1
|
Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: Biological role and pharmacological potential. ADVANCES IN PARASITOLOGY 2024; 126:229-251. [PMID: 39448192 DOI: 10.1016/bs.apar.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hard ticks (family Ixodidae) are significant vectors of pathogens affecting humans and animals. This review explores the composition of tick saliva, focusing on proteases and protease inhibitors, their biological roles, and their potential in vaccines and therapies. Tick saliva contains various proteases, mostly metalloproteases, serpins, cystatins, and Kunitz-type inhibitors, which modulate host hemostatic, immune, and wound healing responses to facilitate blood feeding and pathogen transmission. Proteases inhibit blood clotting, degrade extracellular matrix components, and modulate immune responses. Serpins, cystatins, and Kunitz-type inhibitors further inhibit key proteases involved in coagulation and inflammation, making them promising candidates for anticoagulant, anti-inflammatory, and immunomodulatory therapies. Several tick proteases and protease inhibitors have shown potential as vaccine targets, reducing tick feeding success and pathogen transmission. Future research should focus on comprehensive proteomic and genomic analyses, detailed structural and functional studies, and vaccine trials. Advanced omics approaches and bioinformatics tools will be crucial in uncovering the complex interactions between ticks, hosts, and pathogens, improving tick control strategies and public health outcomes.
Collapse
Affiliation(s)
- Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States; Laboratory of Host-Pathogen Dynamics, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
2
|
Trujillo E, Ramos-Vega A, Monreal-Escalante E, Almazán C, Angulo C. Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance. Vaccines (Basel) 2024; 12:1178. [PMID: 39460344 PMCID: PMC11512348 DOI: 10.3390/vaccines12101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Ticks are obligate hematophagous ectoparasites that affect animals, and some of them transmit a wide range of pathogens including viruses, bacteria, and protozoa to both animals and humans. Several vaccines have shown immunogenicity and protective efficacy against ticks in animal models and definitive hosts. After several decades on anti-tick vaccine research, only a commercial vaccine based on a recombinant antigen is currently available. In this context, plants offer three decades of research and development on recombinant vaccine production to immunize hosts and as a delivery vehicle platform. Despite the experimental advances in plant-made vaccines to control several parasitosis and infectious diseases, no vaccine prototype has been developed against ticks. This review examines a panorama of ticks of veterinary importance, recombinant vaccine experimental developments, plant-made vaccine platforms, and perspectives on using this technology as well as the opportunities and limitations in the field of tick vaccine research.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Abel Ramos-Vega
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No.1036, Xochitepec 62790, MOR, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Consuelo Almazán
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76230, QRO, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| |
Collapse
|
3
|
Zhang SB, Gao ZH, Wang YK, Lv WX, Dong KX, Guo FD, Wang RY, Yang XL. The evaluation of cystatin protein vaccines based on the stress response of ticks triggered by low-temperature and toxin stress in Haemaphysalis doenitzi. PEST MANAGEMENT SCIENCE 2024; 80:3957-3966. [PMID: 38521986 DOI: 10.1002/ps.8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Ticks, which are obligate blood-feeding parasites, transmit a wide range of pathogens during their hematophagic process. Certain enzymes and macromolecules play a crucial role in inhibition of several tick physiological processes, including digestion and reproduction. In the present study, genes encoding type 2 cystatin were cloned and characterized from Haemaphysalis doenitzi, and the potential role of cystatin in tick control was further assessed. RESULTS Two cystatin genes, HDcyst-1 and HDcyst-2, were successfully cloned from the tick H. doenitzi. Their open reading frames are 390 and 426 base pairs, and the number of coding amino acids are 129 and 141, respectively. In the midgut, salivary glands, Malpighian tubules and ovaries of ticks, the relative expression of HDcyst-1 was higher in the midgut and Malpighian tubules, and HDcyst-2 was higher in the salivary glands of H. doenitzi, respectively. Lipopolysaccharide (LPS) injection and low-temperature stress elevated cystatin expression in ticks. Enzyme-linked immunosorbent assay showed that both rHDcyst-1 and rHDcyst-2 protein vaccines increased antibody levels in immunized rabbits. A vaccination trial in rabbits infected with H. doenitzi showed that both recombinant cystatin proteins significantly reduced tick engorgement weights and egg mass weight, in particular, rHDcyst-1 significantly prolonged tick engorgement time by 1 day and reduced egg hatching rates by 16.9%. In total, rHDcyst-1 and rHDcyst-2 protein vaccinations provided 64.1% and 51.8% protection to adult female ticks, respectively. CONCLUSION This is the first report on the immunological characterization of the cystatin protein and sequencing of the cystatin gene in H. doenitzi. Cystatin proteins are promising antigens that have the potential to be used as vaccines for infestation of H. doenitzi control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Song-Bo Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhi-Hua Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yi-Kui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wen-Xia Lv
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ke-Xin Dong
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fei-Di Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Run-Ying Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Long Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
4
|
Feng T, Tong H, Zhang Q, Ming Z, Song Z, Zhou X, Dai J. Targeting Haemaphysalis longicornis serpin to prevent tick feeding and pathogen transmission. INSECT SCIENCE 2024; 31:694-706. [PMID: 37635449 DOI: 10.1111/1744-7917.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Serine proteinase inhibitors (serpins), identified from the hard tick Haemaphysalis longicornis of China, play significant roles in various animal physiological processes. In this study, we showed that H. longicornis serpins (Hlserpin-a and Hlserpin-b) were induced during blood-feeding in nymph ticks and exhibited anticoagulation activity in vitro. Silencing Hlserpins through RNA interference (RNAi) significantly impaired tick feeding. Immunization of mice with recombinant Hlserpins or passive transfer of Hlserpin antiserum significantly curtails the efficacy of tick feeding. Concurrently, the transmission of the Langat virus (LGTV) from ticks to mice witnessed a substantial decrease when Hlserpins were silenced. Our findings suggest that inhibiting Hlserpins can hamper tick engorgement and pathogen transmission, indicating the potential of Hlserpins as a vaccine to counter tick-borne diseases.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhihao Ming
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhenyu Song
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Gao X, Tian Y, Liu ZL, Li D, Liu JJ, Yu GX, Duan DY, Peng T, Cheng TY, Liu L. Tick salivary protein Cystatin: structure, anti-inflammation and molecular mechanism. Ticks Tick Borne Dis 2024; 15:102289. [PMID: 38070274 DOI: 10.1016/j.ttbdis.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
Ticks are blood-sucking ectoparasites that secrete immunomodulatory substances in saliva to hosts during engorging. Cystatins, a tick salivary protein and natural inhibitor of Cathepsins, are attracting growing interest globally because of the immunosuppressive activities and the feasibility as an antigen for developing anti-tick vaccines. This review outlines the classification and the structure of tick Cystatins, and focuses on the anti-inflammatory effects and molecular mechanisms. Tick Cystatins can be divided into four families based on structures and cystatin 1 and cystatin 2 are the most abundant. They are injected into hosts during blood feeding and effectively mitigate the host inflammatory response. Mechanically, tick Cystatins exert anti-inflammatory properties through the inhibition of TLR-NF-κb, JAK-STAT and p38 MAPK signaling pathways. Further investigations are crucial to confirm the reduction of inflammation in other cell types like neutrophils and mast cells, and fully elucidate the underlying mechanism (like the structural mechanism) to make Cystatin a potential candidate for the development of novel anti-inflammation agents.
Collapse
Affiliation(s)
- Xin Gao
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Tian
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ling Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dan Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Jun Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guang-Xu Yu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
7
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
8
|
Silva FAA, Costa GCA, Parizi LF, Silva Vaz Junior ID, Tanaka AS. Biochemical characterization of a novel sphingomyelinase-like protein from the Rhipicephalus microplus tick. Exp Parasitol 2023; 254:108616. [PMID: 37696328 DOI: 10.1016/j.exppara.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.
Collapse
Affiliation(s)
- Fernando A A Silva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gabriel C A Costa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil.
| |
Collapse
|
9
|
Rodríguez-Durán A, Ullah S, Parizi LF, Ali A, da Silva Vaz Junior I. Rabbits as Animal Models for Anti-Tick Vaccine Development: A Global Scenario. Pathogens 2023; 12:1117. [PMID: 37764925 PMCID: PMC10536012 DOI: 10.3390/pathogens12091117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Studies evaluating candidate tick-derived proteins as anti-tick vaccines in natural hosts have been limited due to high costs. To overcome this problem, animal models are used in immunization tests. The aim of this article was to review the use of rabbits as an experimental model for the evaluation of tick-derived proteins as vaccines. A total of 57 tick proteins were tested for their immunogenic potential using rabbits as models for vaccination. The most commonly used rabbit breeds were New Zealand (73.8%), Japanese white (19%), Californians (4.8%) and Flemish lop-eared (2.4%) rabbits. Anti-tick vaccines efficacy resulted in up to 99.9%. Haemaphysalis longicornis (17.9%) and Ornithodoros moubata (12.8%) were the most common tick models in vaccination trials. Experiments with rabbits have revealed that some proteins (CoAQP, OeAQP, OeAQP1, Bm86, GST-Hl, 64TRP, serpins and voraxin) can induce immune responses against various tick species. In addition, in some cases it was possible to determine that the vaccine efficacy in rabbits was similar to that of experiments performed on natural hosts (e.g., Bm86, IrFER2, RmFER2, serpins and serine protease inhibitor). In conclusion, results showed that prior to performing anti-tick vaccination trials using natural hosts, rabbits can be used as suitable experimental models for these studies.
Collapse
Affiliation(s)
- Arlex Rodríguez-Durán
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 110911, Colombia
| | - Shafi Ullah
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Faculdade de Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
| |
Collapse
|
10
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
11
|
Antunes S, Domingos A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023; 12:pathogens12030374. [PMID: 36986295 PMCID: PMC10056810 DOI: 10.3390/pathogens12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Anti-tick vaccines development mainly depends on the identification of suitable antigens, which ideally should have different features. These should be key molecules in tick biology, encoded by a single gene, expressed across life stages and tick tissues, capable of inducing B and T cells to promote an immunological response without allergenic, hemolytic, and toxic effects; and should not be homologous to the mammalian host. The discussion regarding this subject and the usefulness of “exposed” and “concealed” antigens was effectively explored in the publication by Nuttall et al. (2006). The present commentary intends to debate the relevance of such study in the field of tick immunological control.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
12
|
Zeb I, Almutairi MM, Alouffi A, Islam N, Parizi LF, Safi SZ, Tanaka T, da Silva Vaz I, Ali A. Low Genetic Polymorphism in the Immunogenic Sequences of Rhipicephalus microplus Clade C. Vaccines (Basel) 2022; 10:1909. [PMID: 36423005 PMCID: PMC9697226 DOI: 10.3390/vaccines10111909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 02/06/2024] Open
Abstract
Rhipicephalus microplus tick highly affects the veterinary sector throughout the world. Different tick control methods have been adopted, and the identification of tick-derived highly immunogenic sequences for the development of an anti-tick vaccine has emerged as a successful alternate. This study aimed to characterize immunogenic sequences from R. microplus ticks prevalent in Pakistan. Ticks collected in the field were morphologically identified and subjected to DNA and RNA extraction. Ticks were molecularly identified based on the partial mitochondrial cytochrome C oxidase subunit (cox) sequence and screened for piroplasms (Theileria/Babesia spp.), Rickettsia spp., and Anaplasma spp. PCR-based pathogens-free R. microplus-derived cDNA was used for the amplification of full-length cysteine protease inhibitor (cystatin 2b), cathepsin L-like cysteine proteinase (cathepsin-L), glutathione S-transferase (GST), ferritin 1, 60S acidic ribosomal protein (P0), aquaporin 2, ATAQ, and R. microplus 05 antigen (Rm05Uy) coding sequences. The cox sequence revealed 100% identity with the nucleotide sequences of Pakistan's formerly reported R. microplus, and full-length immunogenic sequences revealed maximum identities to the most similar sequences reported from India, China, Cuba, USA, Brazil, Egypt, Mexico, Israel, and Uruguay. Low nonsynonymous polymorphisms were observed in ATAQ (1.5%), cathepsin-L (0.6%), and aquaporin 2 (0.4%) sequences compared to the homologous sequences from Mexico, India, and the USA, respectively. Based on the cox sequence, R. microplus was phylogenetically assembled in clade C, which includes R. microplus from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh, and India. In the phylogenetic trees, the cystatin 2b, cathepsin-L, ferritin 1, and aquaporin 2 sequences were clustered with the most similar available sequences of R. microplus, P0 with R. microplus, R. sanguineus and R. haemaphysaloides, and GST, ATAQ, and Rm05Uy with R. microplus and R. annulatus. This is the first report on the molecular characterization of clade C R. microplus-derived immunogenic sequences.
Collapse
Affiliation(s)
- Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Nabila Islam
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre 91501-970, RS, Brazil
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre 91501-970, RS, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
13
|
Guizzo MG, Tirloni L, Gonzalez SA, Farber MD, Braz G, Parizi LF, Dedavid E Silva LA, da Silva Vaz I, Oliveira PL. Coxiella Endosymbiont of Rhipicephalus microplus Modulates Tick Physiology With a Major Impact in Blood Feeding Capacity. Front Microbiol 2022; 13:868575. [PMID: 35591999 PMCID: PMC9111531 DOI: 10.3389/fmicb.2022.868575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, metagenomics studies exploring tick microbiota have revealed widespread interactions between bacteria and arthropods, including symbiotic interactions. Functional studies showed that obligate endosymbionts contribute to tick biology, affecting reproductive fitness and molting. Understanding the molecular basis of the interaction between ticks and their mutualist endosymbionts may help to develop control methods based on microbiome manipulation. Previously, we showed that Rhipicephalus microplus larvae with reduced levels of Coxiella endosymbiont of R. microplus (CERM) were arrested at the metanymph life stage (partially engorged nymph) and did not molt into adults. In this study, we performed a transcriptomic differential analysis of the R. microplus metanymph in the presence and absence of its mutualist endosymbiont. The lack of CERM resulted in an altered expression profile of transcripts from several functional categories. Gene products such as DA-P36, protease inhibitors, metalloproteases, and evasins, which are involved in blood feeding capacity, were underexpressed in CERM-free metanymphs. Disregulation in genes related to extracellular matrix remodeling was also observed in the absence of the symbiont. Taken together, the observed alterations in gene expression may explain the blockage of development at the metanymph stage and reveal a novel physiological aspect of the symbiont-tick-vertebrate host interaction.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States.,Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Sergio A Gonzalez
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Marisa D Farber
- Instituto de Agrobiotecnologia y Biologia Molecular (IABIMO), INTA-CONICET, Hurlingham, Argentina
| | - Glória Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Novel Cysteine Protease Inhibitor Derived from the Haementeria vizottoi Leech: Recombinant Expression, Purification, and Characterization. Toxins (Basel) 2021; 13:toxins13120857. [PMID: 34941695 PMCID: PMC8705320 DOI: 10.3390/toxins13120857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cathepsin L (CatL) is a lysosomal cysteine protease primarily involved in the terminal degradation of intracellular and endocytosed proteins. More specifically, in humans, CatL has been implicated in cancer progression and metastasis, as well as coronary artery diseases and others. Given this, the search for potent CatL inhibitors is of great importance. In the search for new molecules to perform proteolytic activity regulation, salivary secretions from hematophagous animals have been an important source, as they present protease inhibitors that evolved to disable host proteases. Based on the transcriptome of the Haementeria vizzotoi leech, the cDNA of Cystatin-Hv was selected for this study. Cystatin-Hv was expressed in Pichia pastoris and purified by two chromatographic steps. The kinetic results using human CatL indicated that Cystatin-Hv, in its recombinant form, is a potent inhibitor of this protease, with a Ki value of 7.9 nM. Consequently, the present study describes, for the first time, the attainment and the biochemical characterization of a recombinant cystatin from leeches as a potent CatL inhibitor. While searching out for new molecules of therapeutic interest, this leech cystatin opens up possibilities for the future use of this molecule in studies involving cellular and in vivo models.
Collapse
|
15
|
Aguilar-Díaz H, Quiroz-Castañeda RE, Salazar-Morales K, Cossío-Bayúgar R, Miranda-Miranda E. Tick Immunobiology and Extracellular Traps: An Integrative Vision to Control of Vectors. Pathogens 2021; 10:pathogens10111511. [PMID: 34832666 PMCID: PMC8621429 DOI: 10.3390/pathogens10111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023] Open
Abstract
Ticks are hematophagous ectoparasites that infest a diverse number of vertebrate hosts. The tick immunobiology plays a significant role in establishing and transmitting many pathogens to their hosts. To control tick infestations, the acaricide application is a commonly used method with severe environmental consequences and the selection of tick-resistant populations. With these drawbacks, new tick control methods need to be developed, and the immune system of ticks contains a plethora of potential candidates for vaccine design. Additionally, tick immunity is based on an orchestrated action of humoral and cellular immune responses. Therefore, the actors of these responses are the object of our study in this review since they are new targets in anti-tick vaccine design. We present their role in the immune response that positions them as feasible targets that can be blocked, inhibited, interfered with, and overexpressed, and then elucidate a new method to control tick infestations through the development of vaccines. We also propose Extracellular Traps Formation (ETosis) in ticks as a process to eliminate their natural enemies and those pathogens they transmit (vectorial capacity), which results attractive since they are a source of acting molecules with potential use as vaccines.
Collapse
Affiliation(s)
- Hugo Aguilar-Díaz
- Unidad de Artropodología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico; (R.C.-B.); (E.M.-M.)
- Correspondence:
| | - Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico;
| | - Karina Salazar-Morales
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Raquel Cossío-Bayúgar
- Unidad de Artropodología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico; (R.C.-B.); (E.M.-M.)
| | - Estefan Miranda-Miranda
- Unidad de Artropodología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad INIFAP, Jiutepec 62574, Mexico; (R.C.-B.); (E.M.-M.)
| |
Collapse
|
16
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines (Basel) 2021; 9:725. [PMID: 34358142 PMCID: PMC8310300 DOI: 10.3390/vaccines9070725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
The medical and veterinary public health importance of ticks and tick-borne pathogens is increasing due to the expansion of the geographic ranges of both ticks and pathogens, increasing tick populations, growing incidence of tick-borne diseases, emerging tick transmitted pathogens, and continued challenges of achieving effective and sustained tick control. The past decades show an increasing interest in the immune-mediated control of tick infestations and pathogen transmission through the use of vaccines. Bovine tick resistance induced by repeated infestations was reported over a century ago. This review addresses the phenomena and immunological underpinning of resistance to tick infestation by livestock and laboratory animals; the scope of tick countermeasures to host immune defenses; and the impact of genomics, functional genomics, and proteomics on dissecting complex tick-host-pathogen interactions. From early studies utilizing tick tissue extracts to salivary gland derived molecules and components of physiologically important pathways in tick gut and other tissues, an increased understanding of these relationships, over time, impacted the evolution of anti-tick vaccine antigen selection. Novel antigens continue to emerge, including increased interest in the tick microbiome. Anti-tick and transmission blocking vaccines targeting pathogen reservoirs have the potential to disrupt enzootic cycles and reduce human, companion, domestic animal, and wildlife exposure to infected ticks.
Collapse
Affiliation(s)
| | - Stephen K. Wikel
- US Biologic Inc., 20 Dudley Street, Memphis, TN 38103, USA;
- Department of Medical Sciences, School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
18
|
Ghosh S, Parthasarathi BC, Kumar B. Current status and future prospects of multi-antigen tick vaccine. J Vector Borne Dis 2021; 58:183-192. [DOI: 10.4103/0972-9062.321739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|