1
|
Rojas-Cabeza JF, Moreno-Cordova EN, Ayala-Zavala JF, Ochoa-Teran A, Sonenshine DE, Valenzuela JG, Sotelo-Mundo RR. A review of acaricides and their resistance mechanisms in hard ticks and control alternatives with synergistic agents. Acta Trop 2024; 261:107519. [PMID: 39746593 DOI: 10.1016/j.actatropica.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ticks are significant ectoparasites that transmit a variety of pathogens, leading to serious human and animal diseases, including Lyme disease, Rocky Mountain spotted fever, anaplasmosis, and many others. The emergence of acaricide resistance in hard ticks presents a formidable challenge for public health and livestock management, exacerbated by the increasing incidence of tick-borne diseases and associated economic losses, estimated at $20 billion annually in the livestock sector alone. This review examines the mechanisms underlying acaricide resistance, focusing on genetic mutations, metabolic detoxification processes, and behavioral adaptations in tick populations. We detail the role of commercial acaricides in tick control while emphasizing the adverse effects of their overuse, which contributes to the development of resistant strains. Innovative control strategies are explored, including using pesticide synergists that enhance the efficacy of existing acaricides by targeting the tick's phosphagen system. Additionally, this review highlights the importance of understanding the synergistic interactions between various control methods, including non-chemical approaches such as personal protection measures and landscape management. The review concludes by underscoring the urgent need for novel acaricides with new modes of action and implementing regular monitoring practices to combat acaricide resistance effectively. Addressing these challenges is vital for the sustainable management of tick populations and protecting public health and livestock productivity.
Collapse
Affiliation(s)
- Jose Felix Rojas-Cabeza
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico
| | - Elena N Moreno-Cordova
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico
| | | | - Adrian Ochoa-Teran
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, 22444, Tijuana, Baja California, Mexico
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, 20852, USA
| | - Rogerio R Sotelo-Mundo
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
2
|
Meiring C, Labuschagne M. Genomic assessment of targets implicated in Rhipicephalus microplus acaricide resistance. PLoS One 2024; 19:e0312074. [PMID: 39637189 PMCID: PMC11620669 DOI: 10.1371/journal.pone.0312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Globally, the prevalence of Rhipicephalus microplus resistance to various acaricides has increased, and there is a need for the identification of molecular markers that can predict phenotypic resistance. These markers could serve as alternatives to the larval packet test (LPT), enabling rapid and accurate monitoring of resistance in these ticks against multiple acaricides. However, many of the historically identified markers are present in isolates from specific countries and their role in acaricide resistance remains unclear. This study aimed to assess these mutations by sequencing genomic regions encoding proteins historically associated with acaricide target site insensitivity and increased acaricide detoxification and comparing resistant and susceptible isolates from eight different countries. Employing a novel multiplex PCR setup developed during the study, the coding regions of 11 acaricide-resistant targets were amplified and sequenced across 37 R. microplus isolates from different locations. The identified mutations, both previously reported and novel, were compared between acaricide-susceptible and acaricide-resistant isolates, phenotypically characterized using the larval packet test or larval immersion test across five acaricide classes. Genotypes were then correlated with available phenotypes, and protein modelling of novel nonsynonymous mutations was conducted to assess their potential impact on acaricide resistance. Previously reported resistance-associated mutations were detected, some of which were present in both resistant and susceptible isolates. Novel mutations emerged from the 11 targets, but distinctions between susceptible and resistant isolates were not evident, except for the prevalent kdr mutation in synthetic pyrethroid-resistant isolates. The quest for predictive molecular markers for monitoring acaricide resistance remains challenging. Nevertheless, by utilizing a representative group of isolates, we determined that several historical mutations were present in both resistant and susceptible isolates. Additionally, the study provides valuable genetic data on acaricide-resistant and susceptible isolates from different geographical regions, focusing on genomic regions implicated in resistance. This baseline data offers a critical foundation for further research and the identification of more reliable molecular markers.
Collapse
Affiliation(s)
| | - Michel Labuschagne
- Clinglobal, Tamarin, Mauritius
- Clinomics, Bloemfontein, South Africa
- Department of Microbiology and Biochemistry, Faculty: Natural and Agricultural Sciences, Bloemfontein, South Africa
| |
Collapse
|
3
|
Li C, Zhao X, Liu W, Wen L, Deng Y, Shi W, Zhou N, Song R, Hu E, Guo Q, Gailike B. Biological Characteristics of the Cytochrome P 450 Family and the Mechanism of Terpinolene Metabolism in Hyalomma asiaticum (Acari: Ixodidae). Int J Mol Sci 2024; 25:11467. [PMID: 39519019 PMCID: PMC11546871 DOI: 10.3390/ijms252111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The CYP450 enzyme is a superfamily enzyme ubiquitously found in nearly all organisms, playing a vital role in the metabolism of both endogenous and exogenous compounds, and in biosynthesis. Unfortunately, an understanding of its classification, functions, expression characteristics, and other biological traits in Hyalomma asiaticum, a vector for Crimean-Congo Hemorrhagic Fever, as well as of the genes implicated in its natural product metabolism, is lacking. Towards this end, this study has identified 120 H. asiaticum CYP450 genes via transcriptome data in the face of a joint genome threat from terpinolene. The proteins these genes encode are of higher molecular weight, devoid of a signal peptide, and composed of unstable hydrophobic proteins principally containing 1-3 variable transmembrane regions. Phylogenetic evolution classifies these H. asiaticum CYP450 genes into four subfamilies. These genes all encompass complete CYP450 conserved domains, and five specific conserved motifs, albeit with different expression levels. GO and KEGG annotation findings suggest a widespread distribution of these CYP450 genes in many physiological systems, predominantly facilitating lipid metabolism, terpenoid compound metabolism, and polyketone compound metabolism, as well as cofactor and vitamin metabolism at a cellular level. Molecular docking results reveal a hydrophobic interaction between the ARG-103, ARG-104, LEU-106, PHE-109, and ILE-119 amino acid residues in CYP3A8, which is primarily expressed in the fat body, and terpinolene, with a notably up-regulated expression, with affinity = -5.6 kcal/mol. The conservation of these five key amino acid residues varies across 12 tick species, implying differences in terpinolene metabolism efficacy among various tick species. This study thereby fills an existing knowledge gap regarding the biological characteristics of H. asiaticum CYP450 genes and paves the way for further research into the functions of these particular genes.
Collapse
Affiliation(s)
- Caishan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xueqing Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Licui Wen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuqian Deng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenyu Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Na Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Ruiqi Song
- School of Medicine, Shihezi University, Shihezi 832003, China;
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
- Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Bayinchahan Gailike
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
4
|
Wu F, Du M, Ling J, Wang R, Hao N, Wang Z, Li X. In silico degradation of fluoroquinolones by a microalgae-based constructed wetland system. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134946. [PMID: 38941832 DOI: 10.1016/j.jhazmat.2024.134946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Fluoroquinolone antibiotics (FQs) have been used worldwide due to their extended antimicrobial spectrum. However, the overuse of FQs leads to frequent detection in the environment and cannot be efficiently removed. Microalgae-based constructed wetland systems have been proven to be a relatively proper method to treat FQs, mainly by microalgae, plants, microorganisms, and sediments. To improve the removal efficiency of microalgae-constructed wetland, a systematic molecular design, screening, functional, and risk evaluation method was developed using three-dimensional quantitative structure-activity relationship models, molecular dynamics simulation, molecular docking, and TOPKAT approaches. Five designed ciprofloxacin alternatives with improved bactericidal effects and lower human health risks were found to be more easily degraded by microalgae (16.11-167.88 %), plants (6.72-58.86 %), microorganisms (9.10-15.02 %), and sediments (435.83 %-1763.51 %) compared with ciprofloxacin. According to the mechanism analysis, the removal effect of the FQs can be affected via changes in the number, bond energy, and molecular descriptors of favorable and unfavorable amino acids. To the best of our knowledge, this is the first comprehensive study of improving the microalgae, plants, microorganisms, and sediment removal efficiency of FQs in constructed wetlands, which provides theoretical support for the treatment of FQ pollution.
Collapse
Affiliation(s)
- Fuxing Wu
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianglong Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Renjie Wang
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zini Wang
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
5
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
6
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
7
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Achuthkumar A, Uchamballi S, Arvind K, Vasu DA, Varghese S, Ravindran R, Grace T. Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment. Biomedicines 2023; 11:biomedicines11051369. [PMID: 37239047 DOI: 10.3390/biomedicines11051369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
Ticks are hematophagous ectoparasites of economic consequence by virtue of being carriers of infectious diseases that affect livestock and other sectors of the agricultural industry. A widely prevalent tick species, Rhipicephalus (Boophilus) annulatus, has been recognized as a prime vector of tick-borne diseases in South Indian regions. Over time, the use of chemical acaricides for tick control has promoted the evolution of resistance to these widely used compounds through metabolic detoxification. Identifying the genes related to this detoxification is extremely important, as it could help detect valid insecticide targets and develop novel strategies for effective insect control. We performed an RNA-sequencing analysis of acaricide-treated and untreated R. (B.) annulatus and mapped the detoxification genes expressed due to acaricide exposure. Our results provided high-quality RNA-sequenced data of untreated and amitraz-treated R. (B.) annulatus, and then the data were assembled into contigs and clustered into 50,591 and 71,711 uni-gene sequences, respectively. The expression levels of the detoxification genes across different developmental stages of R. (B.) annulatu identified 16,635 transcripts as upregulated and 15,539 transcripts as downregulated. The annotations of the differentially expressed genes (DEGs) revealed the significant expression of 70 detoxification genes in response to the amitraz treatment. The qRT-PCR revealed significant differences in the gene expression levels across different life stages of R. (B.) annulatus.
Collapse
Affiliation(s)
- Amritha Achuthkumar
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Shamjana Uchamballi
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Kumar Arvind
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Sincy Varghese
- Department of Biochemistry, Pazhassiraja College, Pulpally 673579, Kerala, India
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode 673576, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| |
Collapse
|
9
|
Fadahunsi AI, Kumm C, Graham K, de León AAP, Guerrero F, Sparagano OAE, Finn RD. Biochemical characterisation of Cytochrome P450 oxidoreductase from the cattle tick, Rhipicephalus microplus, highlights potential new acaricide target. Ticks Tick Borne Dis 2023; 14:102148. [PMID: 36905815 DOI: 10.1016/j.ttbdis.2023.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Management of the cattle tick, Rhipicephalus microplus, presents a challenge because some populations of this cosmopolitan and economically important ectoparasite are resistant to multiple classes of acaricides. Cytochrome P450 oxidoreductase (CPR) is part of the cytochrome P450 (CYP450) monooxygenases that are involved in metabolic resistance by their ability to detoxify acaricides. Inhibiting CPR, the sole redox partner that transfers electrons to CYP450s, could overcome this type of metabolic resistance. This report represents the biochemical characterisation of a CPR from ticks. Recombinant CPR of R. microplus (RmCPR), minus its N-terminal transmembrane domain, was produced in a bacterial expression system and subjected to biochemical analyses. RmCPR displayed a characteristic dual flavin oxidoreductase spectrum. Incubation with nicotinamide adenine dinucleotide phosphate (NADPH) lead to an increase in absorbance between 500 and 600 nm with a corresponding appearance of a peak absorbance at 340-350 nm indicating functional transfer of electrons between NADPH and the bound flavin cofactors. Using the pseudoredox partner, kinetic parameters for both cytochrome c and NADPH binding were calculated as 26.6 ± 11.4 µM and 7.03 ± 1.8 µM, respectively. The turnover, Kcat, for RmCPR for cytochrome c was calculated as 0.08 s-1 which is significantly lower than the CPR homologues of other species. IC50 (Half maximal Inhibitory Concentration) values obtained for the adenosine analogues 2', 5' ADP, 2'- AMP, NADP+and the reductase inhibitor diphenyliodonium were: 140, 82.2, 24.5, and 75.3 µM, respectively. Biochemically, RmCPR resembles CPRs of hematophagous arthropods more so than mammalian CPRs. These findings highlight the potential of RmCPR as a target for the rational design of safer and potent acaricides against R. microplus.
Collapse
Affiliation(s)
- Adeyinka I Fadahunsi
- Department of Biological Sciences, Biotechnology Programme, Elizade University, Ondo State, Nigeria
| | - Christopher Kumm
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK
| | - Kirsty Graham
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, U.S. Department of Agriculture, Agricultural Research Service, Kerrville, TX, USA
| | - Felix Guerrero
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, U.S. Department of Agriculture, Agricultural Research Service, Kerrville, TX, USA
| | - Oliver A E Sparagano
- Department of Public Health and Infectious Diseases, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Robert D Finn
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK; Department of Biochemistry & Genetics, Faculty of Health & Life Sciences, St George's International School of Medicine, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
10
|
Wang Y, Tian J, Han Q, Zhang Y, Liu Z. Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109118. [PMID: 34182095 DOI: 10.1016/j.cbpc.2021.109118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
As one of the dominant natural enemies for insect pests, the pond wolf spider, Pardosa pseudoannulata, plays important roles in pest control. Insecticide applications threaten P. pseudoannulata and consequently weaken its control effects. The roles of P450 monooxygenases in insecticide detoxifications have been richly reported in insects, but there are few reported in spiders. In this study, 120 transcripts encoding P. pseudoannulata P450s were identified based on whole genome sequencing. Compared to P450s of Aedes aegypti and Nilaparvata lugens, several novel P450 families were found, such as CYP3310. KEGG analysis of the CYP3310 family indicated that the family might be involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbons. The potential P450s involved in insecticide metabolism were obtained according to the high FPKM values in fat bodies based on transcriptome sequencing. However, none of the selected P450 genes was significantly upregulated by the treatments of deltamethrin or imidacloprid. The present study provides genomic and transcriptomic information of spider P450s, especially for their roles in the synthesis and metabolism of endogenous and exogenous compounds, such as polyunsaturated fatty acids, hydrocarbons and insecticides.
Collapse
Affiliation(s)
- Yunchao Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jiahua Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
11
|
Comparative susceptibility of Rhipicephalus microplus collected from the northern state of India to coumaphos, malathion, deltamethrin, ivermectin, and fipronil. Trop Anim Health Prod 2021; 53:460. [PMID: 34542704 DOI: 10.1007/s11250-021-02886-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
The chemical-based tick management method is gradually losing its clutch due to the establishment of resistant ticks. For development of region-specific tick management strategies, the present study was aimed to evaluate the comparative resistance profile of Rhipicephalus microplus isolates collected from seven districts of Uttar Pradesh, a northern state of India. Comparative analysis of the dose-response data using adult immersion test (AIT) against coumaphos, malathion, deltamethrin, ivermectin, and fipronil revealed that all the isolates were resistant to discriminating concentration of deltamethrin having LC50 of 295.12-436.52 ppm with a resistance ratio of 22.02-32.58. An emerging low level of ivermectin resistance (resistance ratio, RR50 = 1.03-2.26) with LC50 in the range of 22.39-48.98 ppm was found across the isolates. The coumaphos was highly effective against all except Amethi (AMT) isolate. Similarly, malathion was efficacious against most of the isolates except Pratapgarh (PRT) and Sultanpur (SUL) isolates showing LC50 of 5128.61 and 5623.41 ppm, respectively. All the isolates were responsive to fipronil. Comparative detoxifying enzymes profiles revealed a significant correlation between the increased activity of esterase and deltamethrin resistance. The GST activity was 51.2% correlated with RR50 of malathion while esterase activity was significantly correlated (68.9%) with RR50 of coumaphos. No correlation between the ivermectin resistance and enzyme activity was established. Multiple sequence analysis of S4-5 linker region of the sodium channel gene of all the isolates revealed a point mutation at 190th position (C190A) which is associated with deltamethrin resistance. The possible tick management strategies in this part of the country are discussed.
Collapse
|