts, 161 (61.7%) hosts were found infested by 564 ticks, including 287 (50.9%) nymphs, 171 (30.3%) females, and 106 (18.8%) males in five districts (Kohat, Dera Ismail Khan, Lower Dir, Bajaur, and Mansehra). The highest occurrence was noted for Hyalomma dromedarii (number = 72, 12.8%), followed by Haemaphysalis sulcata (n = 70, 12.4%), Rhipicephalus turanicus (n = 64, 11.3%), Rhipicephalus microplus (n = 55, 9.7%), Haemaphysalis cornupunctata (n = 49, 8.7%), Hyalomma turanicum (n = 48, 8.5%), Hyalomma isaaci (n = 45, 8.0%), Haemaphysalis montgomeryi (n = 44, 7.8%), Hyalomma anatolicum (n = 42, 7.5%), Haemaphysalis bispinosa (n = 38, 6.7%), and Rhipicephalus haemaphysaloides (n = 37, 6.6%). A subset of 148 ticks were tested, in which eight (5.4%) ticks, including four Hy. turanicum, two Ha. cornupunctata, one Ha. montgomeryi, and one Ha. bispinosa, were found positive for Rickettsia sp. The gltA, ompA, and ompB sequences revealed 100% identity and were phylogenetically clustered with Rickettsia raoultii reported in China, Russia, USA, Turkey, Denmark, Austria, Italy, and France. Additionally, various reports on R. raoultii from Palearctic and Oriental regions were summarized in this study. To the best of our knowledge, this is the first report regarding genetic characterization and phylogenetic analysis of R. raoultii from Pakistan. Further studies to investigate the association between Rickettsia spp. and ticks should be encouraged to apprise effective management of zoonotic consequences.
Collapse
Affiliation(s)
- Shehla Shehla
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan, Mardan 23200, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shun-Chung Chang
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan, Mardan 23200, Pakistan
| |
Collapse
|
3
|
Barbosa AD, Long M, Lee W, Austen JM, Cunneen M, Ratchford A, Burns B, Kumarasinghe P, Ben-Othman R, Kollmann TR, Stewart CR, Beaman M, Parry R, Hall R, Tabor A, O’Donovan J, Faddy HM, Collins M, Cheng AC, Stenos J, Graves S, Oskam CL, Ryan UM, Irwin PJ. The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens 2022; 11:1290. [PMID: 36365042 PMCID: PMC9694322 DOI: 10.3390/pathogens11111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
| | - Michelle Long
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Wenna Lee
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mike Cunneen
- The App Workshop Pty Ltd., Perth, WA 6000, Australia
| | - Andrew Ratchford
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- School of Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Brian Burns
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- Sydney Medical School, Sydney University, Camperdown, NSW 2006, Australia
| | - Prasad Kumarasinghe
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA 6150, Australia
- Western Dermatology, Hollywood Medical Centre, Nedlands, WA 6009, Australia
| | | | | | - Cameron R. Stewart
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Miles Beaman
- PathWest Laboratory Medicine, Murdoch, WA 6150, Australia
- Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA 6009, Australia
- School of Medicine, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Ala Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre of Animal Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justine O’Donovan
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
| | - Helen M. Faddy
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Petrie, QLD 4502, Australia
| | - Marjorie Collins
- School of Psychology, Murdoch University, Murdoch, WA 6150, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Charlotte L. Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Una M. Ryan
- Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Peter J. Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Bell-Sakyi L, Hartley CS, Khoo JJ, Forth JH, Palomar AM, Makepeace BL. New Cell Lines Derived from European Tick Species. Microorganisms 2022; 10:microorganisms10061086. [PMID: 35744603 PMCID: PMC9228755 DOI: 10.3390/microorganisms10061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Tick cell lines are important tools for research on ticks and the pathogens they transmit. Here, we report the establishment of ten new cell lines from European ticks of the genera Argas, Dermacentor, Hyalomma, Ixodes and Rhipicephalus originating from Germany and Spain. For each cell line, the method used to generate the primary culture, a morphological description of the cells and species confirmation by sequencing of the partial 16S rRNA gene are presented. Further molecular analysis of the two new Ixodes ricinus cell lines and three existing cell lines of the same species revealed genetic variation between cell lines derived from ticks collected in the same or nearby locations. Collectively, these new cell lines will support research into a wide range of viral, bacterial and protozoal tick-borne diseases prevalent in Europe.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
- Correspondence:
| | - Catherine S. Hartley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| | - Jing Jing Khoo
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| | - Jan Hendrik Forth
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany;
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ana M. Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, 26006 Logroño, La Rioja, Spain;
| | - Benjamin L. Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| |
Collapse
|
5
|
Palomar AM, Molina I, Bocanegra C, Portillo A, Salvador F, Moreno M, Oteo JA. Old zoonotic agents and novel variants of tick-borne microorganisms from Benguela (Angola), July 2017. Parasit Vectors 2022; 15:140. [PMID: 35449022 PMCID: PMC9022410 DOI: 10.1186/s13071-022-05238-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Ticks and tick-borne diseases constitute a real threat for the livestock industry, which is increasing in Angola. In addition, ticks are vectors of zoonoses of public health concern, and scarce information is available from this country. In an effort to contribute to the prevention of zoonotic infectious diseases affecting humans and animals, the molecular screening of certain tick-related microorganisms collected on cattle in Angola was performed under a ‘One Health’ scope. Methods Ticks collected from cattle in Cubal (Benguela Province, Angola) in July 2017 were analysed in pools using specific PCR assays for bacteria (Rickettsia, Anaplasmataceae, Borrelia, Coxiella and Spiroplasma) and protozoa (Theileria and Babesia) detection. Results A total of 124 tick specimens were grouped in 25 pools (two Amblyomma variegatum, three Hyalomma truncatum, 16 Rhipicephalus decoloratus, two Rhipicephalus duttoni, one Rhipicephalus evertsi mimeticus and one Rhipicephalus sp.). The amplified microorganisms were (pools): Rickettsia africae (two A. variegatum and one R. decoloratus), Rickettsia aeschlimannii (three H. truncatum), Ehrlichia spp. (six R. decoloratus), Coxiella spp. (all but H. truncatum), Francisella sp. (one H. truncatum), Spiroplasma sp. closely related to Spiroplasma ixodetis (three R. decoloratus), Babesia bigemina (two R. decoloratus) and Babesia spp. (two A. variegatum). The obtained nucleotide sequences from Ehrlichia spp., two Coxiella genotypes (from R. duttoni and Rhipicephalus sp.), Francisella sp. and Babesia spp. (from A. variegatum) reached low identities with known genetically characterized species. Conclusions This study demonstrates the circulation in Angola of the pathogen R. aeschlimannii and potential novel tick-related microorganisms belonging to Ehrlichia, Coxiella, Francisella, Spiroplasma and Babesia spp. and corroborates the presence of R. africae and B. bigemina. Our results should be considered in developing protocols for the management of fever of unknown origin and for veterinary practices. Further studies are required to evaluate the risk of tick-borne diseases in Angola. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05238-2.
Collapse
Affiliation(s)
- Ana M Palomar
- Infectious Diseases Department, Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital-Center of Biomedical Research From La Rioja (CIBIR), Piqueras, 98, 26006, Logroño, La Rioja, Spain
| | - Israel Molina
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, 08035, Barcelona, Spain
| | - Cristina Bocanegra
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, 08035, Barcelona, Spain
| | - Aránzazu Portillo
- Infectious Diseases Department, Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital-Center of Biomedical Research From La Rioja (CIBIR), Piqueras, 98, 26006, Logroño, La Rioja, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, 08035, Barcelona, Spain
| | | | - José A Oteo
- Infectious Diseases Department, Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital-Center of Biomedical Research From La Rioja (CIBIR), Piqueras, 98, 26006, Logroño, La Rioja, Spain.
| |
Collapse
|
6
|
da Silva NX, Dias TS, Vignoli JA, Dos Santos Machado L, Telleria EL, de Almeida Pereira VL, do Nascimento ER, da Cunha NC. First molecular detection of Spiroplasma spp. in ticks from horses in Brazil. Ticks Tick Borne Dis 2022; 13:101896. [PMID: 35051893 DOI: 10.1016/j.ttbdis.2022.101896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
The class Mollicutes comprises microorganisms that lack a cell wall, highly dependent on their host to survive. Within Mollicutes, the genus Spiroplasma comprises motile helical microorganisms associated with various insects and other arthropods. This study aimed to detect and characterize Mollicutes microorganisms in ticks of different species of veterinary importance, using molecular techniques. These ticks were collected from dogs, cats, cattle, and horses from Rio de Janeiro's metropolitan regions. They were morphologically classified and pooled according to their species for subsequent DNA extraction. These samples were tested by PCR using class Mollicutes-specific primers (16S rRNA) and positive amplicons were sequenced. The obtained DNA sequences were compared with other Mollicutes sequences deposited in GenBank. We found that four out of 745 (0.54%) of the tick pools were positive for members of the class Mollicutes, identified as Spiroplasma spp.; of the positive pools, one comprised Amblyomma sculptum adults and three comprised Dermacentor nitens nymphs. The present study describes Spiroplasma spp. in ticks in Brazil for the first time. Nevertheless, due to few reports on these microorganisms, further studies on epidemiology, virulence, and pathogenicity are needed.
Collapse
Affiliation(s)
- Nathalia Xavier da Silva
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil
| | - Thomas Salles Dias
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil
| | - Julia Alves Vignoli
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil
| | - Leandro Dos Santos Machado
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil
| | - Erich Loza Telleria
- Department of Parasitology - Faculty of Science, Charles University, Prague, Czech Republic
| | - Virginia Léo de Almeida Pereira
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil
| | - Elmiro Rosendo do Nascimento
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil
| | - Nathalie Costa da Cunha
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Faculdade de Veterinária, Rua Vital Brasil Filho, 64 - Vital Brasil, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Tongluan N, Shelton LT, Collins JH, Ingraffia P, McCormick G, Pena M, Sharma R, Lahiri R, Adams LB, Truman RW, Macaluso KR. Mycobacterium leprae Infection in Ticks and Tick-Derived Cells. Front Microbiol 2021; 12:761420. [PMID: 34777315 PMCID: PMC8578725 DOI: 10.3389/fmicb.2021.761420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Leprosy is a zoonosis in the southern United States involving humans and wild armadillos. The majority of patients presenting with zoonotic strains of Mycobacterium leprae note extensive outdoor activity but only rarely report any history of direct contact with wild armadillos. Whether M. leprae is transmitted to new vertebrate hosts through the environment independently or with the aid of other organisms, e.g., arthropod vectors, is a fundamental question in leprosy transmission. The objectives of this study were to assess the potential for ticks to transmit M. leprae and to test if viable M. leprae can be maintained in tick-derived cells. To evaluate tick transmission, nymphal Amblyomma maculatum ticks were injected with isolated M. leprae. Infection and transmission were assessed by qPCR. Ticks infected as nymphs harbored M. leprae through vertical transmission events (nymph to adult and adult to progeny); and, horizontal transmission of M. leprae to a vertebrate host was observed. Mycobacterium leprae DNA was detected in multiple tick life cycle stages. Likewise, freshly isolated M. leprae (Thai-53) was used to infect a tick-derived cell line, and enumeration and bacterial viability were assessed at individual time points for up to 49 days. Evaluations of the viability of long-term cultured M. leprae (Thai-53 and Br4923) were also assessed in a mouse model. Tick-derived cells were able to maintain viable M. leprae over the 49-day course of infection and M. leprae remained infectious within tick cells for at least 300 days. The results of this study suggest that ticks themselves might serve as a vector for the transmission of M. leprae and that tick cells are suitable for maintenance of viable M. leprae for an extended period of time.
Collapse
Affiliation(s)
- Natthida Tongluan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Layne T. Shelton
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - J. Hunter Collins
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Patrick Ingraffia
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Gregory McCormick
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Maria Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Rahul Sharma
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Linda B. Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Richard W. Truman
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Kevin R. Macaluso
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
8
|
Thorpe CJ, Wang XR, Munderloh UG, Kurtti TJ. Tick Cell Culture Analysis of Growth Dynamics and Cellular Tropism of Rickettsia buchneri, an Endosymbiont of the Blacklegged Tick, Ixodes scapularis. INSECTS 2021; 12:968. [PMID: 34821769 PMCID: PMC8626015 DOI: 10.3390/insects12110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The blacklegged tick, Ixodes scapularis, a species of significant importance to human and animal health, harbors an endosymbiont Rickettsia buchneri sensu stricto. The symbiont is largely restricted to the ovaries, but all life stages can harbor various quantities or lack R. buchneri entirely. The endosymbiont is cultivable in cell lines isolated from embryos of Ixodes ticks. Rickettsia buchneri most readily grows and is maintained in the cell line IRE11 from the European tick, Ixodes ricinus. The line was characterized by light and electron microscopy and used to analyze the growth dynamics of wildtype and GFPuv-expressing R. buchneri. qPCR indicated that the genome copy doubling time in IRE11 was >7 days. Measurements of fluorescence using a plate reader indicated that the amount of green fluorescent protein doubled every 11 days. Two 23S rRNA probes were tested via RNA FISH on rickettsiae grown in vitro and adapted to evaluate the tissue tropism of R. buchneri in field-collected female I. scapularis. We observed strong positive signals of R. buchneri in the ovaries and surrounding the nucleus of the developing oocytes. Tissue tropism in I. scapularis and in vitro growth dynamics strengthen the contemporary understanding of R. buchneri as a transovarially transmitted, non-pathogenic endosymbiont.
Collapse
Affiliation(s)
- Cody J. Thorpe
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108, USA; (X.-R.W.); (U.G.M.)
| | | | | | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108, USA; (X.-R.W.); (U.G.M.)
| |
Collapse
|
9
|
Salata C, Moutailler S, Attoui H, Zweygarth E, Decker L, Bell-Sakyi L. How relevant are in vitro culture models for study of tick-pathogen interactions? Pathog Glob Health 2021; 115:437-455. [PMID: 34190676 PMCID: PMC8635668 DOI: 10.1080/20477724.2021.1944539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although tick-borne infectious diseases threaten human and animal health worldwide, with constantly increasing incidence, little knowledge is available regarding vector-pathogen interactions and pathogen transmission. In vivo laboratory study of these subjects using live, intact ticks is expensive, labor-intensive, and challenging from the points of view of biosafety and ethics. Several in vitro models have been developed, including over 70 continuous cell lines derived from multiple tick species and a variety of tick organ culture systems, facilitating many research activities. However, some limitations have to be considered in the translation of the results from the in vitro environment to the in vivo situation of live, intact ticks, and vertebrate hosts. In this review, we describe the available in vitro models and selected results from their application to the study of tick-borne viruses, bacteria, and protozoa, where possible comparing these results to studies in live, intact ticks. Finally, we highlight the strengths and weaknesses of in vitro tick culture models and their essential role in tick-borne pathogen research.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Moutailler
- Laboratoire De Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Houssam Attoui
- Department of Animal Health, UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Erich Zweygarth
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Lygia Decker
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. INSECTS 2021; 12:insects12100871. [PMID: 34680640 PMCID: PMC8539649 DOI: 10.3390/insects12100871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Diverse strains of Wolbachia bacteria, carried by many arthropods, as well as some nematodes, interact in many different ways with their hosts. These include male killing, reproductive incompatibility, nutritional supplementation and suppression or enhancement of the transmission of diseases such as dengue and malaria. Consequently, Wolbachia have an important role to play in novel strategies to control human and livestock diseases and their vectors. Similarly, cell lines derived from insect hosts of Wolbachia constitute valuable research tools in this field. During the generation of novel cell lines from mosquito and sand fly vectors, we isolated two strains of Wolbachia and demonstrated their infectivity for cells from a range of other insects and ticks. These new insect cell lines and Wolbachia strains will aid in the fight against mosquitoes, sand flies and, potentially, ticks and the diseases that these arthropods transmit to humans and their domestic animals. Abstract Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host–endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.
Collapse
|
11
|
Replication Kinetics of Rickettsia raoultii in Tick Cell Lines. Microorganisms 2021; 9:microorganisms9071370. [PMID: 34202443 PMCID: PMC8303373 DOI: 10.3390/microorganisms9071370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Rickettsia raoultii is one of the causative agents of tick-borne lymphadenopathy in humans. This bacterium was previously isolated and propagated in tick cell lines; however, the growth characteristics have not been investigated. Here, we present the replication kinetics of R. raoultii in cell lines derived from different tick genera (BME/CTVM23, RSE/PILS35, and IDE8). Tick cell cultures were infected in duplicate with cryopreserved R. raoultii prepared from homologous cell lines. By 12–14 days post infection, 100% of the cells were infected, as visualized in Giemsa-stained cytocentrifuge smears. R. raoultii growth curves, determined by rickettsiae-specific gltA qPCR, exhibited lag, exponential, stationary and death phases. Exponential phases of 4–12 days and generation times of 0.9–2.6 days were observed. R. raoultii in BME/CTVM23 and RSE/PILS35 cultures showed, respectively, 39.5- and 37.1-fold increases compared to the inoculum. In contrast, multiplication of R. raoultii in the IDE8 cultures was 110.1-fold greater than the inoculum with a 7-day stationary phase. These findings suggest variation in the growth kinetics of R. raoultii in the different tick cell lines tested, amongst which IDE8 cells could tolerate the highest levels of R. raoultii replication. Further studies of R. raoultii are needed for a better understanding of its persistence within tick populations.
Collapse
|
12
|
Luu L, Palomar AM, Farrington G, Schilling AK, Premchand-Branker S, McGarry J, Makepeace BL, Meredith A, Bell-Sakyi L. Bacterial Pathogens and Symbionts Harboured by Ixodes ricinus Ticks Parasitising Red Squirrels in the United Kingdom. Pathogens 2021; 10:pathogens10040458. [PMID: 33920445 PMCID: PMC8070177 DOI: 10.3390/pathogens10040458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Red squirrels (Sciurus vulgaris) are native to most of Eurasia; in much of the United Kingdom, they have been supplanted by the non-native grey squirrel, and are considered an endangered species. Very little is known about the range of tick-borne pathogens to which UK red squirrels are exposed. As part of trap-and-release surveys examining prevalence of Mycobacterium spp. in red squirrel populations on two UK islands, Ixodes ricinus ticks were removed from squirrels and PCR screened for Borrelia spp., intracellular arthropod-borne bacteria and the parasitic wasp Ixodiphagus hookeri. At both sites, the most commonly encountered tick-transmitted bacterium was Borrelia burgdorferi sensu lato (overall minimum prevalence 12.7%), followed by Anaplasma phagocytophilum (overall minimum prevalence 1.6%). Single ticks infected with Spiroplasma were found at both sites, and single ticks infected with Borrelia miyamotoi or an Ehrlichia sp. at one site. Ticks harbouring Wolbachia (overall minimum prevalence 15.2%) were all positive for I. hookeri. Our study shows that UK red squirrels are potentially exposed to a variety of bacterial pathogens via feeding ticks. The effects on the health and survival of this already vulnerable wildlife species are unknown, and further studies are needed to evaluate the threat posed to red squirrels by Borrelia and other tick-borne pathogens.
Collapse
Affiliation(s)
- Lisa Luu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (L.L.); (G.F.); (J.M.); (B.L.M.)
| | - Ana M. Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, 26006 Logroño, Spain;
| | - Gemma Farrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (L.L.); (G.F.); (J.M.); (B.L.M.)
| | - Anna-Katarina Schilling
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (A.-K.S.); (A.M.)
| | - Shonnette Premchand-Branker
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - John McGarry
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (L.L.); (G.F.); (J.M.); (B.L.M.)
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (L.L.); (G.F.); (J.M.); (B.L.M.)
| | - Anna Meredith
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (A.-K.S.); (A.M.)
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (L.L.); (G.F.); (J.M.); (B.L.M.)
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
- Correspondence:
| |
Collapse
|
13
|
Beliavskaia A, Hönig V, Erhart J, Vyhlidalova T, Palus M, Cerny J, Kozlova I, Ruzek D, Palomar AM, Bell-Sakyi L. Spiroplasma Isolated From Third-Generation Laboratory Colony Ixodes persulcatus Ticks. Front Vet Sci 2021; 8:659786. [PMID: 33842580 PMCID: PMC8032855 DOI: 10.3389/fvets.2021.659786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Jan Erhart
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Tereza Vyhlidalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Jiri Cerny
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
| | - Irina Kozlova
- Science Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Ana M Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Al-Khafaji AM, Bell-Sakyi L, Fracasso G, Luu L, Heylen D, Matthysen E, Oteo JA, Palomar AM. Isolation of Candidatus Rickettsia vini from Belgian Ixodes arboricola ticks and propagation in tick cell lines. Ticks Tick Borne Dis 2020; 11:101511. [PMID: 32993931 PMCID: PMC7545694 DOI: 10.1016/j.ttbdis.2020.101511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Candidatus Rickettsia vini was originally detected in Ixodes arboricola ticks from Spain, and subsequently reported from several other Western Palearctic countries including Belgium. Recently, the bacterium was isolated in mammalian (Vero) cell culture from macerated male I. arboricola from Czech Republic, but there have been no reports of propagation in tick cells. Here we report isolation in a tick cell line of three strains of Ca. R. vini from I. arboricola collected from nests of great tits (Parus major) in Belgium. Internal organs of one male and two engorged female ticks were dissected aseptically, added to cultures of the Rhipicephalus microplus cell line BME/CTVM23 and incubated at 28 °C. Rickettsia-like bacteria were first seen in Giemsa-stained cytocentrifuge smears between 2 and 15 weeks later. Two of the isolates grew rapidly, destroying the tick cells within 2–4 weeks of onward passage in BME/CTVM23 cells, while the third isolate grew much more slowly, only requiring subculture at 4−5-month intervals. PCR amplification of bacterial 16S rRNA and Rickettsia gltA, sca4, ompB, ompA and 17-kDa genes revealed that all three isolates were Ca. R. vini, with 100 % identity to each other and to published Ca. R. vini sequences from other geographical locations. Transmission electron microscopy revealed typical single Rickettsia bacteria in the cytoplasm of BME/CTVM23 cells. The Ca. R. vini strain isolated from the male I. arboricola tick, designated Boshoek1, was tested for ability to grow in a panel of Ixodes ricinus, Ixodes scapularis and R. microplus cell lines and in Vero cells. The Boshoek1 strain grew rapidly, causing severe cytopathic effect, in the R. microplus line BME26, the I. ricinus line IRE11 and Vero cells, more slowly in the I. ricinus line IRE/CTVM19, possibly established a low-level infection in the I. ricinus line IRE/CTVM20, and failed to infect cells of any of four I. scapularis lines over a 12-week observation period. This study confirmed the applicability of the simple tick organ-cell line co-cultivation technique for isolation of tick-borne Rickettsia spp. using BME/CTVM23 cells.
Collapse
Affiliation(s)
- Alaa M Al-Khafaji
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK; College of Veterinary Medicine, University of Al-Qadisiyah, Qadisiyah Province, Iraq.
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Gerardo Fracasso
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lisa Luu
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Dieter Heylen
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Ecology and Evolutionary Biology, Princeton University, M26 Guyot Hall, Princeton, NJ, 08544, USA; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Erik Matthysen
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - José A Oteo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, C/ Piqueras, 98, Logroño, 26006, La Rioja, Spain.
| | - Ana M Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, C/ Piqueras, 98, Logroño, 26006, La Rioja, Spain.
| |
Collapse
|
15
|
Isolation and Propagation of Laboratory Strains and a Novel Flea-Derived Field Strain of Wolbachia in Tick Cell Lines. Microorganisms 2020; 8:microorganisms8070988. [PMID: 32630209 PMCID: PMC7409115 DOI: 10.3390/microorganisms8070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Wolbachia are intracellular endosymbionts of several invertebrate taxa, including insects and nematodes. Although Wolbachia DNA has been detected in ticks, its presence is generally associated with parasitism by insects. To determine whether or not Wolbachia can infect and grow in tick cells, cell lines from three tick species, Ixodes scapularis, Ixodes ricinus and Rhipicephalus microplus, were inoculated with Wolbachia strains wStri and wAlbB isolated from mosquito cell lines. Homogenates prepared from fleas collected from cats in Malaysia were inoculated into an I. scapularis cell line. Bacterial growth and identity were monitored by microscopy and PCR amplification and sequencing of fragments of Wolbachia genes. The wStri strain infected Ixodes spp. cells and was maintained through 29 passages. The wAlbB strain successfully infected Ixodes spp. and R. microplus cells and was maintained through 2–5 passages. A novel strain of Wolbachia belonging to the supergroup F, designated wCfeF, was isolated in I. scapularis cells from a pool of Ctenocephalides sp. cat fleas and maintained in vitro through two passages over nine months. This is the first confirmed isolation of a Wolbachia strain from a flea and the first isolation of any Wolbachia strain outside the “pandemic” A and B supergroups. The study demonstrates that tick cells can host multiple Wolbachia strains, and can be added to panels of insect cell lines to improve success rates in isolation of field strains of Wolbachia.
Collapse
|
16
|
Luu L, Bown KJ, Palomar AM, Kazimírová M, Bell-Sakyi L. Isolation and partial characterisation of a novel Trypanosoma from the tick Ixodes ricinus. Ticks Tick Borne Dis 2020; 11:101501. [PMID: 32723658 PMCID: PMC7397511 DOI: 10.1016/j.ttbdis.2020.101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 12/03/2022]
Abstract
Trypanosomes have long been recognised as being amongst the most important protozoan parasites of vertebrates, from both medical and veterinary perspectives. Whilst numerous insect species have been identified as vectors, the role of ticks is less well understood. Here we report the isolation and partial molecular characterisation of a novel trypanosome from questing Ixodes ricinus ticks collected in Slovakia. The trypanosome was isolated in tick cell culture and then partially characterised by microscopy and amplification of fragments of the 18S rRNA and 24Sα rDNA genes. Analysis of the resultant sequences suggests that the trypanosome designated as Trypanosoma sp. Bratislava1 may be a new species closely related to several species or strains of trypanosomes isolated from, or detected in, ticks in South America and Asia, and to Trypanosoma caninum isolated from dogs in Brazil. This study highlights the potential involvement of ixodid ticks in the epidemiology of trypanosomes, as well as the use of tick cell lines for isolation of such tick-borne protozoa. Further studies are required to investigate the epidemiology, transmission and life cycle of this putative novel species.
Collapse
Affiliation(s)
- Lisa Luu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK.
| | - Kevin J Bown
- School of Science, Engineering and Environment, G32 Peel Building, University of Salford, Salford M5 4WT, UK.
| | - Ana M Palomar
- Centre of Rickettsiosis and Arthropod-borne Diseases, CIBIR, C/ Piqueras, 98, Logroño 26006, La Rioja, Spain.
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, SK-84506 Bratislava, Slovakia.
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|