1
|
Ostapchuk YO, Bissenbay AO, Kuligin AV, Zhigailov AV, Perfilyeva YV, Kan SA, Lushova AV, Stukolova OA, Sayakova ZZ, Abdolla N, Dmitrovskiy AM, Mashzhan AS, Kuatbekova SA, Dosmagambet Z, Shapiyeva ZZ, Naizabayeva DA, Ospanbekova NK, Yeszhanov A, Akhmetollayev IA, Skiba YA. Survey of tick-borne relapsing fever borreliae in southern and southeastern Kazakhstan. Ticks Tick Borne Dis 2024; 15:102398. [PMID: 39332111 DOI: 10.1016/j.ttbdis.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Tick-borne relapsing fever group borreliae (TBRFGB) are spirochetes that cause disease in humans and animals. Little is known about the prevalence of TBRFGB infections in ticks and humans in Kazakhstan. A total of 846 ticks belonging to ten species of the family Ixodidae and three species of the family Argasidae were collected from the vegetation, poultry shelters, domestic ruminants, bitten humans, pigeons, dogs and house walls in four oblasts of the southern and southeastern regions of Kazakhstan. The ticks were subjected to DNA extraction and identification of TBRFGB by conventional PCR using primers targeting flagella subunit B (flaB), glycerophosphodiester phosphodiesterase (glpQ) and P66 porin (P66) genes. The overall infection rate of TBRFGB in the ticks was 6.2 % (46/846). TBRFGB DNA was identified in Ixodes persulcatus (5.5 %; 26/477), Ornithodoros tartakovskyi (6 %; 2/36) and Argas persicus (13.4 %; 18/134) ticks. Partial sequencing of flaB, glpQ and P66 genes identified Borrelia miyamotoi in I. persulcatus and Borrelia anserina in A. persicus. To detect the presence of B. miyamotoi infection in people in the study region, we performed serological analysis of samples collected from 42 patients admitted to hospital with fever of unknown etiology or with a history of a tick bite. The analysis revealed IgM and IgG antibodies against one or several B. miyamotoi antigens in 10 % and 5 % of patients, respectively. The data obtained provide strong evidence of the presence of B. miyamotoi and B. anserina in the southern and southeastern regions of Kazakhstan, underscoring the need for increased awareness of potential infections caused by these borreliae in these regions.
Collapse
Affiliation(s)
- Yekaterina O Ostapchuk
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; ECO-Consulting LLC, 143/93 Abay St., Almaty 040907, Kazakhstan.
| | - Akerke O Bissenbay
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Av., Almaty 050040, Kazakhstan
| | - Artyom V Kuligin
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Av., Almaty 050040, Kazakhstan
| | - Andrey V Zhigailov
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Yuliya V Perfilyeva
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan.
| | - Sofiya A Kan
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Av., Almaty 050040, Kazakhstan
| | - Anzhelika V Lushova
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Av., Almaty 050040, Kazakhstan
| | - Olga A Stukolova
- Central Research Institute of Epidemiology, Moscow 111123, Russia
| | - Zaure Z Sayakova
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Nurshat Abdolla
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Andrey M Dmitrovskiy
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Akzhigit S Mashzhan
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Saltanat A Kuatbekova
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Zhaniya Dosmagambet
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Zhanna Zh Shapiyeva
- Scientific Practical Center of Sanitary-Epidemiological Expertise and Monitoring, 84 Auezov St., Almaty 050008, Kazakhstan
| | - Dinara A Naizabayeva
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Nailya K Ospanbekova
- Kazakh-Russian Medical University, 51/53 Abylai Khan St., Almaty 050004, Kazakhstan
| | - Aidyn Yeszhanov
- Institute of Zoology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | | | - Yuriy A Skiba
- Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| |
Collapse
|
2
|
Wodecka B, Kolomiiets V. Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland. Life (Basel) 2023; 13:life13040972. [PMID: 37109501 PMCID: PMC10143352 DOI: 10.3390/life13040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector for different Borrelia species. To date, eleven Borreliella species were detected in the natural populations of I. ricinus. Recently, two North American species have been detected in ticks parasitizing bats and red foxes in Europe, i.e., B. lanei and B. californiensis pointing to the necessity for searching for them in natural tick populations. In this study, using the coxI molecular marker only I. ricinus was identified in field-collected ticks with the exception of individual specimens of Haemaphysalis concinna. Using the flaB gene and mag-trnI intergenic spacer as molecular markers 14 Borreliaceae species have been detected with various frequencies in different parts of northern Poland. Among infected ticks, the most frequent were Borreliella (Bl.) afzelii (29.4%) and Bl. garinii (20.0%), followed by Bl. spielmanii, Bl. valaisiana, Bl. lanei, Bl. californiensis, B. miyamotoi, Bl. burgdorferi, Bl. carolinensis, Bl. americana, B. turcica, Bl. lusitaniae, Bl. bissettiae and Bl. finlandensis. Three of the above-mentioned species, i.e., Bl. lanei, Bl. californiensis and B. turcica were detected in this study for the first time in the natural ixodid tick population in Europe. The existence of the newly detected spirochetes increases their total diversity in Europe and points to the necessity of careful identification and establishment of the actual distribution of all Borreliaceae species transmitted by I. ricinus.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| | - Valentyna Kolomiiets
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| |
Collapse
|
3
|
Zverev SA, Andreev SV, Sakharov KA, Akhmetshina MB, Istomina LI, Verzhutskaya YA, Shashina NI. Evaluation of the efficacy of permethrin- and cypermethrin-based textile against taiga tick, Ixodes persulcatus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:275-286. [PMID: 37017750 DOI: 10.1007/s10493-023-00785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
A comparison of the efficacy of permethrin- and cypermethrin-based textile against taiga ticks (Ixodes persulcatus) was carried out in a tick-borne viral encephalitis hotspot in the Irkutsk Region (Russia) using model samples of impregnated textiles. We demonstrated that permethrin- and cypermethrin-treated model samples have similar protective parameters in terms of maximum height reached by the tick when climbing up the treated textile (20.9-38.7 cm for cypermethrin, 27.6-39.3 cm for permethrin, depending on concentration) and knockdown time (i.e., the time until a female tick falls off the treated textile; 3.52-4.31 min for cypermethrin, 5.02-8.25 min for permethrin, depending on concentration). In contrast, when evaluating the 'biting speed' index (which is the ratio of the average attaching time of ticks contacting untreated textiles and ticks contacting treated textiles), it has been shown that permethrin-treated textiles accelerate biting. So, using permethrin-treated protective clothing against the taiga tick could be risky because it increases the likelihood of being bitten and thus getting infected. In contrast, cypermethrin-treated textiles appear to block the ability of ticks to attack warm-blooded animals and humans - after contact with cypermethrin-treated textiles none of the ticks attached to a rabbit. So cypermethrin-based textiles could be an alternative to permethrin for tick-bite protection clothing production if there is no toxic effect on humans of textile materials based on it.
Collapse
Affiliation(s)
- Sergey A Zverev
- Disinfectology institute of Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-being, Moscow region, Russian Federation
| | - Sergey V Andreev
- Disinfectology institute of Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-being, Moscow region, Russian Federation
| | - Konstantin A Sakharov
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore.
| | - Marina B Akhmetshina
- Disinfectology institute of Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-being, Moscow region, Russian Federation
| | - Liudmila I Istomina
- Disinfectology institute of Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-being, Moscow region, Russian Federation
| | - Yulia A Verzhutskaya
- Irkutsk Antiplague Research Institute of Siberia and Far East, Irkutsk, Russian Federation
| | - Natalia I Shashina
- Disinfectology institute of Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-being, Moscow region, Russian Federation
| |
Collapse
|
4
|
Mancilla-Agrono LY, Banguero-Micolta LF, Ossa-López PA, Ramírez-Chaves HE, Castaño-Villa GJ, Rivera-Páez FA. Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia. Trop Med Infect Dis 2022; 7:428. [PMID: 36548683 PMCID: PMC9788524 DOI: 10.3390/tropicalmed7120428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The genus Borrelia encompasses spirochetal species that are part of three well-defined groups. Two of these groups contain pathogens that affect humans: the group causing Lyme disease (LDG) and the relapsing fever group (RFG). Lyme disease is caused by Borrelia burgdorferi s.l., which is distributed in the Northern Hemisphere, and relapsing fevers are caused by Borrelia spp., which are found in temperate and tropical countries and are an emerging but neglected pathogens. In some departments of Colombia, there are records of the presence of Borrelia sp. in humans and bats. However, little is known about the impact and circulation of Borrelia spp. in the country, especially in wildlife, which can act as a reservoir and/or amplifying host. In this context, the objective of our research was to detect and identify the Borrelia species present in wild mammals in the departments of Caldas and Risaralda in Colombia. For morphological detection, blood smears and organ imprints were performed, and molecular identification was carried out through a nested PCR directed on the flagellin B (flaB) gene. A total of 105 mammals belonging to three orders (Chiroptera, Didelphimorphia and Rodentia) were analyzed, of which 15.24% (n = 16) were positive for Borrelia. Molecularly, the presence of Borrelia burgdorferi s.s. in lung tissues of Thomasomys aureus and blood of Mus musculus (Rodentia) was detected, with 99.64 and 100% identity, respectively. Borrelia sp. genospecies from a clade branch of a bat-associated LDG sister group were identified in seven individuals of bat species, such as Artibeus lituratus, Carollia brevicauda, Sturnira erythromos, and Glossophaga soricina. Furthermore, two Borrelia genospecies from the RFG in seven individuals of bats (A. lituratus, Artibeus jamaicensis, Platyrrhinus helleri, Mesophylla macconnelli, Rhynchonycteris naso) and rodents (Coendou rufescens, Microryzomys altissimus) were documented. Additionally, the presence of a spirochete was detected by microscopy in the liver of a Sturnira erythromos bat specimen. These results contain the first molecular evidence of the presence of B. burgdorferi s.s. in South America, which merits the need for comprehensive studies involving arthropods and vertebrates (including humans) in other departments of Colombia, as well as neighboring countries, to understand the current status of the circulation of Borrelia spp. in South America.
Collapse
Affiliation(s)
- Lorys Y. Mancilla-Agrono
- Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| | - Lizeth F. Banguero-Micolta
- Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| | - Paula A. Ossa-López
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| | - Héctor E. Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, Manizales 170004, Colombia
| | - Gabriel J. Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 30-65, Manizales 17004, Colombia
| | - Fredy A. Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| |
Collapse
|
5
|
Peintner L, Wagner E, Shin A, Tukhanova N, Turebekov N, Abdiyeva K, Spaiser O, Serebrennikova Y, Tintrup E, Dmitrovskiy A, Zhalmagambetova A, Frey S, Essbauer SS. Eight Years of Collaboration on Biosafety and Biosecurity Issues Between Kazakhstan and Germany as Part of the German Biosecurity Programme and the G7 Global Partnership Against the Spread of Weapons and Materials of Mass Destruction. Front Public Health 2021; 9:649393. [PMID: 34434910 PMCID: PMC8381731 DOI: 10.3389/fpubh.2021.649393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
In 2013, the German Federal Foreign Office launched the German Biosecurity Programme with the aim to minimise risks associated with biological substances and pathogens. In this context, the German-Kazakh Network for Biosafety and Biosecurity was established in 2013 and constitutes a successful collaboration between Kazakh and German biomedical organisations, under the co-management of the Bundeswehr Institute of Microbiology (IMB), and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Ever since then, a network of scientists, stake holders and policymakers has been established, aiming to work on highly pathogenic, potential biological warfare agents with the focus on biosafety and biosecurity, surveillance, detection and diagnostics, networking and awareness raising of these agents in Kazakhstan. Over the past 8 years, the project members trained four PhD candidates, organised over 30 workshops and trainings with more than 250 participants and conducted more than 5,000 PCR assays and 5,000 serological analyses for surveillance. A great success was the description of new endemic areas for Orthohantaviruses, the mixture of two Crimean-Congo haemorrhagic fever virus genetic clusters, new foci and genetic information on tick-borne encephalitis virus and rickettsiae in Kazakh oblasts. The latter even led to the description of two new genogroups. Furthermore, joint contributions to international conferences were made. In this report, we summarise the evolution of the German-Kazakh Network for Biosafety and Biosecurity and critically reflect on the strengths and possible weaknesses. We were able to establish a viable network of biosafety and biosecurity shareholders and to accomplish the aims of the German Biosecurity Programme to lower biosecurity risks by increased awareness, improved detection and diagnostic methods and surveillance. Further, we reflect on forthcoming aspects to lead this interstate endeavour into a sustainable future.
Collapse
Affiliation(s)
- Lukas Peintner
- Department of Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Edith Wagner
- Department of Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, Bundeswehr Institute of Microbiology, Munich, Germany.,Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Anna Shin
- Central Reference Laboratory, M. Aikimbaev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan.,Center for International Health, Ludwig-Maximilians-University, Munich, Germany
| | - Nur Tukhanova
- Central Reference Laboratory, M. Aikimbaev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan.,Center for International Health, Ludwig-Maximilians-University, Munich, Germany
| | - Nurkeldi Turebekov
- Central Reference Laboratory, M. Aikimbaev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Karlygash Abdiyeva
- Central Reference Laboratory, M. Aikimbaev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Olga Spaiser
- Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, Berlin, Germany
| | | | - Erik Tintrup
- Division OR12 "Chemical and Biological Weapons, Disarmament, G7 Global Partnership", German Federal Foreign Office, Berlin, Germany
| | - Andrey Dmitrovskiy
- Central Reference Laboratory, M. Aikimbaev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Aliya Zhalmagambetova
- Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, Berlin, Germany.,Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, Almaty, Kazakhstan
| | - Stefan Frey
- Department of Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, Bundeswehr Institute of Microbiology, Munich, Germany.,Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Munster, Germany
| | - Sandra Simone Essbauer
- Department of Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, Bundeswehr Institute of Microbiology, Munich, Germany
| |
Collapse
|