1
|
Duron O. Nutritional symbiosis in ticks: singularities of the genus Ixodes. Trends Parasitol 2024; 40:696-706. [PMID: 38942646 DOI: 10.1016/j.pt.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Symbiosis with intracellular bacteria is essential for the nutrition of ticks, particularly through the biosynthesis of B vitamins. Yet, ticks of the genus Ixodes, which include major vectors of human pathogens, lack the nutritional symbionts usually found in other tick genera. This paradox raises questions about the mechanisms that Ixodes ticks use to prevent nutritional deficiencies. Nonetheless, Ixodes ticks commonly harbor other symbionts belonging to the order Rickettsiales. Although these obligate intracellular bacteria are primarily known as human pathogens, Rickettsiales symbionts often dominate the Ixodes microbial community without causing diseases. They also significantly influence Ixodes physiology, synthesize key B vitamins, and are crucial for immatures. These findings underscore unique associations between Rickettsiales and Ixodes ticks distinct from other tick genera.
Collapse
Affiliation(s)
- Olivier Duron
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Montpellier, France.
| |
Collapse
|
2
|
Amoros J, Fattar N, Buysse M, Louni M, Bertaux J, Bouchon D, Duron O. Reassessment of the genetic basis of natural rifampin resistance in the genus Rickettsia. Microbiologyopen 2024; 13:e1431. [PMID: 39082505 PMCID: PMC11289727 DOI: 10.1002/mbo3.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024] Open
Abstract
Rickettsia, a genus of obligate intracellular bacteria, includes species that cause significant human diseases. This study challenges previous claims that the Leucine-973 residue in the RNA polymerase beta subunit is the primary determinant of rifampin resistance in Rickettsia. We investigated a previously untested Rickettsia species, R. lusitaniae, from the Transitional group and found it susceptible to rifampin, despite possessing the Leu-973 residue. Interestingly, we observed the conservation of this residue in several rifampin-susceptible species across most Rickettsia phylogenetic groups. Comparative genomics revealed potential alternative resistance mechanisms, including additional amino acid variants that could hinder rifampin binding and genes that could facilitate rifampin detoxification through efflux pumps. Importantly, the evolutionary history of Rickettsia genomes indicates that the emergence of natural rifampin resistance is phylogenetically constrained within the genus, originating from ancient genetic features shared among a unique set of closely related Rickettsia species. Phylogenetic patterns appear to be the most reliable predictors of natural rifampin resistance, which is confined to a distinct monophyletic subclade known as Massiliae. The distinctive features of the RNA polymerase beta subunit in certain untested Rickettsia species suggest that R. raoultii, R. amblyommatis, R. gravesii, and R. kotlanii may also be naturally rifampin-resistant species.
Collapse
Affiliation(s)
- Julien Amoros
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Noor Fattar
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Marie Buysse
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | | | | | | | - Olivier Duron
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| |
Collapse
|
3
|
Cibichakravarthy B, Shaked N, Kapri E, Gottlieb Y. Endosymbiont-derived metabolites are essential for tick host reproductive fitness. mSphere 2024; 9:e0069323. [PMID: 38953331 PMCID: PMC11288044 DOI: 10.1128/msphere.00693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Ticks, like other obligatory blood-feeding arthropods, rely on endosymbiotic bacteria to supplement their diet with B vitamins lacking in blood. It has been suggested that additional metabolites such as L-proline may be involved in this nutritional symbiosis, but this has yet to be tested. Here, we studied the metabolite-based interaction between the brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) and its Coxiella-like endosymbionts (CLE). We measured amino acid titers and tested the effect of B vitamins and L-proline supplementation on the fitness of CLE-suppressed female ticks, displaying low titers of CLE. We found higher titers of L-proline in the symbiont-hosting organs of unfed ticks and in engorged blood-fed whole ticks. Supplementation of B vitamins increased the hatching rate of CLE-suppressed ticks; this effect appears to be stronger when L-proline is added. Our results indicate that L-proline is produced by CLE, and we suggest that CLE is essential in states of high metabolic demand that affects tick reproductive fitness, such as oogenesis and embryonic development. These findings demonstrate the broader effect of nutritional symbionts on their hosts and may potentially contribute to the control of ticks and tick-borne diseases. IMPORTANCE Coxiella-like endosymbionts (CLE) are essential to the brown dog tick Rhipicephalus sanguineus for feeding and reproduction. This symbiosis is based on the supplementation of B vitamins lacking in the blood diet. The involvement of additional metabolites has been suggested, but no experimental evidence is available as yet to confirm a metabolic interaction. Here, we show that B vitamins and L-proline, both of which contribute to tick reproductive fitness, are produced by CLE. These findings demonstrate the importance of symbiont-derived metabolites for the host's persistence and shed light on the complex bacteria-host metabolic interaction, which can be channeled to manipulate and control tick populations.
Collapse
Affiliation(s)
- Balasubramanian Cibichakravarthy
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Neta Shaked
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Kapri
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuval Gottlieb
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Zhong Z, Wang K, Wang J. Tick symbiosis. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101163. [PMID: 38244689 DOI: 10.1016/j.cois.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As obligate blood-feeders, ticks serve as vectors for a variety of pathogens that pose threats on both human and livestock health. The microbiota that ticks harbor play important roles in influencing tick nutrition, development, reproduction, and vector. These microbes also affect the capacity of ticks to transmit pathogens (vector competence). Therefore, comprehending the functions of tick microbiota will help in developing novel and effective tick control strategies. Here, we summarize the effects of main tick symbiotic bacteria on tick physiology and vector competency.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Kun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Ohlopkova OV, Yakovlev SA, Emmanuel K, Kabanov AA, Odnoshevsky DA, Kartashov MY, Moshkin AD, Tuchkov IV, Nosov NY, Kritsky AA, Agalakova MA, Davidyuk YN, Khaiboullina SF, Morzunov SP, N'Fally M, Bumbali S, Camara MF, Boiro MY, Agafonov AP, Gavrilova EV, Maksyutov RA. Epidemiology of Zoonotic Coxiella burnetii in The Republic of Guinea. Microorganisms 2023; 11:1433. [PMID: 37374935 DOI: 10.3390/microorganisms11061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Q fever is a zoonotic infectious disease characterized by fever, malaise, chills, significant weakness, and muscle pain. In some cases, the disease can become chronic and affect the inner membranes of the heart, such as the valves, leading to endocarditis and a high risk of death. Coxiella burnetii (C. burnetii) is the primary causative agent of Q fever in humans. This study aims to monitor the presence of C. burnetii in ticks collected from small mammals and cattle in the Republic of Guinea (RG). METHODS Rodents were trapped in the Kindia region of RG during 2019-2020, and ticks were collected from cattle in six regions of RG. Total DNA was extracted using a commercial kit (RIBO-prep, InterLabService, Russia) following the manufacturer's instructions. Real-time PCR amplification was conducted using the kit (AmpliSens Coxiella burnetii-FL, InterLabService, Russia) to detect C. burnetii DNA. RESULTS AND CONCLUSIONS Bacterial DNA was detected in 11 out of 750 (1.4%) small mammals and 695 out of 9620 (7.2%) tick samples. The high number of infected ticks (7.2%) suggests that they are the main transmitters of C. burnetii in RG. The DNA was detected in the liver and spleen of a Guinea multimammate mouse, Mastomys erythroleucus. These findings demonstrate that C. burnetii is zoonotic in RG, and measures should be taken to monitor the bacteria's dynamics and tick prevalence in the rodent population.
Collapse
Affiliation(s)
- Olesia V Ohlopkova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Sergey A Yakovlev
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
| | - Kabwe Emmanuel
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Alexey A Kabanov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Dmitry A Odnoshevsky
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Mikhail Yu Kartashov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Alexey D Moshkin
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Igor V Tuchkov
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
| | - Nikita Yu Nosov
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Moscow 107076, Russia
| | - Andrey A Kritsky
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
- Limited Liability Company, «Biotech Campus», Moscow 117437, Russia
| | - Milana A Agalakova
- Faculty of Preventive Medicine, Ural State Medical University, Yekaterinburg 620014, Russia
- Limited Liability Company, «Quality Med», Yekaterinburg 105318, Russia
| | - Yuriy N Davidyuk
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Svetlana F Khaiboullina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | | | - Magasuba N'Fally
- Faculty of Medicine, Pharmacy and Dentistry, University Gamal Abdel Nasser, Conakry 001, Guinea
| | - Sanaba Bumbali
- Research Institute of Applied Biology of Guinea, Kindia 100, Guinea
| | | | | | - Alexander P Agafonov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Elena V Gavrilova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| |
Collapse
|
6
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
7
|
Chirgwin E, Yang Q, Umina PA, Gill A, Soleimannejad S, Gu X, Ross P, Hoffmann AA. Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts. PEST MANAGEMENT SCIENCE 2022; 78:4709-4718. [PMID: 35866313 DOI: 10.1002/ps.7091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND While several agricultural fungicides are known to directly affect invertebrate pests, including aphids, the mechanisms involved are often unknown. One hypothesis is that fungicides with antibacterial activity suppress bacterial endosymbionts present in aphids which are important for aphid survival. Endosymbiont-related effects are expected to be transgenerational, given that these bacteria are maternally inherited. Here, we test for these associations using three fungicides (chlorothalonil, pyraclostrobin and trifloxystrobin) against the bird cherry-oat aphid, Rhopalosiphum padi, using a microinjected strain that carried both the primary endosymbiont Buchnera and the secondary endosymbiont Rickettsiella. RESULTS We show that the fungicide chlorothalonil did not cause an immediate effect on aphid survival, whereas both strobilurin fungicides (pyraclostrobin and trifloxystrobin) decreased survival after 48 h exposure. However, chlorothalonil substantially reduced the lifespan and fecundity of the F1 generation. Trifloxystrobin also reduced the lifespan and fecundity of F1 offspring, however, pyraclostrobin did not affect these traits. None of the fungicides consistently altered the density of Buchnera or Rickettsiella in whole aphids. CONCLUSIONS Our results suggest fungicides have sublethal impacts on R. padi that are not fully realized until the generation after exposure, and these sublethal impacts are not associated with the density of endosymbionts harbored by R. padi. However, we cannot rule out other effects of fungicides on endosymbionts that might influence fitness, like changes in their tissue distribution. We discuss these results within the context of fungicidal effects on aphid suppression across generations and point to potential field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Qiong Yang
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Paul A Umina
- Cesar Australia, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Alex Gill
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | | - Xinyue Gu
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Perran Ross
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Zhang XY, Li SS, Chen KL, Yang C, Zhou XJ, Liu JZ, Zhang YK. Growth dynamics and tissue localization of a Coxiella-like endosymbiont in the tick Haemaphysalis longicornis. Ticks Tick Borne Dis 2022; 13:102005. [PMID: 35868196 DOI: 10.1016/j.ttbdis.2022.102005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/26/2022] [Accepted: 07/16/2022] [Indexed: 12/30/2022]
Abstract
A Coxiella-like endosymbiont (Coxiella-LE hereinafter) stably infects and influences Haemaphysalis longicornis development, indicating a mutualistic relationship of Coxiella-LE and ticks. To further elucidate the patterns of growth dynamics and tissue localization of Coxiella-LE in H. longicornis, 16S rRNA high-throughput sequencing, quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) were used in this study. The density of Coxiella-LE varied among different tick life stages, and fed female ticks had the highest density, followed by unfed female and unfed larval ticks. In the four organs that were dissected from fed female ticks, the ovary carried the highest density of Coxiella-LE, which was significantly different from salivary glands, midgut and Malpighian tubules. The high abundance of Coxiella-LE in fed female ticks and in the ovaries of fed female ticks in the bacterial microbiota analyses further confirmed that Coxiella-LE rapidly proliferates in the ovary after blood feeding. The ovaries continued to develop after engorgement and oviposition began on day 5, with a significant decrease in the density of Coxiella-LE in the ovaries occurring on day 7. FISH results indicated that Coxiella-LE is mainly colonized in the cytoplasm of the oocyte and proliferates with oogenesis. Coxiella-LE was expelled from the body with the mature oocyte, ensuring its vertical transmission. In the Malpighian tubules at different days after engorgement, the white flocculent materials were increasing, and the density of Coxiella-LE raised significantly on day 7. Unlike the localization pattern in the ovary, Coxiella-LE was initially distributed in a mass and continually increased during the development of Malpighian tubules until it filled the Malpighian tubules. These findings provide new insights on the growth dynamics and tissue localization of Coxiella-LE in ticks and are useful for further investigation on the interactions of symbiont and ticks .
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, Hebei 053000, China
| | - Kai-Li Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Chen Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xue-Jiao Zhou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
9
|
Usananan P, Kaenkan W, Sudsangiem R, Baimai V, Trinachartvanit W, Ahantarig A. Phylogenetic Studies of Coxiella-Like Bacteria and Spotted Fever Group Rickettsiae in Ticks Collected From Vegetation in Chaiyaphum Province, Thailand. Front Vet Sci 2022; 9:849893. [PMID: 35464383 PMCID: PMC9020810 DOI: 10.3389/fvets.2022.849893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks can transmit a wide variety of pathogens, including bacteria. Here, we report the detection of tick-associated bacteria in Chaiyaphum Province, northeastern Thailand. There have been few reports of tick-borne bacterial pathogens in the study areas, which are evergreen forests dominated by plateaus at elevations of approximately 1,000 m. In total, 94 ticks were collected from vegetation. They were screened for the presence of Coxiella, Francisella, Rickettsia, and Borrelia bacteria using PCR assays. In this study, we found ticks from two genera, Haemaphysalis and Amblyomma, that were positive for Coxiella-like bacteria (CLB) and Rickettsia. Francisella and Borrelia spp. were not detected in these two tick genera. The results revealed the evolutionary relationships of CLB in Amblyomma testudinarium, Haemaphysalis lagrangei, and Haemaphysalis obesa ticks using the 16S rRNA and rpoB markers, which clustered together with known isolates of ticks from the same genera. In contrast, the groEL marker showed different results. On the basis of the groEL phylogenetic analysis and BLAST results, three groups of CLB were found: (1) CLB from A. testudinarium grouped as a sister clade to CLB from Ixodes ricinus; (2) CLB from Haemaphysalis lagrangei was distantly related to CLB from Haemaphysalis wellingtoni; and (3) CLB from A. testudinarium grouped as sister clade to CLB from Amblyomma from French Guiana and Brazil. For Rickettsia studies, phylogenetic trees of the gltA, ompB, and sca4 genes revealed two groups of Spotted Fever Group (SFG) Rickettsiae: (1) SFG Rickettsiae that formed a sister clade with Rickettsia tamurae AT-1 (belong to the Rickettsia helvetica subgroup) in A. testudinarium and (2) SFG Rickettsiae that formed a distantly related group to Rickettsia rhipicephali 3-7-female6-CWPP (belong to the Rickettsia massiliae subgroup) in A. testudinarium. This study expanded our knowledge of the diversity of tick-borne Coxiella and Rickettsia bacteria. The pathogenic roles of these bacteria also need to be investigated further.
Collapse
Affiliation(s)
- Pawiga Usananan
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Warissara Kaenkan
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ronnayuth Sudsangiem
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Visut Baimai
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Arunee Ahantarig
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Arunee Ahantarig
| |
Collapse
|
10
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Buysse M, Floriano AM, Gottlieb Y, Nardi T, Comandatore F, Olivieri E, Giannetto A, Palomar AM, Makepeace BL, Bazzocchi C, Cafiso A, Sassera D, Duron O. A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum. eLife 2021; 10:e72747. [PMID: 34951405 PMCID: PMC8709577 DOI: 10.7554/elife.72747] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.
Collapse
Affiliation(s)
- Marie Buysse
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Univ. Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD)MontpellierFrance
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, FranceMontpellierFrance
| | - Anna Maria Floriano
- Department of Biology and Biotechnology “L. Spallanzani”, University of PaviaPaviaItaly
- Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovotIsrael
| | - Tiago Nardi
- Department of Biology and Biotechnology “L. Spallanzani”, University of PaviaPaviaItaly
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences L. Sacco and Pediatric Clinical Research Center, University of MilanMilanItaly
| | - Emanuela Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of PaviaPaviaItaly
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessinaItaly
| | - Ana M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), San Pedro University Hospital- Center of Biomedical Research from La Rioja (CIBIR)LogroñoSpain
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology “L. Spallanzani”, University of PaviaPaviaItaly
| | - Olivier Duron
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Univ. Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD)MontpellierFrance
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, FranceMontpellierFrance
| |
Collapse
|
12
|
Atelerix algirus, the North African Hedgehog: Suitable Wild Host for Infected Ticks and Fleas and Reservoir of Vector-Borne Pathogens in Tunisia. Pathogens 2021; 10:pathogens10080953. [PMID: 34451417 PMCID: PMC8399139 DOI: 10.3390/pathogens10080953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Small wild mammals are an important element in the emergence and transmission of vector-borne pathogens (VBPs). Among these species, hedgehogs have been found to be a reservoir of VBPs and host of arthropod vectors. Surveillance of VBPs in wildlife and their arthropods are crucial in a one health context. We conducted an exploratory study to screen Atelerix algirus hedgehogs and their infesting ticks and fleas for VBPs using a high throughput microfluidic real-time PCR system. Tested biopsies from hedgehogs were found to be naturally infected by Theileria youngi, Hepatozoon sp., Ehrlichia ewingii, Coxiella burnetii, and Candidatus Ehrlichia shimanensis. Similarly, Haemaphysalis erinacei and Rhipicephalus sanguineus tick species were infected by Ehrlichia ewingii, Rickettsia spp., Rickettsia massiliae, Borrelia sp., Coxiella burnetii, Rickettsia lusitaniae and Anaplasma sp. Archaeopsylla erinacei fleas were infected by Rickettsia asembonensis, Coxiella burnetii, and Rickettsia massiliae. Co-infections by two and three pathogens were detected in hedgehogs and infesting ticks and fleas. The microfluidic real-time PCR system enabled us not only to detect new and unexpected pathogens, but also to identify co-infections in hedgehogs, ticks, and fleas. We suggest that hedgehogs may play a reservoir role for VBPs in Tunisia and contribute to maintaining enzootic pathogen cycles via arthropod vectors.
Collapse
|
13
|
Chisu V, Mura L, Foxi C, Masala G. Coxiellaceae in Ticks from Human, Domestic and Wild Hosts from Sardinia, Italy: High Diversity of Coxiella-like Endosymbionts. Acta Parasitol 2021; 66:654-663. [PMID: 33492605 DOI: 10.1007/s11686-020-00324-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Coxiella burnetii is known for its potential as veterinary and human bacterial pathogen. The bacteria have been described in ticks, but their role in transmission of Q fever in humans is considered low. Coxiella endosymbionts closely related to C. burnetii have been also isolated from an extensive range of tick species and evidence is growing that these endosymbionts could be linked to human bacteremia. The aim of this study was to get new information on the presence of Coxiella species in ticks infesting wild and domestic hosts in Sardinia, Italy. METHODS Here, 138 ticks collected from the study area were analyzed for the presence of C. burnetii and Coxiella-like bacteria by polymerase chain reaction (PCR), sequencing and philogenetic analyses using a set of primers targeting the 16S rRNA gene. RESULTS DNA of Coxiella species was detected in 69% of the total ticks examined. Based on phylogenetic analysis, the 16S rRNA Coxiella genotypes identified in this study grouped in strongly supported monophyletic clades with identified reference sequences of CLEs detected from Rhipicephalus, Dermacentor, Haemaphysalis and Ornithodoros species and with Coxiella burnetii strains isolated worldwide. CONCLUSION This study reports the molecular detection of a high diversity of Coxiella-like bacteria in Sardinian ticks and confirms also the presence of C. burnetii in tick species previously identified in the island. The role that Coxiella-like endosymbionts play in Sardinian ticks and in their vertebrate hosts needs to be explored further.
Collapse
|
14
|
Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks. Sci Rep 2021; 11:10686. [PMID: 34021230 PMCID: PMC8140075 DOI: 10.1038/s41598-021-90177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Arthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.
Collapse
|
15
|
Brenner AE, Muñoz-Leal S, Sachan M, Labruna MB, Raghavan R. Coxiella burnetii and Related Tick Endosymbionts Evolved from Pathogenic Ancestors. Genome Biol Evol 2021; 13:6278299. [PMID: 34009306 PMCID: PMC8290121 DOI: 10.1093/gbe/evab108] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Both symbiotic and pathogenic bacteria in the family Coxiellaceae cause morbidity and mortality in humans and animals. For instance, Coxiella-like endosymbionts (CLEs) improve the reproductive success of ticks—a major disease vector, while Coxiella burnetii causes human Q fever, and uncharacterized coxiellae infect both animals and humans. To better understand the evolution of pathogenesis and symbiosis in this group of intracellular bacteria, we sequenced the genome of a CLE present in the soft tick Ornithodoros amblus (CLEOA) and compared it to the genomes of other bacteria in the order Legionellales. Our analyses confirmed that CLEOA is more closely related to C. burnetii, the human pathogen, than to CLEs in hard ticks, and showed that most clades of CLEs contain both endosymbionts and pathogens, indicating that several CLE lineages have evolved independently from pathogenic Coxiella. We also determined that the last common ancestorof CLEOA and C. burnetii was equipped to infect macrophages and that even though horizontal gene transfer (HGT) contributed significantly to the evolution of C. burnetii, most acquisition events occurred primarily in ancestors predating the CLEOA–C. burnetii divergence. These discoveries clarify the evolution of C. burnetii, which previously was assumed to have emerged when an avirulent tick endosymbiont recently gained virulence factors via HGT. Finally, we identified several metabolic pathways, including heme biosynthesis, that are likely critical to the intracellular growth of the human pathogen but not the tick symbiont, and show that the use of heme analog is a promising approach to controlling C. burnetii infections.
Collapse
Affiliation(s)
- Amanda E Brenner
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Sebastián Muñoz-Leal
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Ñuble, Chile
| | - Madhur Sachan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.,Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
16
|
Saini N, Gupta RS. A robust phylogenetic framework for members of the order Legionellales and its main genera (Legionella, Aquicella, Coxiella and Rickettsiella) based on phylogenomic analyses and identification of molecular markers demarcating different clades. Antonie van Leeuwenhoek 2021; 114:957-982. [PMID: 33881638 DOI: 10.1007/s10482-021-01569-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
The order Legionellales contains several clinically important microorganisms. Although members of this order are well-studied for their pathogenesis, there is a paucity of reliable characteristics distinguishing members of this order and its constituent genera. Genome sequences are now available for 73 Legionellales species encompassing ≈90% of known members from different genera. With the aim of understanding evolutionary relationships and identifying reliable molecular characteristics that are specific for this order and its constituent genera, detailed phylogenetic and comparative analyses were conducted on the protein sequences from these genomes. A phylogenomic tree was constructed based on 393 single copy proteins that are commonly shared by the members of this order to delineate the evolutionary relationships among its members. In parallel, comparative analyses were performed on protein sequences from Legionellales genomes to identify novel molecular markers consisting of conserved signature indels (CSIs) that are specific for different clades and genera. In the phylogenomic tree and in an amino acid identity matrix based on core proteins, members of the genera Aquicella, Coxiella, Legionella and Rickettsiella formed distinct clades confirming their monophyly. In these studies, Diplorickettsia massiliensis exhibited a close relationship to members of the genus Rickettsiella. The results of our comparative genomic analyses have identified 59 highly specific molecular markers consisting of CSIs in diverse proteins that are uniquely shared by different members of this order. Four of these CSIs are specific for all Legionellales species, except the two deeper-branching "Candidatus Berkiella" species, providing means for identifying members of this order in molecular terms. Twenty four, 7 and 6 CSIs are uniquely shared by members of the genera Legionella, Coxiella and Aquicella, respectively, identifying these groups in molecular terms. The descriptions of these three genera are emended to include information for their novel molecular characteristics. We also describe 12 CSIs that are uniquely shared by D. massiliensis and different members of the genus Rickettsiella. Based on these results, we are proposing an integration of the genus Diplorickettsia with Rickettsiella. Three other CSIs suggest that members of the genera Coxiella and Rickettsiella shared a common ancestor exclusive of other Legionellales. The described molecular markers, due to their exclusivity for the indicated taxa/genera, provide important means for the identification of these clinically important microorganisms and for discovering novel properties unique to them.
Collapse
Affiliation(s)
- Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
17
|
Gomard Y, Flores O, Vittecoq M, Blanchon T, Toty C, Duron O, Mavingui P, Tortosa P, McCoy KD. Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae). MICROBIAL ECOLOGY 2021; 81:770-783. [PMID: 33025063 DOI: 10.1007/s00248-020-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
| | - Olivier Flores
- Université de La Réunion, UMR PVBMT (Peuplements Végétaux et Bioagresseurs en Milieu Tropical), CIRAD, Saint-Pierre, La Réunion, France
| | - Marion Vittecoq
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Thomas Blanchon
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Céline Toty
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
18
|
Apari P, Földvári G. Harm or protection? The adaptive function of tick toxins. Evol Appl 2021; 14:271-277. [PMID: 33664774 PMCID: PMC7896703 DOI: 10.1111/eva.13123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
The existence of tick toxins is an old enigma that has intrigued scientists for a long time. The adaptive value of using deadly toxins for predatory animals is obvious: they try to kill the prey in the most effective way or protect themselves from their natural enemies. Ticks, however, are blood-sucking parasites, and it seems paradoxical that they have toxins similar to spiders, scorpions and snakes. Based on published data, here we examine the potential adaptive function of different types of toxins produced by soft and hard ticks. We hypothesize that there are diverse evolutionary roles behind (a) to attack and reduce the tick-transmitted pathogens inside the vertebrate host systemically to protect the tick, (b) to paralyse the host to stop grooming, (c) to speed up host heartbeat to improve blood supply and (d) to inhibit the process of necroptosis to prevent the rejection of hard ticks. We will provide published evidence that supports the above-mentioned hypotheses, and we will give an outlook how these new scientific results might be applied in modern pharmacology and medicine.
Collapse
Affiliation(s)
- Péter Apari
- Institute of EvolutionCentre for Ecological ResearchBudapestHungary
| | - Gábor Földvári
- Institute of EvolutionCentre for Ecological ResearchBudapestHungary
| |
Collapse
|
19
|
Nardi T, Olivieri E, Kariuki E, Sassera D, Castelli M. Sequence of a Coxiella Endosymbiont of the Tick Amblyomma nuttalli Suggests a Pattern of Convergent Genome Reduction in the Coxiella Genus. Genome Biol Evol 2021; 13:evaa253. [PMID: 33275132 PMCID: PMC7851586 DOI: 10.1093/gbe/evaa253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Ticks require bacterial symbionts for the provision of necessary compounds that are absent in their hematophagous diet. Such symbionts are frequently vertically transmitted and, most commonly, belong to the Coxiella genus, which also includes the human pathogen Coxiella burnetii. This genus can be divided in four main clades, presenting partial but incomplete cocladogenesis with the tick hosts. Here, we report the genome sequence of a novel Coxiella, endosymbiont of the African tick Amblyomma nuttalli, and the ensuing comparative analyses. Its size (∼1 Mb) is intermediate between symbionts of Rhipicephalus species and other Amblyomma species. Phylogenetic analyses show that the novel sequence is the first genome of the B clade, the only one for which no genomes were previously available. Accordingly, it allows to draw an enhanced scenario of the evolution of the genus, one of parallel genome reduction of different endosymbiont lineages, which are now at different stages of reduction from a more versatile ancestor. Gene content comparison allows to infer that the ancestor could be reminiscent of C. burnetii. Interestingly, the convergent loss of mismatch repair could have been a major driver of such reductive evolution. Predicted metabolic profiles are rather homogenous among Coxiella endosymbionts, in particular vitamin biosynthesis, consistently with a host-supportive role. Concurrently, similarities among Coxiella endosymbionts according to host genus and despite phylogenetic unrelatedness hint at possible host-dependent effects.
Collapse
Affiliation(s)
- Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Edward Kariuki
- Veterinary and Capture Service Department, Kenya Wildlife Service, Kenya
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
20
|
Buysse M, Duhayon M, Cantet F, Bonazzi M, Duron O. Vector competence of the African argasid tick Ornithodoros moubata for the Q fever agent Coxiella burnetii. PLoS Negl Trop Dis 2021; 15:e0009008. [PMID: 33406079 PMCID: PMC7815103 DOI: 10.1371/journal.pntd.0009008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/19/2021] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Q fever is a widespread zoonotic disease caused by the intracellular bacterium Coxiella burnetii. While transmission is primarily but not exclusively airborne, ticks are usually thought to act as vectors on the basis of early microscopy studies. However, recent observations revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii, calling the importance of tick-borne transmission into question. In this study, we re-evaluated the vector competence of the African soft tick Ornithodoros moubata for an avirulent strain of C. burnetii. To this end, we used an artificial feeding system to initiate infection of ticks, specific molecular tools to monitor further infections, and culture assays in axenic and cell media to check for the viability of C. burnetii excreted by ticks. We observed typical traits associated with vector competence: The exposure to an infected blood meal resulted in viable and persistent infections in ticks, trans-stadial transmissions of infection from nymphs to adults and the ability of adult ticks to transmit infectious C. burnetii. However, in contrast to early studies, we found that infection differed substantially between tick organs. In addition, while adult female ticks were infected, we did not observe C. burnetii in eggs, suggesting that transovarial transmission is not effective. Finally, we detected only a sporadic presence of C. burnetii DNA in tick faeces, but no living bacterium was further isolated in culture assays, suggesting that excretion in faeces is not a common mode of transmission in O. moubata. The intracellular bacterium Coxiella burnetii is the agent of Q fever, a widespread zoonotic disease. Some early detection reports and microscopy studies identified ticks as vectors of Q fever but more recent studies and molecular analyses revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii: It raises questions of whether ticks play an important role in Q fever transmission. In our study, we therefore experimentally re-evaluate the vector competence of the African soft tick Ornithodoros moubata for C. burnetii. We found that O. moubata can be infected by C. burnetii after the exposure to an infected blood meal. It resulted in viable and persistent infections in ticks, a trans-stadial transmission and the ability of adult ticks to transmit infection when feeding. Infection was however not transmitted transovarially or by faeces as early reported. Overall, we conclude that O. moubata may act as a driver of the transmission and of the spatial dispersal of Q fever among vertebrates where this tick is present in Africa.
Collapse
Affiliation(s)
- Marie Buysse
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France
- * E-mail: (MB); (OD)
| | - Maxime Duhayon
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, 34398 Montpellier, France
| | - Franck Cantet
- IRIM, CNRS, Université de Montpellier, Montpellier, France
| | - Matteo Bonazzi
- IRIM, CNRS, Université de Montpellier, Montpellier, France
| | - Olivier Duron
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France
- * E-mail: (MB); (OD)
| |
Collapse
|
21
|
Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol 2020; 43:e12813. [PMID: 33314216 DOI: 10.1111/pim.12813] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The recent development of high-throughput NGS technologies, (ie, next-generation sequencing) has highlighted the complexity of tick microbial communities-which include pathogens, symbionts, and commensals-and also their dynamic variability. Symbionts and commensals can confer crucial and diverse benefits to their hosts, playing nutritional roles or affecting fitness, development, nutrition, reproduction, defence against environmental stress and immunity. Nonpathogenic tick bacteria may also play a role in modifying tick-borne pathogen colonization and transmission, as relationships between microorganisms existing together in one environment can be competitive, exclusive, facilitating or absent, with many potential implications for both human and animal health. Consequently, ticks represent a compelling yet challenging system in which to investigate the composition and both the functional and ecological implications of tick bacterial communities, and thus merits greater attention. Ultimately, deciphering the relationships between microorganisms carried by ticks as well as symbiont-tick interactions will garner invaluable information, which may aid in some future arthropod-pest and vector-borne pathogen transmission control strategies. This review outlines recent research on tick microbiome composition and dynamics, highlights elements favouring the reciprocal influence of the tick microbiome and tick-borne agents and finally discusses how ticks and tick-borne diseases might potentially be controlled through tick microbiome manipulation in the future.
Collapse
Affiliation(s)
- Sarah Irène Bonnet
- UMR BIPAR 0956, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | |
Collapse
|
22
|
Sahu R, Rawool DB, Vinod VK, Malik SVS, Barbuddhe SB. Current approaches for the detection of Coxiella burnetii infection in humans and animals. J Microbiol Methods 2020; 179:106087. [PMID: 33086105 DOI: 10.1016/j.mimet.2020.106087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 02/09/2023]
Abstract
Q fever (coxiellosis), caused by Coxiella burnetii, is an emerging or re-emerging zoonotic disease of public health significance and with worldwide distribution. As a causal agent of the one among the 13 global priority zoonoses, having the infectious dose as low as one bacterium, C. burnetii has been regarded as an obligate intracellular bacterial pathogen. The agent has been classified as a Group B bioterrorism agent by the Centre for Disease Control and Prevention (CDC), and the disease is included in the World Organisation for Animal Health (OIE) list of notifiable diseases. It is mainly transmitted through airborne route in humans and animals. Isolation of C. burnetii, using standard routine laboratory culture techniques was impossible until formulation of axenic-based medium. However, it is still to be included among routinely isolated laboratory pathogen, accounting prolonged incubation period (~7 days) and requirement of specific oxygen concentration (2.5% O2). Therefore, indirect diagnostic tools have been mainly used for its diagnosis. So far serology has been mostly used for testing for C. burnetii infection. The detection of C. burnetii DNA by PCR in various clinical samples have also been widely used. The disease has remained largely under-reported, underdiagnosed and as a masked zoonosis; and therefore, needs to be explored through well-planned scientific studies for knowing its true status and likely it impact in humans and animals by employing state-of-the-art diagnostics, identifying its diverse and new host range, as well as risk factors involved in different geo-climatic, behavioural and social settings as well as risk groups. Here, we reviewed the current approaches used for the detection of C. burnetii infection in humans and animals at the population and individual level.
Collapse
Affiliation(s)
- Radhakrishna Sahu
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Deepak B Rawool
- ICAR- National Research Centre on Meat, Hyderabad 500 092, India
| | - Valil Kunjukunju Vinod
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - S V S Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | |
Collapse
|
23
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
24
|
Binetruy F, Buysse M, Lejarre Q, Barosi R, Villa M, Rahola N, Paupy C, Ayala D, Duron O. Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Mol Ecol 2020; 29:1016-1029. [PMID: 32034827 DOI: 10.1111/mec.15373] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Mutualistic interactions with microbes have facilitated the adaptation of major eukaryotic lineages to restricted diet niches. Hence, ticks with their strictly blood-feeding lifestyle are associated with intracellular bacterial symbionts through an essential B vitamin supplementation. In this study, examination of bacterial diversity in 25 tick species of the genus Amblyomma showed that three intracellular bacteria, Coxiella-like endosymbionts (LE), Francisella-LE and Rickettsia, are remarkably common. No other bacterium is as uniformly present in Amblyomma ticks. Almost all Amblyomma species were found to harbour a nutritive obligate symbiont, Coxiella-LE or Francisella-LE, that is able to synthesize B vitamins. However, despite the co-evolved and obligate nature of these mutualistic interactions, the structure of microbiomes does not mirror the Amblyomma phylogeny, with a clear exclusion pattern between Coxiella-LE and Francisella-LE across tick species. Coxiella-LE, but not Francisella-LE, form evolutionarily stable associations with ticks, commonly leading to co-cladogenesis. We further found evidence for symbiont replacements during the radiation of Amblyomma, with recent, and probably ongoing, invasions by Francisella-LE and subsequent replacements of ancestral Coxiella-LE through transient co-infections. Nutritional symbiosis in Amblyomma ticks is thus not a stable evolutionary state, but instead arises from conflicting origins between unrelated but competing symbionts with similar metabolic capabilities.
Collapse
Affiliation(s)
- Florian Binetruy
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Marie Buysse
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Quentin Lejarre
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.,CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon
| | - Roxanne Barosi
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Manon Villa
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Nil Rahola
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.,CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Diego Ayala
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France.,CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon
| | - Olivier Duron
- MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
25
|
Al-Khafaji AM, Armstrong SD, Varotto Boccazzi I, Gaiarsa S, Sinha A, Li Z, Sassera D, Carlow CKS, Epis S, Makepeace BL. Rickettsia buchneri, symbiont of the deer tick Ixodes scapularis, can colonise the salivary glands of its host. Ticks Tick Borne Dis 2019; 11:101299. [PMID: 31542229 DOI: 10.1016/j.ttbdis.2019.101299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 09/07/2019] [Indexed: 12/25/2022]
Abstract
Vertically-transmitted bacterial symbionts are widespread in ticks and have manifold impacts on the epidemiology of tick-borne diseases. For instance, they may provide essential nutrients to ticks, affect vector competence, induce immune responses in vertebrate hosts, or even evolve to become vertebrate pathogens. The deer or blacklegged tick Ixodes scapularis harbours the symbiont Rickettsia buchneri in its ovarian tissues. Here we show by molecular, proteomic and imaging methods that R. buchneri is also capable of colonising the salivary glands of wild I. scapularis. This finding has important implications for the diagnosis of rickettsial infections and for pathogen-symbiont interactions in this notorious vector of Lyme borreliosis.
Collapse
Affiliation(s)
- Alaa M Al-Khafaji
- Institute of Infection & Global Health, University of Liverpool, Liverpool, UK; College of Veterinary Medicine, University of Al-Qadisiyah, Qadisiyyah Province, Iraq
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Ilaria Varotto Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, Italy
| | - Stefano Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Zhiru Li
- New England Biolabs, Ipswich, MA, USA
| | - Davide Sassera
- Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | | | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, Italy
| | | |
Collapse
|