1
|
Jiang S, Kang M, Li Z, Han X, Chen C, He S, Hu X, He Y, Wang Y, Li Z, Chen J, Geng P, Chen Q, Ma J, Zhang X, Tai X, Li Y. The impact of bloodmeal and geographic region on the richness, diversity, and function of internal microbial community in Haemaphysalis qinghaiensis from the Qinghai province, China. Heliyon 2024; 10:e35429. [PMID: 39165970 PMCID: PMC11334854 DOI: 10.1016/j.heliyon.2024.e35429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Background Ticks are ectoparasites that feed on blood and pose a threat to both the livestock industry and public health due to their ability to transmit pathogens through biting. However, the impact of factors such as bloodmeal and geographic regions on the bacterial microbiota of Haemaphysalis qinghaiensis remains poorly understood. Methods In this study, we used the v3-v4 region of the 16S rRNA gene to sequence the microbiota of Haemaphysalis qinghaiensis from eight groups (HY_M, YS_M, XH_M, LD_M, BM_M, LD_F_F, LD_F, and BM_F_F) in Qinghai Province. Results Significant differences in bacterial richness were observed between LD_F_F, BM_F_F, and LD_F (P < 0.01), and among the five groups (HY_M, YS_M, XH_M, BM_M, and LD_M) (P < 0.05). The bacterial diversity also differed significantly between LD_F_F, LD_F, and BM_F_F (P < 0.01), as well as among the five groups (HY_M, YS_M, XH_M, LD_M, and BM_M) (P < 0.01). The group with the highest number of operational taxonomic units (OTUs) was LD_F, accounting for 23.93 % (419/1751), while BM_F_F accounted for at least 0.80 % (14/1751). At the phylum level, Firmicutes was the most abundant, with relative abundance ranging from 7.44 % to 96.62 %. At the genus level, Staphylococcus had the highest abundance, ranging from 1.67 % to 97.53 %. The endosymbiotic bacteria Coxiella and Rickettsia were predominantly enriched in LD_F_F. Additionally, the 16S gene of Coxiella showed the highest identity of 99.07 % with Coxiella sp. isolated from Xinxiang hl9 (MG9066 71.1), while the 16S gene of Rickettsia had 100 % identity with Candidatus Rickettsia hongyuanensis strains (OK 662395.1). Functional predictions for the prokaryotic microbial community indicated that the main functional categories were Metabolic, Genetic information processing, and Environmental information processing across the eight groups. Conclusion This study provides a theoretical basis for the prevention and treatment of tick-borne diseases, which is of great significance for public health.
Collapse
Affiliation(s)
- Shuo Jiang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ming Kang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Zengkui Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiaoling Han
- Qinghai National Park Research, Monitoring and Evaluation Center, Xining, 810008, Qinghai, China
| | - Changjiang Chen
- Huangyuan Animal Husbandry and Veterinary Station, Xining, 810016, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park, Xining, 810016, Qinghai, China
| | - Xiaoyu Hu
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yongcai He
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Yuezhong Wang
- Huangnan Prefecture Animal Disease Prevention and Control Center, Tongren, 811300, Qinghai, China
| | - Zhongyu Li
- Qinghai Xunhua Salar Autonomous County Animal Husbandry and Veterinary Station, Haidong, 811100, Qinghai, China
| | - Jiyong Chen
- Yushu Animal Disease Prevention and Control Center, Yushu, 815099, Qinghai, China
| | - Pengcheng Geng
- Golog Tibetan Autonomous Prefecture Animal Epidemic Disease Prevention Control Center, Golog, 814000, Qinghai, China
| | - Qiang Chen
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Jinghua Ma
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Xiao Zhang
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ximei Tai
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
| | - Ying Li
- Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, 810016, Qinghai, China
| |
Collapse
|
2
|
Wang D, Zhang X, Li H, Wang T, Ma X, Yu Z, Wang F, Zhang Y, Liu J. Iron regulatory protein from the hard tick Haemaphysalis longicornis: characterization, function and assessment as a protective antigen. PEST MANAGEMENT SCIENCE 2024; 80:3922-3934. [PMID: 38520319 DOI: 10.1002/ps.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Ticks are blood-feeding ectoparasites with different host specificities and are capable of pathogen transmission. Iron regulatory proteins (IRPs) play crucial roles in iron homeostasis in vertebrates. However, their functions in ticks remain poorly understood. The aim of the present study was to investigate the characteristics, functions, molecular mechanisms, and the vaccine efficacy of IRP in the hard tick Haemaphysalis longicornis. RESULTS The full-length complementary DNA of IRP from Haemaphysalis longicornis (HlIRP) was 2973 bp, including a 2772 bp open reading frame. It is expressed throughout three developmental stages (larvae, nymphs, and adult females) and in various tissues (salivary glands, ovaries, midgut, and Malpighian tubules). Recombinant Haemaphysalis longicornis IRP (rHlIRP) was obtained via a prokaryotic expression system and exhibited aconitase, iron chelation, radical-scavenging, and hemolytic activities in vitro. RNA interference-mediated IRP knockdown reduced tick engorgement weight, ovary weight, egg mass weight, egg hatching rate, and ovary vitellin content, as well as prolonging the egg incubation period. Proteomics revealed that IRP may affect tick reproduction and development through proteasome pathway-associated, ribosomal, reproduction-related, and iron metabolism-related proteins. A trial on rabbits against adult Haemaphysalis longicornis infestation demonstrated that rHlIRP vaccine could significantly decrease engorged weight (by 10%), egg mass weight (by 16%) and eggs hatching rate (by 22%) of ticks. The overall immunization efficacy using rHlIRP against adult females was 41%. CONCLUSION IRP could limit reproduction and development in Haemaphysalis longicornis, and HlIRP was confirmed as a candidate vaccine antigen to impair tick iron metabolism and protect the host against tick infestation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hongxia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ting Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojin Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yankai Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
3
|
Liu ZL, Qiu QG, Cheng TY, Liu GH, Liu L, Duan DY. Composition of the Midgut Microbiota Structure of Haemaphysalis longicornis Tick Parasitizing Tiger and Deer. Animals (Basel) 2024; 14:1557. [PMID: 38891605 PMCID: PMC11171073 DOI: 10.3390/ani14111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Haemaphysalis longicornis is a common tick species that carries several pathogens. There are few reports on the influence of different hosts on the structure of midgut microflora in H. longicornis. In this study, midgut contents of fully engorged female H. longicornis were collected from the surface of tiger (Panthera tigris) and deer (Dama dama). The bacterial genomic DNA of each sample was extracted, and the V3-V4 regions of the bacterial 16S rRNA were sequenced using the Illumina NovaSeq sequencing. The diversity of the bacterial community of the fully engorged female H. longicornis on the surface of tiger was higher than that of deer. In total, 8 phyla and 73 genera of bacteria annotations were detected in the two groups. At the phylum level, the bacterial phyla common to the two groups were Proteobacteria, Firmicutes, and Actinobacteriota. At the genus level, there were 20 common bacterial genera, among which the relative abundances of Coxiella, Morganella, Diplorickettsia, and Acinetobacter were high. The Morganella species was further identified to be Morganella morganii. The alpha diversity index indicated that the bacterial diversity of the tiger group was higher than that of the deer group. Bacteroidota, Patescibacteria, Desulfobacterota, Verrucomicrobiota, and Cyanobacteria were solely detected in the tiger group. A total of 52 bacterial genera were unique in the tiger group, while one bacterial genus was unique in the deer group. This study indicates that there are differences in the structure of the gut bacteria of the same tick species among different hosts. Further culture-based methods are needed to provide a more comprehensive understanding of the tick microbiota parasitizing different hosts.
Collapse
Affiliation(s)
- Zi-Ling Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - Qi-Guan Qiu
- Changsha Ecological Zoo, Changsha 410128, China;
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - Lei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.-L.L.); (T.-Y.C.); (G.-H.L.)
| |
Collapse
|
4
|
Teh J, Biswas K, Waldvogel-Thurlow S, Broderick D, Clark ST, Johnston J, Wagner Mackenzie B, Douglas R. Paired qualitative and quantitative analysis of bacterial microcolonies in the tonsils of patients with tonsillar hyperplasia. Microbes Infect 2024; 26:105317. [PMID: 38452852 DOI: 10.1016/j.micinf.2024.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The discovery of bacterial microcolonies in tonsillar tissue of patients with tonsillar hyperplasia has raised the question of their role in provoking the local immune response. Tonsils collected from patients undergoing tonsillectomy were stained for three clinically relevant bacterial taxa and lymphocytes. The bacterial composition and abundance of microcolonies was investigated using a combination of laser-microdissection, amplicon sequencing and Droplet Digital polymerase chain reaction. Microcolonies were detected in most samples (32/35) with a high prevalence of Haemophilus influenzae (78% of samples). B and T cell lymphocytes were significantly higher in the epithelium adjacent to microcolonies compared to epithelium distal to microcolonies. Furthermore, significant positive and negative correlations were identified between bacterial taxa and lymphocytes. Genus Streptococcus, which includes Group A Streptococcus (traditionally described as the main pathogen of tonsillar hyperplasia), was found in low abundance in this study. These results suggest other potential pathogens may be involved in stimulating the local immune response leading to tonsillar hyperplasia.
Collapse
Affiliation(s)
- Jackson Teh
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Kristi Biswas
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand.
| | - Sharon Waldvogel-Thurlow
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - David Broderick
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Sita Tarini Clark
- Te Whatu Ora - Te Toka Tumai Auckland, Health New Zealand, Auckland, 1142, New Zealand
| | - James Johnston
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand; Te Whatu Ora - Te Toka Tumai Auckland, Health New Zealand, Auckland, 1142, New Zealand
| | - Brett Wagner Mackenzie
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Richard Douglas
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand; Te Whatu Ora - Te Toka Tumai Auckland, Health New Zealand, Auckland, 1142, New Zealand
| |
Collapse
|
5
|
Moustafa MAM, Mohamed WMA, Chatanga E, Naguib D, Matsuno K, Gofton AW, Barker SC, Nonaka N, Nakao R. Unraveling the phylogenetics of genetically closely related species, Haemaphysalis japonica and Haemaphysalis megaspinosa, using entire tick mitogenomes and microbiomes. Sci Rep 2024; 14:9961. [PMID: 38693183 PMCID: PMC11063046 DOI: 10.1038/s41598-024-60163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Ticks have a profound impact on public health. Haemaphysalis is one of the most widespread genera in Asia, including Japan. The taxonomy and genetic differentiation of Haemaphysalis spp. is challenging. For instance, previous studies struggled to distinguish Haemaphysalis japonica and Haemaphysalis megaspinosa due to the dearth of nucleotide sequence polymorphisms in widely used barcoding genes. The classification of H. japonica japonica and its related sub-species Haemaphysalis japonica douglasi or Haemaphysalis jezoensis is also confused due to their high morphological similarity and a lack of molecular data that support the current classification. We used mitogenomes and microbiomes of H. japonica and H. megaspinosa to gain deeper insights into the phylogenetic relationships and genetic divergence between two species. Phylogenetic analyses of concatenated nucleotide sequences of protein-coding genes and ribosomal DNA genes distinguished H. japonica and H. megaspinosa as monophyletic clades, with further subdivision within the H. japonica clade. The 16S rRNA and NAD5 genes were valuable markers for distinguishing H. japonica and H. megaspinosa. Population genetic structure analyses indicated that genetic variation within populations accounted for a large proportion of the total variation compared to variation between populations. Microbiome analyses revealed differences in alpha and beta diversity between H. japonica and H. megaspinosa: H. japonica had the higher diversity. Coxiella sp., a likely endosymbiont, was found in both Haemaphysalis species. The abundance profiles of likely endosymbionts, pathogens, and commensals differed between H. japonica and H. megaspinosa: H. megaspinosa was more diverse.
Collapse
Affiliation(s)
- Mohamed Abdallah Mohamed Moustafa
- Department of Entomology, Rutgers School of Environmental and Biological Sciences, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Wessam M A Mohamed
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Biochemistry and Microbiology, Rutgers School of Environmental and Biological Sciences, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Elisha Chatanga
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Veterinary Pathobiology, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Doaa Naguib
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | | | - Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
6
|
Zhang YK, Li SS, Yang C, Zhang YF, Zhang XY, Liu JZ. Tetracycline inhibits tick host reproduction by modulating bacterial microbiota, gene expression and metabolism levels. PEST MANAGEMENT SCIENCE 2024; 80:366-375. [PMID: 37694307 DOI: 10.1002/ps.7766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Ticks are disease vectors that are a matter of worldwide concern. Antibiotic treatments have been used to explore the interactions between ticks and their symbiotic microorganisms. In addition to altering the host microbial community, antibiotics can have toxic effects on the host. RESULTS In the tick Haemaphysalis longicornis, engorged females showed reproductive disruption after microinjection of tetracycline. Multi-omics approaches were implemented to unravel the mechanisms of tick reproductive inhibition in this study. There were no significant changes in bacterial density in the whole ticks on Day (D)2 or D4 after tetracycline treatment, whereas the bacterial microbial community was significantly altered, especially on D4. The relative abundances of the bacteria Staphylococcus, Bacillus and Pseudomonas decreased after tetracycline treatment, whereas the relative abundances of Coxiella and Rhodococcus increased. Ovarian transcriptional analysis revealed a cumulative effect of tetracycline treatment, as there was a significant increase in the number of differentially expressed genes with treatment time and a higher number of downregulated genes. The tick physiological pathways including lysosome, extracellular matrix (ECM)-receptor interaction, biosynthesis of ubiquinone and other terpenoids-quinones, insect hormone biosynthesis, and focal adhesion were significantly inhibited after 4 days of tetracycline treatment. Metabolite levels were altered after tetracycline treatment and the differences increased with treatment time. The differential metabolites were involved in a variety of physiological pathways; the downregulated metabolites were significantly enriched in the nicotinate and nicotinamide metabolism, galactose metabolism, and ether lipid metabolism pathways. CONCLUSIONS These findings indicate that tetracycline inhibits tick reproduction through the regulation of tick bacterial communities, gene expression and metabolic levels. The results may provide new strategies for tick control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, China
| | - Chen Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu-Fan Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|