1
|
Fedorov D, Hornok S. Checklist of hosts, illustrated geographical range, and ecology of tick species from the genus Ixodes (Acari, Ixodidae) in Russia and other post-Soviet countries. Zookeys 2024; 1201:255-343. [PMID: 38779584 PMCID: PMC11109513 DOI: 10.3897/zookeys.1201.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Hard ticks (Acari: Ixodidae) are the economically and ecologically most important blood-sucking arthropod vectors that can transmit disease agents under temperate climate. In this group, the highest number of species (currently nearing 270) belongs to the genus Ixodes. For this review, more than 400 papers related to this genus in the context of Russia were checked for data on the host records, locations of collection, as well as ecology of assigned tick species. This monograph compensates for the lack of a similarly comprehensive English-language overview of Ixodes species in the region of Russia for nearly half century, and also makes a large set of data easily available for international readers, which is especially important if the original source is difficult to access from outside this country. In addition, the data from a significant number of papers on this topic available only in the Russian language are made accessible through this work.
Collapse
Affiliation(s)
- Denis Fedorov
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, HungaryHUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research GroupBudapestHungary
- Zoological Institute of the Russian Academy of Sciences (ZIN-RAS), St. Petersburg, RussiaZoological Institute of the Russian Academy of Sciences (ZIN-RAS)St. PetersburgRussia
| | - Sándor Hornok
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, HungaryHUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, HungaryUniversity of Veterinary MedicineBudapestHungary
| |
Collapse
|
2
|
Becker NS, Rollins RE, Stephens R, Sato K, Brachmann A, Nakao M, Kawabata H. Candidatus Lariskella arthopodarum endosymbiont is the main factor differentiating the microbiome communities of female and male Borrelia-positive Ixodes persulcatus ticks. Ticks Tick Borne Dis 2023; 14:102183. [PMID: 37172511 DOI: 10.1016/j.ttbdis.2023.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Ixodes persulcatus, a hard-bodied tick species primarily found in Asia and Eastern Europe, is a vector of pathogens to human and livestock hosts. Little research has been done on the microbiome of this species, especially using individual non-pooled samples and comparing different geographical locations. Here, we use 16S rRNA amplicon sequencing to determine the individual microbial composition of 85 Borrelia-positive I. persulcatus from the Japanese islands of Hokkaido and Honshu. The resulting data (164 unique OTUs) were further analyzed to compare the makeup and diversity of the microbiome by sex and location, as well as to determine the presence of human pathogens. We found that, while location had little influence, the diversity of I. persulcatus microbiome was predominantly dependent on sex. Males were seen to have higher microbiome diversity than females, likely due to the high presence of endosymbiotic Candidatus Lariskella arthropodarum within the female microbial communities. Furthermore, high read counts for five genera containing potentially human pathogenic species were detected among both male and female microbiomes: Ehrlichia, Borrelia, Rickettsia, Candidatus Neoehrlichia and Burkholderia and co-infections between different pathogens were frequent. We conclude that the microbiome of I. persulcatus depends mainly on sex and not geographical location and that the major difference between sexes is due to the high abundance of Ca. L. arthropodarum in females. We also stress the importance of this tick species as a vector of potential human pathogens frequently found in co-infections.
Collapse
Affiliation(s)
- Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
| | - Robert E Rollins
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Rebecca Stephens
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Andreas Brachmann
- Genetics, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Minoru Nakao
- Asahikawa Medical University, Department of Parasitology, Asahikawa, Japan
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Igolkina Y, Nikitin A, Verzhutskaya Y, Gordeyko N, Tikunov A, Epikhina T, Tikunova N, Rar V. Multilocus genetic analysis indicates taxonomic status of "Candidatus Rickettsia mendelii" as a separate basal group. Ticks Tick Borne Dis 2023; 14:102104. [PMID: 36502557 DOI: 10.1016/j.ttbdis.2022.102104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
To date, the phylogeny of Rickettsia spp. from basal groups is based on the small number of identified species. Thus, the finding of "Candidatus Rickettsia mendelii" in 2016 is of great interest. In this study, "Ca. R. mendelii" was first identified in the Asian region in a new carrier, Ixodes pavlovskyi. "Candidatus R. mendelii", along with "Candidatus Rickettsia tarasevichiae", were found in Ixodes ticks collected on Russky Island (the Far East), where I. pavlovskyi coexists with I. persulcatus. To establish the taxonomic position of "Ca. R. mendelii", a detailed genetic study was carried out. "Candidatus R. mendelii" was genotyped by five genetic fragments (16S rRNA, gltA, and ompB genes, groESL operon, and 23S-5S IGS region); among them, the ompB gene, groESL operon and 23S-5S IGS region were sequenced for the first time. In addition, "Ca. R. tarasevichiae" was genetically characterized by eight genetic loci (16S rRNA, gltA, ompA, ompB, sca4, htrA genes, groESL operon, and 23S-5S IGS region), of which the sca4 gene was first determined. Phylogenetic analysis indicated that regardless of analyzed genetic loci, "Ca. R. mendelii" formed a separate well-supported cluster on each phylogenetic tree. Phylogenetic analysis based on concatenated sequences of gltA, ompB, and groEL gene fragments (total length of 3191 bp) demonstrated that "Ca. R. mendelii", like Rickettsia bellii, is a basal group of Rickettsia.
Collapse
Affiliation(s)
- Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | - Aleksey Nikitin
- Irkutsk Anti-Plague Research Institute of Siberia and Far East, Irkutsk, Russia
| | - Yulia Verzhutskaya
- Irkutsk Anti-Plague Research Institute of Siberia and Far East, Irkutsk, Russia
| | | | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Vera Rar
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
4
|
Sabitova Y, Rar V, Tikunov A, Yakimenko V, Korallo-Vinarskaya N, Livanova N, Tikunova N. Detection and genetic characterization of a putative novel Borrelia genospecies in Ixodes apronophorus / Ixodes persulcatus / Ixodes trianguliceps sympatric areas in Western Siberia. Ticks Tick Borne Dis 2023; 14:102075. [PMID: 36335681 DOI: 10.1016/j.ttbdis.2022.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Four genospecies from the Borrelia burgdorferi sensu lato complex were detected in Ixodes persulcatus and Ixodes pavlovskyi ticks from Siberia and genetically characterized. The presence of Borrelia spp. in Ixodes apronophorus and Ixodes trianguliceps ticks found in Asia has never been studied. In this study, genetic diversity of B. burgdorferi s.l. was investigated in three I. persulcatus / I. trianguliceps / I. apronophorus sympatric habitats in Western Siberia. Three groups of samples were examined: (i) ticks that were taken from rodents and molted in a laboratory; (ii) non-molted ticks collected from rodents; (iii) specimens from small mammals. Expectedly, Borrelia afzelii and Borrelia bavariensis were detected in I. persulcatus and in small mammals from the studied locations. Borrelia bavariensis was first found in molted I. apronophorus and I. trianguliceps. Identical genovariants of B. bavariensis were found in I. apronophorus, I. trianguliceps, and I. persulcatus. In addition, a new Borrelia genovariant was discovered in non-molted and molted I. apronophorus and non-molted I. persulcatus and I. trianguliceps, as well as in small mammals. This new genovariant was genetically characterized using MLST and single locus sequence analysis, which indicated that the new Borrelia genovariant significantly differs from all known Borrelia species. We propose the name "Candidatus Borrelia sibirica" for this putative new species.
Collapse
Affiliation(s)
- Yuliya Sabitova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, prosp. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, prosp. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, prosp. Lavrent'eva 8, Novosibirsk 630090, Russia
| | | | | | - Natalia Livanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, prosp. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, prosp. Lavrent'eva 8, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Co-infections with multiple pathogens in natural populations of Ixodes persulcatus ticks in Mongolia. Parasit Vectors 2022; 15:236. [PMID: 35765092 PMCID: PMC9238073 DOI: 10.1186/s13071-022-05356-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022] Open
Abstract
Background In Mongolia, the taiga tick Ixodes persulcatus is the major vector of tick-borne pathogens. Knowledge about co-infections of these pathogens in ticks is necessary both for understanding their persistence in nature and for diagnosing and treating tick-borne diseases. Methods The prevalence of seven tick-borne infections in 346 I. persulcatus collected from the Selenge and Bulgan provinces of Mongolia was evaluated using real-time PCR. Quantification of Borrelia spp. was performed using multiplex quantitative PCR targeting the 16S rRNA gene. Genetic analysis of Borrelia spp. in 11 ticks infected with Borrelia miyamotoi, including six ticks co-infected with Borrelia burgdorferi sensu lato (s.l.), was performed by high-throughput sequencing of the flaB gene fragment. Results Six ticks (1.7%) were infected with tick-borne encephalitis virus (TBEV); 171 (49.4%), with B. burgdorferi sensu lato; 17 (4.9%), with B. miyamotoi; 47 (13.6%), with Anaplasma phagocytophilum; and 56 (16.2%), with Ehrlichia sp. Neither Rickettsia sibirica nor R. heilongjiangensis were detected. Borrelia burgdorferi s.l. occurred as co-infection in 55 (32.2%) of all infected ticks. The other pathogens co-infected ticks in 58.8–70.2% of cases. No pairwise associations between co-infecting pathogens were observed, with the exception of a positive association between A. phagocytophilum and Ehrlichia sp. infections. The spirochete loads of B. miyamotoi were significantly higher than those of B. burgdorferi s.l. (mean: 5.2 vs 4.0 log10 genome copies/tick, respectively). Ten isolates of B. miyamotoi belonged to the Siberian lineage. Borrelia burgdorferi s.l was represented by nine isolates of B. afzelii, B. bavariensis and B. garinii. Conclusions In populations of I. persulcatus inhabiting the Selenge and Bulgan provinces of Mongolia, five vector-borne pathogens, i.e. TBEV, B. burgdorferi s.l., B. miyamotoi, A. phagocytophilum and Ehrlichia sp., persist independently from each other, with the exception of A. phagocytophilum and Ehrlichia sp. which seem to share the circulation mode. The discrepancies in B. burgdorferi s.l. and B. miyamotoi prevalence and spirochete load per tick suggest that different ecological niches are occupied by Lyme disease and relapsing fever agents. High-throughput sequencing allows genetic identification of borreliae species in co-infected ticks. Graphical Abstract ![]()
Collapse
|
6
|
Differentiation of Laboratory-Obtained Ixodes ricinus × Ixodes persulcatus Hybrid Ticks: Selection of Suitable Genes. Microorganisms 2022; 10:microorganisms10071306. [PMID: 35889025 PMCID: PMC9323786 DOI: 10.3390/microorganisms10071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ixodes ricinus and Ixodes persulcatus ticks are the main vectors of tick-borne encephalitis virus and some bacterial pathogens. The regions where these tick species live overlap, forming large sympatric areas. It has previously been shown that these tick species have no morphological barrier, and interspecies crossing is possible with the appearance of sterile hybrids. It has also been shown that hybrid larvae and nymphs can be differentiated using discriminant functions based on a set of morphological features. However, such an approach is laborious and rather ineffective with adult ticks, making a molecular approach necessary. In the current work, we tested the ability of different systems to differentiate laboratory-obtained hybrid ticks. Our data suggest that commonly used primer sets that target rRNA are unsuitable for hybrid tick determination, likely due to the rRNA region being linked with the X chromosome in I. ricinus and I. persulcatus ticks. We tested several primer sets targeting different non rRNA genes to assess their ability to determine hybrids. The best primer set, Toll_R, targeting the putative Toll gene, showed little to no bias when used for DNA amplification from hybrid ticks. Thus, Toll gene can be further used for hybrid detection.
Collapse
|
7
|
Mohamed WMA, Moustafa MAM, Kelava S, Barker D, Matsuno K, Nonaka N, Shao R, Mans BJ, Barker SC, Nakao R. Reconstruction of mitochondrial genomes from raw sequencing data provides insights on the phylogeny of Ixodes ticks and cautions for species misidentification. Ticks Tick Borne Dis 2021; 13:101832. [PMID: 34607157 DOI: 10.1016/j.ttbdis.2021.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
High-throughput sequencing (HTS) technology has profoundly been involved in sequencing whole genomes of several organisms in a fast and cost-effective manner. Although HTS provides an alternative biomonitoring method to the time-consuming and taxonomy-expertise dependent morphological approach, still we cannot rule out the possibility of the impediment and misidentification biases. In this article we aim to retrieve whole mitochondrial genome (mitogenome) sequences from publicly available raw sequencing data for phylogenetic comparison of Ixodes persulcatus. For this comparison, we sequenced whole mitogenomes of four I. persulcatus ticks from Japan and constructed mitogenomes from raw sequencing data of 74 I. persulcatus ticks from China. Bayesian phylogenetic trees were inferred by the concatenated fifteen mitochondrial genes. We further tested our results by the phylogenetic analysis of cytochrome c oxidase subunit 1 (cox1) gene and internal transcribed spacer 2 (ITS2) sequences. Our findings showed that 70 constructed mitogenomes from China were clustered with the sequenced four mitogenomes of I. persulcatus from Japan. We also revealed that mitogenome sequences retrieved from two data sets CRR142297 and CRR142298 were clustered with Ixodes nipponensis. Moreover, other two mitogenome sequences from CRR142310 and CRR142311 formed a clade with Ixodes pavlovskyi. The phylogenetic analysis of cox1 gene and ITS2 sequences confirmed the identification errors of these four samples. The overall phylogenetics in our study concluded that accurate morphological identification is necessary before implementing HTS to avoid any misidentification biases.
Collapse
Affiliation(s)
- Wessam Mohamed Ahmed Mohamed
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan
| | - Mohamed Abdallah Mohamed Moustafa
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Samuel Kelava
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dayana Barker
- School of Veterinary Science, University of Queensland, Gatton Qld, 4343, Australia
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Renfu Shao
- School of Science, Technology and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa
| | - Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Japan.
| |
Collapse
|
8
|
Beliavskaia A, Hönig V, Erhart J, Vyhlidalova T, Palus M, Cerny J, Kozlova I, Ruzek D, Palomar AM, Bell-Sakyi L. Spiroplasma Isolated From Third-Generation Laboratory Colony Ixodes persulcatus Ticks. Front Vet Sci 2021; 8:659786. [PMID: 33842580 PMCID: PMC8032855 DOI: 10.3389/fvets.2021.659786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Jan Erhart
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Tereza Vyhlidalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Jiri Cerny
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
| | - Irina Kozlova
- Science Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Ana M Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Kirdyashkina NP, Shipulin GA, Hovius JW, Platonov AE. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial genome. BMC Genomics 2020; 21:16. [PMID: 31906865 PMCID: PMC6945570 DOI: 10.1186/s12864-019-6388-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The genus Borrelia comprises spirochaetal bacteria maintained in natural transmission cycles by tick vectors and vertebrate reservoir hosts. The main groups are represented by a species complex including the causative agents of Lyme borreliosis and relapsing fever group Borrelia. Borrelia miyamotoi belongs to the relapsing fever group of spirochetes and forms distinct populations in North America, Asia, and Europe. As all Borrelia species B. miyamotoi possess an unusual and complex genome consisting of a linear chromosome and a number of linear and circular plasmids. The species is considered an emerging human pathogen and an increasing number of human cases are being described in the Northern hemisphere. The aim of this study was to produce a high quality reference genome that will facilitate future studies into genetic differences between different populations and the genome plasticity of B. miyamotoi. RESULTS We used multiple available sequencing methods, including Pacific Bioscience single-molecule real-time technology (SMRT) and Oxford Nanopore technology (ONT) supplemented with highly accurate Illumina sequences, to explore the suitability for whole genome assembly of the Russian B. miyamotoi isolate, Izh-4. Plasmids were typed according to their potential plasmid partitioning genes (PF32, 49, 50, 57/62). Comparing and combining results of both long-read (SMRT and ONT) and short-read methods (Illumina), we determined that the genome of the isolate Izh-4 consisted of one linear chromosome, 12 linear and two circular plasmids. Whilst the majority of plasmids had corresponding contigs in the Asian B. miyamotoi isolate FR64b, there were only four that matched plasmids of the North American isolate CT13-2396, indicating differences between B. miyamotoi populations. Several plasmids, e.g. lp41, lp29, lp23, and lp24, were found to carry variable major proteins. Amongst those were variable large proteins (Vlp) subtype Vlp-α, Vlp-γ, Vlp-δ and also Vlp-β. Phylogenetic analysis of common plasmids types showed the uniqueness in Russian/Asian isolates of B. miyamotoi compared to other isolates. CONCLUSIONS We here describe the genome of a Russian B. miyamotoi clinical isolate, providing a solid basis for future comparative genomics of B. miyamotoi isolates. This will be a great impetus for further basic, molecular and epidemiological research on this emerging tick-borne pathogen.
Collapse
Affiliation(s)
- Konstantin V Kuleshov
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Joris Koetsveld
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Irina A Goptar
- Izmerov Research Institute of Occupational Health, Moscow, Russia
| | | | - Nadezhda M Kolyasnikova
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Denis S Sarksyan
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Izhevsk State Medical Academy, Izhevsk, Russia
| | | | - German A Shipulin
- Center of Strategical Planning and Management of Biomedical Health Risks of the Ministry of Health, Moscow, Russia
| | - Joppe W Hovius
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|