1
|
Aboelhadid SM, Ibrahium SM, Abdel-Baki AAS, Hassan KM, Arafa WM, Aboud HM, Mohy S, Al-Quraishy S, Hassan AO, Abdelgelil NH, Gadelhaq SM. An investigation of the acaricidal activity of benzyl alcohol on Rhipicephalus annulatus and Rhipicephalus sanguineus and its synergistic or antagonistic interaction with commonly used acaricides. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:1-12. [PMID: 37815308 DOI: 10.1111/mve.12698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
The most economically significant ectoparasites in the tropics and subtropics are ixodid ticks, especially Rhipicephalus annulatus and Rhipicephalus sanguineus. Years of extensive use of the readily available acaricides have resulted in widespread resistance development in these ticks, as well as negative environmental consequences. Benzyl alcohol (BA) has been frequently used to treat pediculosis and scabies, and it may be an effective alternative to commonly used acaricides. The main aim of the present study was to evaluate the acaricide activity of BA and its combination with the regularly used chemical acaricides against R. annulatus and R. sanguineus. Different concentrations of BA alone and in combination with deltamethrin, cypermethrin and chlorpyrifos were tested in vitro against adult and larvae of both tick species. The results showed that BA is toxic to R. annulatus and R. sanguineus larvae, with 100% larval mortality at concentrations of ≥50 mL/L, and LC50 and LC90 attained the concentrations of 19.8 and 33.8 mL/L for R. annulatus and 18.8 and 31.8 mL/L for R. sanguineus, respectively. Furthermore, BA in combination with deltamethrin, cypermethrin and chlorpyrifos exhibited synergistic factors of 2.48, 1.26 and 1.68 against R. annulatus larvae and 1.64, 11.1 and 1.14 against R. sanguineus larvae for deltamethrin + BA, cypermethrin + BA and chlorpyrifos + BA, respectively. BA induced 100% mortality in adult R. annulatus at concentrations of ≥250 mL/L with LC50 and LC90 reached the concentrations of 111 and 154 mL/L, respectively. Additionally, BA had ovicidal activity causing complete inhibition of larval hatching at 100 mL/L. The combination of BA with deltamethrin and cypermethrin increased acetylcholinesterase inhibition, whereas the combination of BA with chlorpyrifos decreased glutathione (GSH) activity and malondialdehyde levels. In the field application, the combination of BA 50 mL/L and deltamethrin (DBA) resulted in a significant reduction in the percentage of ticks by 30.9% 28 days post-treatment when compared with groups treated with deltamethrin alone. In conclusion, BA causes mortality in laboratory and field studies alone and in combination with cypermethrin or deltamethrin. BA can be used for control of ticks of different life stages, that is, eggs and larvae, through application to the ground.
Collapse
Affiliation(s)
- Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayoum, Egypt
| | | | - Khaled M Hassan
- Department of Animal Health Research Institute, Beni Suef, Egypt
| | - Waleed M Arafa
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Sarah Mohy
- Beni-Suef Veterinary Clinic, Beni Suef, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noha H Abdelgelil
- Parasitology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Waldman J, Klafke GM, Tirloni L, Logullo C, da Silva Vaz I. Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis 2023; 14:102123. [PMID: 36716581 PMCID: PMC10033424 DOI: 10.1016/j.ttbdis.2023.102123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Marcondes Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor - Centro de Pesquisa em Saúde Animal, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Carlos Logullo
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica de Artrópodes Hematófagos, IBqM, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Predicting the potential distribution of the cattle fever tick Rhipicephalus annulatus (Acari: Ixodidae) using ecological niche modeling. Parasitol Res 2022; 121:3467-3476. [PMID: 36136139 DOI: 10.1007/s00436-022-07670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Rhipicephalus annulatus is a tick species of veterinary importance due to its potential to transmit babesiosis to cattle. This species has a Holarctic distribution with some Afrotropical records and is one-host species of veterinary importance. This study was carried out from September 2021 to February 2022 at 6 Egyptian collection sites, and a total of 1150 cattle were scanned randomly to collect ticks. A total of 1095 tick specimens were collected and identified as R. annulatus using taxonomic keys. Males were found on all parts of the cattle except the head and around the eyes, but females were found on all parts; in addition, the highest number of specimens was gathered from the udder, (neck and chest), and belly. Maximum entropy (MaxEnt) modeling was used to predict the potential global distribution of R. annulatus. The MaxEnt model performed better than random with an average test area under the curve (AUC) value of 0.96, and model predictions were significantly better than random and gave (AUC) ratios above the null expectations in the partial receiver operating characteristic (pROC) analyses (P < 0.001). Based on correlation analyses, a set of 9 variables was selected for species from 15 bioclimatic and 5 normalized difference vegetation index (NDVI) variables. The study showed that the current distribution of R. annulatus is estimated to occur across Asia, Africa, Europe, South America, and North America. Annual mean temperature (Bio1) and median NDVI had the highest effect on the distribution of this species. The environmentally suitable habitat for R. annulatus sharply increased with increasing annual mean temperature (Bio1). These results can be used for making effective control planning decisions in areas suitable to this vector of many diseases worldwide.
Collapse
|
4
|
Lohmeyer KH. Highlights in Veterinary Entomology, 2020: The Importance of the Contributions of Government Scientists to Research in Veterinary Entomology. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2016-2020. [PMID: 34342346 DOI: 10.1093/jme/tjab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/13/2023]
Abstract
The field of veterinary entomology is primarily associated with the study of arthropods that impact the health of animals. Papers featured in the compilation of highlighted research from 2020 focused on studies conducted by scientists from the federal government that sought to understand and manage arthropods associated with wild and domesticated animals. The topics of these articles included research from the basic tenets of veterinary entomology: 1) biology and ecology of economically important pests, 2) novel control tactics and resistance management, 3) genomics, and 4) pathogen transmission. Key findings of the highlighted papers are presented and discussed to serve as a presentation record.
Collapse
Affiliation(s)
- Kimberly H Lohmeyer
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| |
Collapse
|
5
|
Alonso-Díaz MA, Fernández-Salas A. Entomopathogenic Fungi for Tick Control in Cattle Livestock From Mexico. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:657694. [PMID: 37744087 PMCID: PMC10512273 DOI: 10.3389/ffunb.2021.657694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/01/2021] [Indexed: 09/26/2023]
Abstract
Ticks are one of the main economic threats to the cattle industry worldwide affecting productivity, health and welfare. The need for alternative methods to control tick populations is prompted by the high prevalence of multiresistant tick strains to the main chemical acaricides and their ecological consequences. Biological control using entomopathogenic fungi (EPF) is one of the most promising alternative options. The objective of this paper is to review the use of EPF as an alternative control method against cattle ticks in Mexico. Metarhizium anisopliae sensu lato (s.l.) and Beauveria bassiana s.l. are the most studied EPF for the biological control of ticks in the laboratory and in the field, mainly against Rhipicephalus microplus; however, evaluations against other important cattle ticks such as Amblyomma mixtum and R. annulatus, are needed. A transdisciplinary approach is required to incorporate different types of tools, such as genomics, transcriptomics and proteomics in order to better understand the pathogenicity/virulence mechanism in EPF against ticks. Laboratory tests have demonstrated the EPF efficacy to control susceptible and resistant/multiresistant tick populations; whereas, field tests have shown satisfactory control efficiency of M. anisopliae s.l. against different stages of R. microplus when applied both on pasture and on cattle. Epidemiological aspects of ticks and environmental factors are considered as components that influence the acaricidal behavior of the EPF. Finally, considering all these aspects, some recommendations are proposed for the use of EPF in integrated control schemes for livestock ticks.
Collapse
|
6
|
Arafa WM, Aboelhadid SM, Moawad A, Shokeir KM, Ahmed O, Pérez de León AA. Control of Rhipicephalus annulatus resistant to deltamethrin by spraying infested cattle with synergistic eucalyptus essential oil-thymol-deltamethrin combination. Vet Parasitol 2021; 290:109346. [PMID: 33418076 DOI: 10.1016/j.vetpar.2021.109346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
The current study investigated the synergistic effect of combinations containing deltamethrin (D), Eucalyptus essential oil (E), and the thyme essential oil component thymol (T), against a field population of Rhipicephalus annulatus in Egypt that was characterized to be resistant to D. Solutions of T, E, or TE at concentrations of 1.25-5% were combined with 5% deltamethrin at different dilutions (0.25-2 mL/L). Results of the adult immersion test used to estimate the in vitro acaricidal activity of these combinations at 5% yielded LC50 values for D, E-D, T-D, and TE-D of 3.87 mL/L, 3.89 mL/L, 0.14 mL/L, and 0.05 mL/L, respectively. Biochemical analyses using whole-body homogenate of ticks from the in vitro tests revealed that the lowest acetylcholinesterase and glutathione peroxidase activity, and the maximum lipid peroxidation were recorded in ticks treated with 5% TE-D. Glutathione content significantly decreased (p ≤ 0.05) in all treated ticks. Three groups, each containing five cross breed cattle naturally infested with R. annulatus from the same area where resistance to D was detected, were sprayed twice at two-week intervals using 1 mL/L of 5% solutions of D, T-D, or TE-D. Overall efficacy of the D, T-D, and TE-D sprays by day 30 post-treatment was 21.6, 88.3, and 95 %, respectively. Ticks collected from infested cattle three days after treatment with the D spray deposited egg masses that were able to hatch, deposited small masses of eggs unable to hatch when exposed to the T-D spray, and laid few eggs that didn't hatch when sprayed with the TE-D combination. Values for liver and kidney function parameters were comparable in cattle before and after treatment with the combination sprays tested. The TE-D spray overcame the insensitivity to D of this R. annulatus population in Egypt, which also highlighted the significant synergistic effect of thymol on the acaricidal activity of deltamethrin observed in vitro. Acaricidal activity of the TE-D combination apparently has deleterious effects on multiple tick systems involving inhibition of acetylcholinesterase, increased lipid peroxidation, and oxidative stress. These findings document that combinations of natural and synthetic products can be part of integrated management solutions to the problem with widespread resistance to pyrethroids like deltamethrin in populations of cattle ticks, including R. annulatus, around the world.
Collapse
Affiliation(s)
- Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Abeer Moawad
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Osama Ahmed
- Physiology Division, Zoology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Adalberto A Pérez de León
- USDA, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, Texas, 78028, USA
| |
Collapse
|
7
|
Esteve-Gasent MD, Rodríguez-Vivas RI, Medina RF, Ellis D, Schwartz A, Cortés Garcia B, Hunt C, Tietjen M, Bonilla D, Thomas D, Logan LL, Hasel H, Alvarez Martínez JA, Hernández-Escareño JJ, Mosqueda Gualito J, Alonso Díaz MA, Rosario-Cruz R, Soberanes Céspedes N, Merino Charrez O, Howard T, Chávez Niño VM, Pérez de León AA. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020; 9:pathogens9110871. [PMID: 33114005 PMCID: PMC7690670 DOI: 10.3390/pathogens9110871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Bovine babesiosis is a reportable transboundary animal disease caused by Babesia bovis and Babesiabigemina in the Americas where these apicomplexan protozoa are transmitted by the invasive cattle fever ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus(Boophilus) annulatus. In countries like Mexico where cattle fever ticks remain endemic, bovine babesiosis is detrimental to cattle health and results in a significant economic cost to the livestock industry. These cattle disease vectors continue to threaten the U.S. cattle industry despite their elimination through efforts of the Cattle Fever Tick Eradication Program. Mexico and the U.S. share a common interest in managing cattle fever ticks through their economically important binational cattle trade. Here, we report the outcomes of a meeting where stakeholders from Mexico and the U.S. representing the livestock and pharmaceutical industry, regulatory agencies, and research institutions gathered to discuss research and knowledge gaps requiring attention to advance progressive management strategies for bovine babesiosis and cattle fever ticks. Research recommendations and other actionable activities reflect commitment among meeting participants to seize opportunities for collaborative efforts. Addressing these research gaps is expected to yield scientific knowledge benefitting the interdependent livestock industries of Mexico and the U.S. through its translation into enhanced biosecurity against the economic and animal health impacts of bovine babesiosis and cattle fever ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Roger I. Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán 97000, Mexico
- Correspondence:
| | - Raúl F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Dee Ellis
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Andy Schwartz
- Texas Animal Health Commission, Austin, TX 78758, USA;
| | - Baltazar Cortés Garcia
- Departamento de Rabia Paralítica y Garrapata, Dirección de Campañas Zoosanitarias, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Avenida Insurgentes Sur N° 489 Piso 9, Colonia Hipódromo, Alcaldía Cuauhtémoc, Ciudad de Mexico 06100, Mexico;
| | - Carrie Hunt
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Mackenzie Tietjen
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| | - Denise Bonilla
- Veterinary Services, Animal and Plant Health Inspection Service International Services, United States Department of Agriculture (USDA-APHIS), Fort Collins, CO 80526, USA;
| | - Don Thomas
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Cattel Fever Tick Research Laboratory, Moore Air Base, Edinburg, TX 78541, USA;
| | - Linda L. Logan
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Hallie Hasel
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Austin, TX 78701, USA;
| | - Jesús A. Alvarez Martínez
- CENID-SAI, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso. Jiutepec, Morelos 62390, Mexico;
| | - Jesús J. Hernández-Escareño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Francisco Villa S/N, Hacienda del Canada, Ciudad General Escobedo, Nuevo León 66054, Mexico;
| | - Juan Mosqueda Gualito
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, Queretaro Queretaro 76140, Mexico;
| | - Miguel A. Alonso Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, Martínez de la Torre, Veracruz 93600, Mexico;
| | - Rodrigo Rosario-Cruz
- BioSA Research Lab., Natural Sciences College, Campus el ‘Shalako’ Las Petaquillas, Autonomous Guerrero State University, Chilpancingo, Guerrero 62105, Mexico;
| | - Noé Soberanes Céspedes
- Lapisa S.A. de C.V. Carretera La Piedad-Guadalajara Km 5.5, Col. Camelinas, La Piedad, Michoacán 59375, Mexico;
| | - Octavio Merino Charrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, Ciudad Victoria, Tamaulipas 87000, Mexico;
| | - Tami Howard
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Field Operations, Southern Border Ports, Albuquerque, NM 87109, USA;
| | - Victoria M. Chávez Niño
- United States Department of Agriculture, Animal and Plant Health Inspection Service, International Services, (USDA-APHIS-IS), Mexico, Sierra Nevada 115, Col. Lomas de Chapultepec, Mexico City 11000, Mexico;
| | - Adalberto A. Pérez de León
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| |
Collapse
|