1
|
Khrustalev VV, Khrustaleva TA, Popinako AV. Germline mutations directions are different between introns of the same gene: case study of the gene coding for amyloid-beta precursor protein. Genetica 2023; 151:61-73. [PMID: 36129589 DOI: 10.1007/s10709-022-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.
Collapse
Affiliation(s)
| | | | - Anna Vladimirovna Popinako
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Khrustalev VV, Giri R, Khrustaleva TA, Kapuganti SK, Stojarov AN, Poboinev VV. Translation-Associated Mutational U-Pressure in the First ORF of SARS-CoV-2 and Other Coronaviruses. Front Microbiol 2020; 11:559165. [PMID: 33072018 PMCID: PMC7536284 DOI: 10.3389/fmicb.2020.559165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Within 4 months of the ongoing COVID-19 pandemic caused by SARS-CoV-2, more than 250 nucleotide mutations have been detected in ORF1ab of the virus isolated from infected persons from different parts of the globe. These observations open up an obvious question about the rate and direction of mutational pressure for further vaccine and therapeutics designing. In this study, we did a comparative analysis of ORF1a and ORF1b by using the first isolate (Wuhan strain) as the parent sequence. We observed that most of the nucleotide mutations are C to U transitions. The rate of synonymous C to U transitions is significantly higher than the rate of non-synonymous ones, indicating negative selection on amino acid substitutions. Further, trends in nucleotide usage bias have been investigated in 49 coronaviruses species. A strong bias in nucleotide usage in fourfold degenerate sites toward uracil residues is seen in ORF1ab of all the studied coronaviruses: both in the ORF1a and in the ORF1b translated thanks to the programmed ribosomal frameshifting that has an efficiency of 14 – 45% in different species. A more substantial mutational U-pressure is observed in ORF1a than in ORF1b perhaps because ORF1a is translated more frequently than ORF1b. Mutational U-pressure is there even in ORFs that are not translated from genomic RNA plus strands, but the bias is weaker than in ORF1ab. Unlike other nucleotide mutations, mutational U-pressure caused by cytosine deamination, mostly occurring during the RNA plus strand replication and also translation, cannot be corrected by the proof-reading machinery of coronaviruses. The knowledge generated on the mutational U-pressure that becomes stronger during translation of viral RNA plus strands has implications for vaccine and nucleoside analog development for treating COVID-19 and other coronavirus infections.
Collapse
Affiliation(s)
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | | | | |
Collapse
|
3
|
Khrustalev VV, Khrustaleva TA, Stojarov AN, Sharma N, Bhaskar B, Giri R. The history of mutational pressure changes during the evolution of adeno-associated viruses: A message to gene therapy and DNA-vaccine vectors designers. INFECTION GENETICS AND EVOLUTION 2019; 77:104100. [PMID: 31678645 DOI: 10.1016/j.meegid.2019.104100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
The use of virus-associated vectors for gene therapy and vaccination have emerged as safe and effective delivery system. Like all other genetic materials, these vehicles are also prone to spontaneous mutations. To understand what types of nucleotide mutations are expected in the vector, one needs to know distinct characteristics of mutational process in the corresponding virus. In this study we analyzed mutational pressure directions along the length of the genomes of all types of primate adeno-associated viruses (AAV) that are frequently used in gene therapy or DNA-vaccines. We observed clear evidences of transcription-associated mutational pressure in AAV: nucleotide usage biases are changing drastically after each of the three promoters: the higher the rate of transcription, the stronger the bias towards GC to AT mutations. Moreover, the usage of G decreased at the lower transcription rate (after P19 promoter) than the usage of C (after P40 promoter). Since nucleotide usage biases are retrospective indices, we created a scenario of changes in transcriptional map during the AAV evolution. Current mutational pressure directions are different for AAV types, while all of them demonstrate high rates of T to C transitions in the second long ORF. Since transcription rate and cell tropism are the main factors determining the preferable direction of nucleotide mutations in AAV, mutational pressure should be checked experimentally in DNA vectors before their final design with the aim to make the transferred gene more stable against those mutations.
Collapse
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Bhaskar Bhaskar
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India; BioX Centre, Indian Institute of Technology Mandi, VPO Kamand, 175005, India
| |
Collapse
|
4
|
Comprehensive Analysis and Comparison on the Codon Usage Pattern of Whole Mycobacterium tuberculosis Coding Genome from Different Area. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3574976. [PMID: 29854746 PMCID: PMC5964552 DOI: 10.1155/2018/3574976] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
Phenomenon of unequal use of synonymous codons in Mycobacterium tuberculosis is common. Codon usage bias not only plays an important regulatory role at the level of gene expression, but also helps in improving the accuracy and efficiency of translation. Meanwhile, codon usage pattern of Mycobacterium tuberculosis genome is important for interpreting evolutionary characteristics in species. In order to investigate the codon usage pattern of the Mycobacterium tuberculosis genome, 12 Mycobacterium tuberculosis genomes from different area are downloaded from the GeneBank. The correlations between G3, GC12, whole GC content, codon adaptation index, codon bias index, and so on of Mycobacterium tuberculosis genomes are calculated. The ENC-plot, relationship between A3/(A3 + T3) and G3/(G3 + C3), GC12 versus GC3 plot, and the RSCU of overall/separated genomes all show that the codon usage bias exists in all 12 Mycobacterium tuberculosis genomes. Lastly, relationship between CBI and the equalization of ENC shows a strong negative correlation between them. The relationship between protein length and GC content (GC3 and GC12) shows that more obvious differences in the GC content may be in shorter protein. These results show that codon usage bias existing in the Mycobacterium tuberculosis genomes could be used for further study on their evolutionary phenomenon.
Collapse
|
5
|
Novel Mutations in pncA Gene of Pyrazinamide Resistant Clinical Isolates of Mycobacterium tuberculosis. Sci Pharm 2018; 86:scipharm86020015. [PMID: 29659533 PMCID: PMC6027673 DOI: 10.3390/scipharm86020015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
In clinical isolates of Mycobacterium tuberculosis (MTB), resistance to pyrazinamide occurs by mutations in any positions of the pncA gene (NC_000962.3) especially in nucleotides 359 and 374. In this study we examined the pncA gene sequence in clinical isolates of MTB. Genomic DNA of 33 clinical isolates of MTB was extracted by the Chelex100 method. The polymerase chain reactions (PCR) were performed using specific primers for amplification of 744 bp amplicon comprising the coding sequences (CDS) of the pncA gene. PCR products were sequenced by an automated sequencing Bioscience system. Additionally, semi Nested-allele specific (sNASP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were carried out for verification of probable mutations in nucleotides 359 and 374. Sequencing results showed that from 33 MTB clinical isolates, nine pyrazinamide-resistant isolates have mutations. Furthermore, no mutation was detected in 24 susceptible strains in the entire 561 bp of the pncA gene. Moreover, new mutations of G→A at position 3 of the pncA gene were identified in some of the resistant isolates. Results showed that the sNASP method could detect mutations in nucleotide 359 and 374 of the pncA gene, but the PCR-RFLP method by the SacII enzyme could not detect these mutations. In conclusion, the identification of new mutations in the pncA gene confirmed the probable occurrence of mutations in any nucleotides of the pncA gene sequence in resistant isolates of MTB.
Collapse
|
6
|
Transmission Electron Microscopy of XDR Mycobacterium tuberculosis Isolates Grown on High Dose of Ofloxacin. Sci Pharm 2017; 85:scipharm85010003. [PMID: 28157163 PMCID: PMC5387365 DOI: 10.3390/scipharm85010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to investigate behavior of resistant Mycobacterium tuberculosis (MTB) isolates under a high dose of ofloxacin and its morphological changes. 19 extensively drug resistant (XDR) clinical isolates of MTB were grown on Löwenstein–Jensen medium containing progressively increasing concentrations of ofloxacin (2, 4, 8, 16, 32 mg/L). Ultra-structure analyses of resistant isolates grown on ofloxacin were conducted by transmission electron microscopy (TEM). Fixation was carried out by 4% glutaraldehyde in 0.1 M sodium cacodylate buffer on 300 mesh carbon formvar copper grid. The samples were negatively stained with uranium acetate suspension. All 19 XDR MTB isolates were grown and formed colonies successfully on 2, 4, 8 mg/L, seven isolates on 16 mg/L, and four isolates on 32 mg/L ofloxacin. Morphological changes and unusual forms were detected in 8, 16 and 32 mg/L ofloxacin at 43%, 76.5% and 81% of cells, respectively. Swollen form (protoplast like), ghost-like cell, degraded forms, and in a few cases, detached cytoplasm from cell wall were clearly detected in high drug concentrations in comparison to control. Changes in morphology were increased with increasing ofloxacin concentrations (p < 0.05). Some XDR isolates could be successfully grown on high doses of ofloxacin (32 mg/L), but with changes in morphology. It was concluded that several magnitudes of the drug doses could not prevent growth of drug resistant forms.
Collapse
|
7
|
Abstract
Chimerical nature of the gene annotated as Zebra finch (Taeniopygia guttata) glucokinase (hexokinase IV) has been proved in this study. N-half of the protein encoded by that gene shows similarity with glucokinase from other vertebrates, while its C-half shows similarity with C-halves of hexokinases II. We mapped 7 new exons coding for N-half of hexokinase II and 4 new exons coding for glucokinase of Zebra finch. Finally, we reconstructed normal genes coding for Zebra finch glucokinase and hexokinase II which are situated in “head-to-tail” orientation on the chromosome 22. Because of the error in gene annotation, exons encoding N-half of normal glucokinase have been fused with exons encoding C-half of normal hexokinase II, even though they are separated from each other by the sequence 98066 nucleotides in length.
Collapse
|
8
|
Khrustalev VV, Ghaznavi-Rad E, Neela V, Shamsudin MN, Amouzandeh-Nobaveh A, Barkovsky EV. Short repeats in the spa gene of Staphylococcus aureus are prone to nonsense mutations: stop codons can be found in strains isolated from patients with generalized infection. Res Microbiol 2013; 164:913-22. [PMID: 23860438 DOI: 10.1016/j.resmic.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/08/2013] [Indexed: 11/16/2022]
Abstract
Fifteen sequences with stop codons have been obtained in the course of standard methicillin-resistant Staphylococcus aureus (MRSA) spa typing. In nine of those sequences, stop codons occurred due to nonsense G-T and A-T transversions. G-T transversions would appear to be frequent in the spa gene, mostly due to symmetric mutational AT-pressure in the whole S. aureus genome and due to replication-associated mutational pressure characteristic of lagging strands of the "chromosome". A-T transversions would appear to be frequent in the spa gene mostly due to transcription-associated mutational pressure. Relative to other S. aureus genes, short repeats in spa are enriched by nonsense sites for G-T and A-T transversions; the probability of being nonsense for A-T transversion is high in that part of spa coding region. 13 out of 15 (87%) of the sequences with stop codons were obtained from strains isolated from patients with generalized S. aureus infection. Truncation of spa at its C-terminus is predicted to result in a protein that possesses functional IgG binding domains unable to be linked to the cell wall. This is discussed in light of the known fact that extracellular spa is a strong virulence factor involved in immune evasion.
Collapse
|
9
|
The Influence of Ethanol on Pyruvate Kinases Activity in Vivo, in Vitro, in Silico. ACTA ACUST UNITED AC 2013. [DOI: 10.12691/ajmbr-1-1-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|