1
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
2
|
Shahbaaz M, Potemkin V, Grishina M, Bisetty K, Hassan I. The structural basis of acid resistance in Mycobacterium tuberculosis: insights from multiple pH regime molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4483-4492. [PMID: 31625457 DOI: 10.1080/07391102.2019.1682676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dormant Mycobacterium tuberculosis is evolved to develop the tolerance against the acidification of phagolysosome by the action of gamma interferon. The molecular mechanism responsible for the development of the resistance towards the acidic conditions in M. tuberculosis is not fully understood. Therefore, the current analysis was performed which studies the mechanism of acid tolerance by correlating the alteration in the protonation state of conserved residues in virulent proteins with changes in their folding states. The pH dependencies of proteins were studied using an efficient computational scheme which enables the understanding of their conformational behavior by molecular dynamics (MD) simulations. The adopted methodology involves cyclically updating of the ionization states of titrable residues in the studied proteins with conventional MD steps, which were applied to the newly generated ionization configuration. Significant pH-dependent protein structural stability parameters consistent with the changes of the protonation states of conserved residues were observed. Among the studied proteins, the peptidoglycan binding protein ompATB, carboxylesterase LipF and two-component systems' transcriptional regulator PhoP showed highest structural conservation in the observed acidic pH range throughout the course of MD simulations. The current study provides a better understanding of acid tolerance mechanisms present in M. tuberculosis and can facilitate the drug development strategies against the dormant protein targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Abana CM, Brannon JR, Ebbott RA, Dunigan TL, Guckes KR, Fuseini H, Powers J, Rogers BR, Hadjifrangiskou M. Characterization of blue light irradiation effects on pathogenic and nonpathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28332311 PMCID: PMC5552948 DOI: 10.1002/mbo3.466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
Blue light irradiation (BLI) is an FDA-approved method for treating certain types of infections, like acne, and is becoming increasingly attractive as an antimicrobial strategy as the prevalence of antibiotic-resistant "superbugs" rises. However, no study has delineated the effectiveness of BLI throughout different bacterial growth phases, especially in more BLI-tolerant organisms such as Escherichia coli. While the vast majority of E. coli strains are nonpathogenic, several E. coli pathotypes exist that cause infection within and outside the gastrointestinal tract. Here, we compared the response of E. coli strains from five phylogenetic groups to BLI with a 455 nm wavelength (BLI455 ), using colony-forming unit and ATP measurement assays. Our results revealed that BLI455 is not bactericidal, but can retard E. coli growth in a manner that is dependent on culture age and strain background. This observation is critical, given that bacteria on and within mammalian hosts are found in different phases of growth.
Collapse
Affiliation(s)
- Courtney M Abana
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John R Brannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ebbott
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Taryn L Dunigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hubaida Fuseini
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Powers
- Vanderbilt Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bridget R Rogers
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Coker OO, Warit S, Rukseree K, Summpunn P, Prammananan T, Palittapongarnpim P. Functional characterization of two members of histidine phosphatase superfamily in Mycobacterium tuberculosis. BMC Microbiol 2013; 13:292. [PMID: 24330471 PMCID: PMC3866925 DOI: 10.1186/1471-2180-13-292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/07/2013] [Indexed: 01/19/2023] Open
Abstract
Background Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is ‘RHA’ unlike ‘RHG’ found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal. Results Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution. Conclusion Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic annotation systems towards a better understanding of this important group of enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M, Zhao N, Burns K, Liu G, Ehrt S, Warren JD, Anderson OS, Brickner SJ, Nathan C. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis. PLoS One 2013; 8:e68942. [PMID: 23935911 PMCID: PMC3728290 DOI: 10.1371/journal.pone.0068942] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022] Open
Abstract
Bacterial pathogens like Mycobacterium tuberculosis (Mtb) encounter acidic microenvironments in the host and must maintain their acid-base homeostasis to survive. A genetic screen identified two Mtb strains that cannot control intrabacterial pH (pHIB) in an acidic environment; infection with either strain led to severe attenuation in mice. To search for additional proteins that Mtb requires to survive at low pH, we introduced a whole-cell screen for compounds that disrupt pHIB, along with counter-screens that identify ionophores and membrane perturbors. Application of these methods to a natural product library identified four compounds of interest, one of which may inhibit novel pathway(s). This approach yields compounds that may lead to the identification of pathways that allow Mtb to survive in acidic environments, a setting in which Mtb is resistant to most of the drugs currently used to treat tuberculosis.
Collapse
Affiliation(s)
- Crystal M. Darby
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Helgi I. Ingólfsson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Chun Shen
- Milstein Chemistry Core Facility, Weill Cornell Medical College, New York, New York, United States of America
| | - Mingna Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Nan Zhao
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kristin Burns
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Gang Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, P. R. China
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - J. David Warren
- Milstein Chemistry Core Facility, Weill Cornell Medical College, New York, New York, United States of America
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Olaf S. Anderson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Steven J. Brickner
- SJ Brickner Consulting, LLC, Ledyard, Connecticut, United States of America
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lai JS, Cheng CW, Sung TY, Hsu WL. Computational comparative study of tuberculosis proteomes using a model learned from signal peptide structures. PLoS One 2012; 7:e35018. [PMID: 22496884 PMCID: PMC3322152 DOI: 10.1371/journal.pone.0035018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/08/2012] [Indexed: 12/19/2022] Open
Abstract
Secretome analysis is important in pathogen studies. A fundamental and convenient way to identify secreted proteins is to first predict signal peptides, which are essential for protein secretion. However, signal peptides are highly complex functional sequences that are easily confused with transmembrane domains. Such confusion would obviously affect the discovery of secreted proteins. Transmembrane proteins are important drug targets, but very few transmembrane protein structures have been determined experimentally; hence, prediction of the structures is essential. In the field of structure prediction, researchers do not make assumptions about organisms, so there is a need for a general signal peptide predictor.To improve signal peptide prediction without prior knowledge of the associated organisms, we present a machine-learning method, called SVMSignal, which uses biochemical properties as features, as well as features acquired from a novel encoding, to capture biochemical profile patterns for learning the structures of signal peptides directly.We tested SVMSignal and five popular methods on two benchmark datasets from the SPdb and UniProt/Swiss-Prot databases, respectively. Although SVMSignal was trained on an old dataset, it performed well, and the results demonstrate that learning the structures of signal peptides directly is a promising approach. We also utilized SVMSignal to analyze proteomes in the entire HAMAP microbial database. Finally, we conducted a comparative study of secretome analysis on seven tuberculosis-related strains selected from the HAMAP database. We identified ten potential secreted proteins, two of which are drug resistant and four are potential transmembrane proteins.SVMSignal is publicly available at http://bio-cluster.iis.sinica.edu.tw/SVMSignal. It provides user-friendly interfaces and visualizations, and the prediction results are available for download.
Collapse
Affiliation(s)
- Jhih-Siang Lai
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|