1
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
2
|
Hasan MS, Sundberg C, Tolosa M, Andar A, Ge X, Kostov Y, Rao G. A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection. Sci Rep 2023; 13:12084. [PMID: 37495652 PMCID: PMC10372024 DOI: 10.1038/s41598-023-38770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Rapid and accurate bioburden detection has become increasingly necessary for food, health, pharmaceutical and environmental applications. To detect bioburden accurately, and in a highly sensitive manner, we have fabricated a novel microfluidic device with an integrated filter to trap the cells. Bioburden is detected on the filter paper in situ using the redox reaction of fluorescent label resorufin and a portable multichannel fluorometer is used for fluorescence measurement. The microfluidic device was fabricated in a facile, low-cost, and rapid way with microwave-induced thermally assisted bonding. To characterize the bonding quality of the microfluidic cassettes, different tests were performed, and the filter paper material and size were optimized. Primary Bacillus subtilis culture bacterial samples were filtered through the device to validate and investigate the performance parameters. Our results show that a limit of detection (LOD) of 0.037 CFU/mL can be achieved through this microfluidic device whereas the LOD in a normal microfluidic cassette in the fluorometer and the golden standard spectrophotometer are 0.378 and 0.128 CFU/mL respectively. The results depict that three to ten times LOD improvement is possible through this microfluidic cassette and more sensitive detection is possible depending on the volume filtered within a rapid 3 min. This novel microfluidic device along with the fluorometer can be used as a rapid portable tool for highly sensitive, accurate and high-throughput bacterial detection for different applications.
Collapse
Affiliation(s)
- Md Sadique Hasan
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Chad Sundberg
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Abhay Andar
- Champions Oncology Inc, 855 N Wolfe St, Baltimore, MD, 21205, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
3
|
Microfluidic dose-response platform to track the dynamics of drug response in single mycobacterial cells. Sci Rep 2022; 12:19578. [PMID: 36379978 PMCID: PMC9666435 DOI: 10.1038/s41598-022-24175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical analysis of drug efficacy is critical for drug development. However, conventional bulk-cell assays statically assess the mean population behavior, lacking resolution on drug-escaping cells. Inaccurate estimation of efficacy can lead to overestimation of compounds, whose efficacy will not be confirmed in the clinic, or lead to rejection of valuable candidates. Time-lapse microfluidic microscopy is a powerful approach to characterize drugs at high spatiotemporal resolution, but hard to apply on a large scale. Here we report the development of a microfluidic platform based on a pneumatic operating principle, which is scalable and compatible with long-term live-cell imaging and with simultaneous analysis of different drug concentrations. We tested the platform with mycobacterial cells, including the tubercular pathogen, providing the first proof of concept of a single-cell dose-response assay. This dynamic in-vitro model will prove useful to probe the fate of drug-stressed cells, providing improved predictions of drug efficacy in the clinic.
Collapse
|
4
|
Khabibullina NF, Kutuzova DM, Burmistrova IA, Lyadova IV. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop Med Infect Dis 2022; 7:tropicalmed7030048. [PMID: 35324595 PMCID: PMC8955876 DOI: 10.3390/tropicalmed7030048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB), caused by bacilli from the Mycobacterium tuberculosis complex, remains a serious global public health problem, representing one of the main causes of death from infectious diseases. About one quarter of the world’s population is infected with Mtb and has a latent TB infection (LTBI). According to the World Health Organization (WHO), an LTBI is characterized by a lasting immune response to Mtb antigens without any TB symptoms. Current LTBI diagnoses and treatments are based on this simplified definition, although an LTBI involves a broad range of conditions, including when Mtb remains in the body in a persistent form and the immune response cannot be detected. The study of LTBIs has progressed in recent years; however, many biological and medical aspects of an LTBI are still under discussion. This review focuses on an LTBI as a broad spectrum of states, both of the human body, and of Mtb cells. The problems of phenotypic insusceptibility, diagnoses, chemoprophylaxis, and the necessity of treatment are discussed. We emphasize the complexity of an LTBI diagnosis and its treatment due to its ambiguous nature. We consider alternative ways of differentiating an LTBI from active TB, as well as predicting TB reactivation based on using mycobacterial “latency antigens” for interferon gamma release assay (IGRA) tests and the transcriptomic analysis of human blood cells.
Collapse
|
5
|
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022; 13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Microfluidics can precisely control and manipulate micro-scale fluids, and are also known as lab-on-a-chip or micro total analysis systems. Microfluidics have huge application potential in biology, chemistry, and medicine, among other fields. Coupled with a suitable detection system, the detection and analysis of small-volume and low-concentration samples can be completed. This paper reviews an optical imaging system combined with microfluidics, including bright-field microscopy, chemiluminescence imaging, spectrum-based microscopy imaging, and fluorescence-based microscopy imaging. At the end of the article, we summarize the advantages and disadvantages of each imaging technology.
Collapse
Affiliation(s)
- Pan Zhou
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Haipeng He
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528000, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
- Correspondence: (S.W.); (S.H.)
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
6
|
Pérez‐Rodríguez S, García‐Aznar JM, Gonzalo‐Asensio J. Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microb Biotechnol 2022; 15:395-414. [PMID: 33645897 PMCID: PMC8867988 DOI: 10.1111/1751-7915.13775] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Some bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.
Collapse
Affiliation(s)
- Sandra Pérez‐Rodríguez
- Aragón Institute of Engineering Research (I3A)Department of Mechanical EngineeringUniversity of ZaragozaZaragoza50018Spain
- Multiscale in Mechanical and Biological Engineering (M2BE)IIS‐AragónZaragozaSpain
- Grupo de Genética de MicobacteriasDepartment of Microbiology, Faculty of MedicineUniversity of ZaragozaIIS AragónZaragoza50009Spain
| | - José Manuel García‐Aznar
- Aragón Institute of Engineering Research (I3A)Department of Mechanical EngineeringUniversity of ZaragozaZaragoza50018Spain
- Multiscale in Mechanical and Biological Engineering (M2BE)IIS‐AragónZaragozaSpain
| | - Jesús Gonzalo‐Asensio
- Grupo de Genética de MicobacteriasDepartment of Microbiology, Faculty of MedicineUniversity of ZaragozaIIS AragónZaragoza50009Spain
- CIBER Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadrid28029Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)Zaragoza50018Spain
| |
Collapse
|
7
|
Mathekga BSP, Nxumalo Z, Thimiri Govinda Raj DB. Micro and nanofluidics for high throughput drug screening. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:93-120. [PMID: 35094783 DOI: 10.1016/bs.pmbts.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this book chapter, we elaborate on the state-of-the-art technology developments in high throughput screening, microfluidics and nanofluidics. This book chapter further elaborated on the application of microfluidics and nanofluidics for high throughput drug screening with respect to communicable diseases and non-communicable diseases such as cancer. As a future perspective, there is tremendous potential for microfluidics and nanofluidics to be applied in high throughput drug screening which could be applied for various biotechnology applications such as in cancer precision medicine, point-of-care diagnostics and imaging. With the integration of Fourth industrial revolution (4IR) technologies with micro and nanofluidics technologies, it envisioned that such integration along with digital health would enable next generation technology development in medical field.
Collapse
Affiliation(s)
| | - Zandile Nxumalo
- Synthetic Nanobiotechnology and Biomachines Group, Synthetic Biology and Precision Medicine Centre, CSIR, Pretoria, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines Group, Synthetic Biology and Precision Medicine Centre, CSIR, Pretoria, South Africa.
| |
Collapse
|
8
|
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021; 9:microorganisms9112330. [PMID: 34835455 PMCID: PMC8618277 DOI: 10.3390/microorganisms9112330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.
Collapse
Affiliation(s)
- Antonia Molloy
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - John S. McGrath
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Zachary Owen
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Clive Smith
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Liu
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Li
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Jonathan A. G. Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
9
|
Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy. Methods Mol Biol 2021. [PMID: 34235654 DOI: 10.1007/978-1-0716-1460-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Studies on cell-to-cell phenotypic variation in microbial populations, with individuals sharing the same genetic background, provide insights not only on bacterial behavior but also on the adaptive spectrum of the population. Phenotypic variation is an innate property of microbial populations, and this can be further amplified under stressful conditions, providing a fitness advantage. Furthermore, phenotypic variation may also precede a latter step of genetic-based diversification, resulting in the transmission of the most beneficial phenotype to the progeny. While population-wide studies provide a measure of the collective average behavior, single-cell studies, which have expanded over the last decade, delve into the behavior of smaller subpopulations that would otherwise remain concealed. In this chapter, we describe approaches to carry out spatiotemporal analysis of individual mycobacterial cells using time-lapse microscopy. Our method encompasses the fabrication of a microfluidic device; the assembly of a microfluidic system suitable for long-term imaging of mycobacteria; and the quantitative analysis of single-cell behavior under varying growth conditions. Phenotypic variation is conceivably associated to the resilience and endurance of mycobacterial cells. Therefore, shedding light on the dynamics of this phenomenon, on the transience or stability of the given phenotype, on its molecular bases and its functional consequences, offers new scope for intervention.
Collapse
|
10
|
Herricks T, Donczew M, Sherman DR, Aitchison JD. ODELAM: Rapid Sequence-independent Detection of Drug Resistance in Mycobacterium tuberculosis Isolates. Bio Protoc 2021; 11:e4027. [PMID: 34150934 DOI: 10.21769/bioprotoc.4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 11/02/2022] Open
Abstract
Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths globally each year. Current assays of antimicrobial resistance require knowledge of the mutations that confer drug resistance or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. This protocol describes sample and media preparation and contains instructions for assembling the ODELAM sample chamber. The ODELAM sample chamber is designed to provide a controlled environment to safely observe the growth of Mtb by time-lapse microscopy on an inverted wide-field microscope. A brief description of the ODELAM software is also provided here. ODELAM tracks up to 1500 colony forming units per region of interest and can observe up to 96 regions for up to seven days in a single experiment. This technique allows the quantification of population heterogeneity. ODELAM enables rapid quantitative measurements of growth kinetics in as few as 30 h under a wide variety of environmental conditions. Graphic abstract: Schematic representation of the ODELAM platform.
Collapse
Affiliation(s)
- Thurston Herricks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | | | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA.,Department of Pediatrics, University of Washington, Seattle, USA
| |
Collapse
|
11
|
Wang H, Conover GM, Han SI, Sacchettini JC, Han A. Development of single-cell-level microfluidic technology for long-term growth visualization of living cultures of Mycobacterium smegmatis. MICROSYSTEMS & NANOENGINEERING 2021; 7:37. [PMID: 34567751 PMCID: PMC8433163 DOI: 10.1038/s41378-021-00262-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 06/13/2023]
Abstract
Analysis of growth and death kinetics at single-cell resolution is a key step in understanding the complexity of the nonreplicating growth phenotype of the bacterial pathogen Mycobacterium tuberculosis. Here, we developed a single-cell-resolution microfluidic mycobacterial culture device that allows time-lapse microscopy-based long-term phenotypic visualization of the live replication dynamics of mycobacteria. This technology was successfully applied to monitor the real-time growth dynamics of the fast-growing model strain Mycobacterium smegmatis (M. smegmatis) while subjected to drug treatment regimens during continuous culture for 48 h inside the microfluidic device. A clear morphological change leading to significant swelling at the poles of the bacterial membrane was observed during drug treatment. In addition, a small subpopulation of cells surviving treatment by frontline antibiotics was observed to recover and achieve robust replicative growth once regular culture media was provided, suggesting the possibility of identifying and isolating nonreplicative mycobacteria. This device is a simple, easy-to-use, and low-cost solution for studying the single-cell phenotype and growth dynamics of mycobacteria, especially during drug treatment.
Collapse
Affiliation(s)
- Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Gloria M. Conover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
- Present Address: Department of Medical Education, Health Sciences Center, Texas A&M University, Bryan, TX 77807 USA
| | - Song-I Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843 USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
12
|
Parsley NC, Smythers AL, Hicks LM. Implementation of Microfluidics for Antimicrobial Susceptibility Assays: Issues and Optimization Requirements. Front Cell Infect Microbiol 2020; 10:547177. [PMID: 33042872 PMCID: PMC7527609 DOI: 10.3389/fcimb.2020.547177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the continuous emergence of multi-drug resistant pathogens, the number of new antimicrobials reaching the market is critically low. Natural product peptides are a rich source of bioactive compounds, and advances in mass spectrometry have achieved unprecedented capabilities for the discovery and characterization of novel molecular species. However, traditional bioactivity assay formats hinder the discovery and biochemical characterization of natural product antimicrobial peptides (AMPs), necessitating large sample quantities and significant optimization of experimental parameters to achieve accurate/consistent activity measurements. Microfluidic devices offer a promising alternative to bulk assay systems. Herein, a microfluidics-based bioassay was compared to the traditional 96-well plate format in respective commercially-available hardware. Bioactivity in each assay type was compared using a Viola inconspicua peptide library screened against E. coli ATCC 25922. Brightfield microcopy was used to determine bioactivity in microfluidic channels while both common optical and fluorescence-based measurements of cell viability were critically assessed in plate-based assays. Exhibiting some variation in optical density and fluorescence-based measurements, all plate-based assays conferred bioactivity in late eluting V. inconspicua library fractions. However, significant differences in the bioactivity profiles of plate-based and microfluidic assays were found, and may be derived from the materials comprising each assay device or the growth/assay conditions utilized in each format. While new technologies are necessary to overcome the limitations of traditional bioactivity assays, we demonstrate that off-the-shelf implementation of microfluidic devices is non-trivial and significant method development/optimization is required before conventional use can be realized for sensitive and rapid detection of AMPs in natural product matrices.
Collapse
Affiliation(s)
- Nicole C Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Hassan SU, Tariq A, Noreen Z, Donia A, Zaidi SZJ, Bokhari H, Zhang X. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Diagnostics (Basel) 2020; 10:E509. [PMID: 32708045 PMCID: PMC7459612 DOI: 10.3390/diagnostics10080509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Point-of-care (POC) or near-patient testing allows clinicians to accurately achieve real-time diagnostic results performed at or near to the patient site. The outlook of POC devices is to provide quicker analyses that can lead to well-informed clinical decisions and hence improve the health of patients at the point-of-need. Microfluidics plays an important role in the development of POC devices. However, requirements of handling expertise, pumping systems and complex fluidic controls make the technology unaffordable to the current healthcare systems in the world. In recent years, capillary-driven flow microfluidics has emerged as an attractive microfluidic-based technology to overcome these limitations by offering robust, cost-effective and simple-to-operate devices. The internal wall of the microchannels can be pre-coated with reagents, and by merely dipping the device into the patient sample, the sample can be loaded into the microchannel driven by capillary forces and can be detected via handheld or smartphone-based detectors. The capabilities of capillary-driven flow devices have not been fully exploited in developing POC diagnostics, especially for antimicrobial resistance studies in clinical settings. The purpose of this review is to open up this field of microfluidics to the ever-expanding microfluidic-based scientific community.
Collapse
Affiliation(s)
- Sammer-Ul Hassan
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Aamira Tariq
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Ahmed Donia
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Syed Z J Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Habib Bokhari
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Xunli Zhang
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
14
|
Herricks T, Donczew M, Mast FD, Rustad T, Morrison R, Sterling TR, Sherman DR, Aitchison JD. ODELAM, rapid sequence-independent detection of drug resistance in isolates of Mycobacterium tuberculosis. eLife 2020; 9:56613. [PMID: 32401195 PMCID: PMC7263823 DOI: 10.7554/elife.56613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths each year. Current assays of antimicrobial resistance need knowledge of mutations that confer drug resistance, or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. ODELAM enables rapid quantitative measures of growth kinetics in as little as 30 hrs under a wide variety of environmental conditions. We demonstrate ODELAM’s utility by identifying ofloxacin resistance in cultured clinical isolates of Mtb and benchmark its performance with standard minimum inhibitory concentration (MIC) assays. ODELAM identified ofloxacin heteroresistance and the presence of drug resistant colony forming units (CFUs) at 1 per 1000 CFUs in as little as 48 hrs. ODELAM is a powerful new tool that can rapidly evaluate Mtb drug resistance in a laboratory setting.
Collapse
Affiliation(s)
- Thurston Herricks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Magdalena Donczew
- Department of Microbiology, University of Washington, Seattle, United States
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Tige Rustad
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Robert Morrison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
| | - Timothy R Sterling
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, United States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics, University of Washington, Seattle, United States
| |
Collapse
|
15
|
Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proc Natl Acad Sci U S A 2019; 116:10270-10279. [PMID: 31068473 DOI: 10.1073/pnas.1819569116] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infectious diseases caused by bacterial pathogens remain one of the most common causes of morbidity and mortality worldwide. Rapid microbiological analysis is required for prompt treatment of bacterial infections and to facilitate antibiotic stewardship. This study reports an adaptable microfluidic system for rapid pathogen classification and antimicrobial susceptibility testing (AST) at the single-cell level. By incorporating tunable microfluidic valves along with real-time optical detection, bacteria can be trapped and classified according to their physical shape and size for pathogen classification. By monitoring their growth in the presence of antibiotics at the single-cell level, antimicrobial susceptibility of the bacteria can be determined in as little as 30 minutes compared with days required for standard procedures. The microfluidic system is able to detect bacterial pathogens in urine, blood cultures, and whole blood and can analyze polymicrobial samples. We pilot a study of 25 clinical urine samples to demonstrate the clinical applicability of the microfluidic system. The platform demonstrated a sensitivity of 100% and specificity of 83.33% for pathogen classification and achieved 100% concordance for AST.
Collapse
|
16
|
Kim S, Masum F, Jeon JS. Recent Developments of Chip-based Phenotypic Antibiotic Susceptibility Testing. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3109-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zhou W, Le J, Chen Y, Cai Y, Hong Z, Chai Y. Recent advances in microfluidic devices for bacteria and fungus research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Khan ZA, Siddiqui MF, Park S. Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods. Biotechnol Lett 2018; 41:221-230. [PMID: 30542946 DOI: 10.1007/s10529-018-02638-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Antibiotic susceptibility test (AST) is an umbrella term for techniques to determine the susceptibility of bacteria to antibiotics. The antibiotic-resistant bacteria are a major threat to public health and a directed therapy based on accurate AST results is paramount in resistance control. Here we have briefly covered the progress of conventional, molecular, and automated AST tools and their limitations. Various aspects of microfluidic AST such as optical, electrochemical, colorimetric, and mechanical methods have been critically reviewed. We also address the future requirements of the microfluidic devices for AST. Cumulatively, we have outlined the overview of AST that can help to expand and improve the existing techniques and emphasize that microfluidics could be the future of AST and introduction of microtechnologies in AST will be extremely advantageous, especially for point-of-care testing.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Mohd F Siddiqui
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea.
| |
Collapse
|
19
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
20
|
Marshall J, Qiao X, Baumbach J, Xie J, Dong L, Bhattacharyya MK. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean. Sci Rep 2017; 7:44365. [PMID: 28295054 PMCID: PMC5353701 DOI: 10.1038/srep44365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.
Collapse
Affiliation(s)
- Jill Marshall
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Xuan Qiao
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jordan Baumbach
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jingyu Xie
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Liang Dong
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
21
|
Dai J, Hamon M, Jambovane S. Microfluidics for Antibiotic Susceptibility and Toxicity Testing. Bioengineering (Basel) 2016; 3:bioengineering3040025. [PMID: 28952587 PMCID: PMC5597268 DOI: 10.3390/bioengineering3040025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.
Collapse
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Morgan Hamon
- Renal Regeneration Laboratory, VAGLAHS at Sepulveda, North Hills, CA 91343, USA.
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Sachin Jambovane
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99354, USA.
| |
Collapse
|
22
|
Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep 2016; 6:32104. [PMID: 27580964 PMCID: PMC5007472 DOI: 10.1038/srep32104] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023] Open
Abstract
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Collapse
|
23
|
Abstract
A major factor complicating efforts to control the tuberculosis epidemic is the long duration of treatment required to successfully clear the infection. One reason that long courses of treatment are required may be the fact that mycobacterial cells arise during the course of infection that are less susceptible to antibiotics. Here we describe the paradigms of phenotypic drug tolerance and resistance as they apply to mycobacteria. We then discuss the mechanisms by which phenotypically drug-tolerant and -resistant cells arise both at a population level and in specialized subpopulations of cells that may be especially important in allowing the bacterium to survive in the face of treatment. These include general mechanisms that have been shown to alter the susceptibility of mycobacteria to antibiotics including growth arrest, efflux pump induction, and biofilm formation. In addition, we discuss emerging data from single-cell studies of mycobacteria that have identified unique ways in which specialized subpopulations of cells arise that vary in their frequency, in their susceptibility to drug, and in their stability over time.
Collapse
|
24
|
Choi J, Yoo J, Kim KJ, Kim EG, Park KO, Kim H, Kim H, Jung H, Kim T, Choi M, Kim HC, Ryoo S, Jung YG, Kwon S. Rapid drug susceptibility test of Mycobacterium tuberculosis using microscopic time-lapse imaging in an agarose matrix. Appl Microbiol Biotechnol 2016; 100:2355-65. [PMID: 26754815 DOI: 10.1007/s00253-015-7210-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a major global health problem, and multi-drug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) are spreading throughout the world. However, conventional drug susceptibility test (DST) methods, which rely on the detection of the colony formation on a solid medium, require 1-2 months to the result. A rapid and accurate DST is necessary to identify patients with drug-resistant TB and treat them with appropriate drugs. Here, we used microscopic imaging of Mycobacterium tuberculosis (MTB) immobilized in an agarose matrix for a rapid DST. The agarose matrix, which was molded in a microfluidic chip, was inoculated with MTB, and TB drugs in liquid culture medium diffused throughout the agarose to reach the MTB immobilized in the agarose matrix. After the responses of MTB to drugs were tracked with an automated microscopic system, an image-processing program automatically determined the susceptibility and resistance of MTB to specific doses of TB drugs. The automatic DST system was able to assess the drug susceptibility of various drug-resistant clinical TB strains within 9 days with an accuracy comparable to that of conventional method. Our rapid DST method based on microscopic time-lapse imaging greatly reduces the time required for a DST and can be used to rapidly and accurately treat TB patients.
Collapse
Affiliation(s)
- Jungil Choi
- Department of Electrical Engineering and Computer Science, Seoul National University, San 56-1, Daehak-dong, Gwanak-gu, Seoul, 151-744, Republic of Korea.,QuantaMatrix Inc., 104-213, Seoul National University, Seoul, Republic of Korea
| | - Jungheon Yoo
- QuantaMatrix Inc., 104-213, Seoul National University, Seoul, Republic of Korea
| | - Ki-Jung Kim
- Department of Biomedical Engineering, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, Republic of Korea
| | - Eun-Geun Kim
- QuantaMatrix Inc., 104-213, Seoul National University, Seoul, Republic of Korea
| | - Kyung Ock Park
- QuantaMatrix Inc., 104-213, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Kim
- Korean Institute of Tuberculosis, Mansu-ri 482, Osong, Cheongju, Chungcheongbuk-do, 361-954, Republic of Korea
| | - Haeun Kim
- Korean Institute of Tuberculosis, Mansu-ri 482, Osong, Cheongju, Chungcheongbuk-do, 361-954, Republic of Korea
| | - Hyunju Jung
- Korean Institute of Tuberculosis, Mansu-ri 482, Osong, Cheongju, Chungcheongbuk-do, 361-954, Republic of Korea
| | - Taeyoung Kim
- InSpace Co., Ltd., 96, Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - Myungjin Choi
- InSpace Co., Ltd., 96, Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343, Republic of Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, Republic of Korea.,Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sungweon Ryoo
- Korean Institute of Tuberculosis, Mansu-ri 482, Osong, Cheongju, Chungcheongbuk-do, 361-954, Republic of Korea.
| | - Yong-Gyun Jung
- QuantaMatrix Inc., 104-213, Seoul National University, Seoul, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical Engineering and Computer Science, Seoul National University, San 56-1, Daehak-dong, Gwanak-gu, Seoul, 151-744, Republic of Korea. .,QuantaMatrix Inc., 104-213, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Luthuli BB, Purdy GE, Balagaddé FK. Confinement-Induced Drug-Tolerance in Mycobacteria Mediated by an Efflux Mechanism. PLoS One 2015; 10:e0136231. [PMID: 26295942 PMCID: PMC4546595 DOI: 10.1371/journal.pone.0136231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) is the world's deadliest curable disease, responsible for an estimated 1.5 million deaths annually. A considerable challenge in controlling this disease is the prolonged multidrug chemotherapy (6 to 9 months) required to overcome drug-tolerant mycobacteria that persist in human tissues, although the same drugs can sterilize genetically identical mycobacteria growing in axenic culture within days. An essential component of TB infection involves intracellular Mycobacterium tuberculosis bacteria that multiply within macrophages and are significantly more tolerant to antibiotics compared to extracellular mycobacteria. To investigate this aspect of human TB, we created a physical cell culture system that mimics confinement of replicating mycobacteria, such as in a macrophage during infection. Using this system, we uncovered an epigenetic drug-tolerance phenotype that appears when mycobacteria are cultured in space-confined bioreactors and disappears in larger volume growth contexts. Efflux mechanisms that are induced in space-confined growth environments contribute to this drug-tolerance phenotype. Therefore, macrophage-induced drug tolerance by mycobacteria may be an effect of confined growth among other macrophage-specific mechanisms.
Collapse
Affiliation(s)
- Brilliant B. Luthuli
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Georgiana E. Purdy
- Dept. of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 S. W. Sam Jackson Park Rd., Mail Code L220, Portland, OR, 97239, United States of America
| | - Frederick K. Balagaddé
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
26
|
Forbes L, Ebsworth-Mojica K, DiDone L, Li SG, Freundlich JS, Connell N, Dunman PM, Krysan DJ. A High Throughput Screening Assay for Anti-Mycobacterial Small Molecules Based on Adenylate Kinase Release as a Reporter of Cell Lysis. PLoS One 2015; 10:e0129234. [PMID: 26098625 PMCID: PMC4476654 DOI: 10.1371/journal.pone.0129234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.
Collapse
Affiliation(s)
- Lauren Forbes
- Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, United States of America
| | - Katherine Ebsworth-Mojica
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, United States of America
| | - Louis DiDone
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, United States of America
| | - Shao-Gang Li
- Department of Pharmacology, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Joel S. Freundlich
- Department of Pharmacology, Rutgers University, Newark, New Jersey, 07103, United States of America
- Department of Physiology, Rutgers University, Newark, New Jersey, 07103, United States of America
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Nancy Connell
- Department of Physiology, Rutgers University, Newark, New Jersey, 07103, United States of America
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Paul M. Dunman
- Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, United States of America
- * E-mail: (DJK); (PMD)
| | - Damian J. Krysan
- Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, United States of America
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, United States of America
- * E-mail: (DJK); (PMD)
| |
Collapse
|
27
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
Dhar N, Manina G. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy. Methods Mol Biol 2015; 1285:241-256. [PMID: 25779320 DOI: 10.1007/978-1-4939-2450-9_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The crucial role of phenotypic heterogeneity in bacterial physiology and adaptive responses has required the introduction of new ways to investigate bacterial individuality. Time-lapse microscopy is a powerful technique for evaluating phenotypic diversity in bacteria at the single-cell level, whether exploring the dynamics of gene expression and protein localization or characterizing the heterogeneous phenotypic response to perturbations. Here, we present protocols to carry out time-lapse imaging of mycobacteria at the single-cell level using either agarose pads or customized microfluidic devices. The sequences of images obtained can be analyzed using programs such as ImageJ and allow the investigator not only to extract various parameters of growth and gene expression dynamics but also to unravel the physiological basis behind phenomenon such as persistence against stresses.
Collapse
Affiliation(s)
- Neeraj Dhar
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 19, Office SV 3832, Lausanne, CH-1015, Switzerland,
| | | |
Collapse
|
29
|
Mekterović I, Mekterović D, Maglica Z. BactImAS: a platform for processing and analysis of bacterial time-lapse microscopy movies. BMC Bioinformatics 2014; 15:251. [PMID: 25059528 PMCID: PMC4122790 DOI: 10.1186/1471-2105-15-251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background The software available to date for analyzing image sequences from time-lapse microscopy works only for certain bacteria and under limited conditions. These programs, mostly MATLAB-based, fail for microbes with irregular shape, indistinct cell division sites, or that grow in closely packed microcolonies. Unfortunately, many organisms of interest have these characteristics, and analyzing their image sequences has been limited to time consuming manual processing. Results Here we describe BactImAS – a modular, multi-platform, open-source, Java-based software delivered both as a standalone program and as a plugin for Icy. The software is designed for extracting and visualizing quantitative data from bacterial time-lapse movies. BactImAS uses a semi-automated approach where the user defines initial cells, identifies cell division events, and, if necessary, manually corrects cell segmentation with the help of user-friendly GUI and incorporated ImageJ application. The program segments and tracks cells using a newly-developed algorithm designed for movies with difficult-to-segment cells that exhibit small frame-to-frame differences. Measurements are extracted from images in a configurable, automated fashion and an SQLite database is used to store, retrieve, and exchange all acquired data. Finally, the BactImAS can generate configurable lineage tree visualizations and export data as CSV files. We tested BactImAS on time-lapse movies of Mycobacterium smegmatis and achieved at least 10-fold reduction of processing time compared to manual analysis. We illustrate the power of the visualization tool by showing heterogeneity of both icl expression and cell growth atop of a lineage tree. Conclusions The presented software simplifies quantitative analysis of time-lapse movies overall and is currently the only available software for the analysis of mycobacteria-like cells. It will be of interest to the community of both end-users and developers of time-lapse microscopy software. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-251) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Zeljka Maglica
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
30
|
Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 2014; 63:218-231. [PMID: 25105943 DOI: 10.1016/j.bios.2014.07.029] [Citation(s) in RCA: 572] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/03/2014] [Accepted: 07/12/2014] [Indexed: 02/06/2023]
Abstract
Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Center for Systems Biology and Biomedical Center, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Edinson Lucumi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Rafael Gómez-Sjöberg
- Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States of America
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
31
|
Carroll P, Muwanguzi-Karugaba J, Melief E, Files M, Parish T. Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis. BMC Res Notes 2014; 7:366. [PMID: 24934902 PMCID: PMC4091752 DOI: 10.1186/1756-0500-7-366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/06/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fluorescent proteins are used widely as reporter genes in many organisms. We previously codon-optimized mCherry for Mycobacterium tuberculosis and generated expression constructs with high level expression in mycobacteria with multiple uses in vitro and in vivo. However, little is known about the expression of fluorescent proteins in mycobacteria and the translational start codon for mCherry has not been experimentally determined. RESULTS We determined the translational start site for functional (fluorescent) mCherry in mycobacteria. Several potential translational start codons were identified; introduction of downstream stop codons by mutagenesis was used to determine which start codon was utilized in the bacterial cells. Fluorescent protein was expressed from a construct which would allow translation of a protein of 226 amino acids or a protein of 235 amino acids. No fluorescence was seen when a construct which could give rise to a protein of 219 amino acids was used. Similar results were obtained in mycobacteria and in Escherichia coli. Western blotting confirmed that mCherry was expressed from the constructs encoding 235 or 226 amino acids, but not from the plasmid encoding 219 amino acids. N-terminal sequencing and mass determination confirmed that the mature protein was 226 amino acids and commenced with the amino acid sequence AIIKE. CONCLUSION We conclude that mCherry is expressed in M. tuberculosis as a smaller protein than expected lacking the GFP-derived N-terminal sequence designed to allow efficient fusions.
Collapse
Affiliation(s)
- Paul Carroll
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
| | - Julian Muwanguzi-Karugaba
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
| | - Eduard Melief
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Megan Files
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
- Infectious Disease Research Institute, Seattle, Washington, USA
| |
Collapse
|
32
|
Yamada H, Chikamatsu K, Aono A, Mitarai S. Pre-fixation of virulent Mycobacterium tuberculosis with glutaraldehyde preserves exquisite ultrastructure on transmission electron microscopy through cryofixation and freeze-substitution with osmium-acetone at ultralow temperature. J Microbiol Methods 2013; 96:50-5. [PMID: 24200708 DOI: 10.1016/j.mimet.2013.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Sample preparations for transmission electron microscopy of virulent Mycobacterium tuberculosis are usually performed with chemical fixation using glutaraldehyde (GA) in a biosafety area followed by post-fixation with aqueous osmium tetroxide (OT) in a conventional laboratory outside the biosafety area. Freeze-substitution with osmium-acetone (OA) at ultralow temperature (-85°C) has been shown to provide high quality final images and preserves cellular structures intact. However, some preparation procedures for freeze-substitution often require large fixed devices for freezing in a special laboratory. We have reported a novel freeze-substitution preparation method that can be performed using a portable device in a biosafety cabinet at biosafety level (BSL) 3 areas. Here, as a next step, we examined whether images obtained from rapid freeze-substitution (RFS) after fixation with glutaraldehyde (GA>RFS) are of comparable quality to those obtained using standard RFS. GA>RFS provided excellent preservation of mycobacterial cell ultrastructure, including visualization of cytoplasmic ribosomes, DNA fibers, and the outer membrane. The average number of ribosomes per cubic micrometer counted on RFS and GA>RFS was not significantly different (6987.8±2181.0 and 6888.9±1799.3, respectively). These values were higher, but not significantly so, than those obtained using conventional chemical fixation (5018.7±2511.3). This procedure may be useful for RFS preparation of unculturable mycobacteria strains or virulent strains isolated in laboratories that cannot perform RFS.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan.
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| |
Collapse
|
33
|
Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol 2013; 3:411. [PMID: 23308075 PMCID: PMC3538277 DOI: 10.3389/fimmu.2012.00411] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission.
Collapse
Affiliation(s)
- Stefan Ehlers
- Priority Research Area "Infections", Research Center Borstel Borstel, Germany ; Molecular Inflammation Medicine, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
34
|
Manina G, McKinney JD. A single-cell perspective on non-growing but metabolically active (NGMA) bacteria. Curr Top Microbiol Immunol 2013; 374:135-61. [PMID: 23793585 DOI: 10.1007/82_2013_333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A long-standing and fundamental problem in microbiology is the non-trivial discrimination between live and dead cells. The existence of physically intact and possibly viable bacterial cells that fail to replicate during a more or less protracted period of observation, despite environmental conditions that are ostensibly propitious for growth, has been extensively documented in many different organisms. In clinical settings, non-culturable cells may contribute to non-apparent infections capable of reactivating after months or years of clinical latency, a phenomenon that has been well documented in the specific case of Mycobacterium tuberculosis. The prevalence of these silent but potentially problematic bacterial reservoirs has been highlighted by classical approaches such as limiting culture dilution till extinction of growing cells, followed by resuscitation of apparently "viable but non-culturable" (VBNC) subpopulations. Although these assays are useful to demonstrate the presence of VBNC cells in a population, they are effectively retrospective and are not well suited to the analysis of non-replicating cells per se. Here, we argue that research on a closely related problem, which we shall refer to as the "non-growing but metabolically active" state, is poised to advance rapidly thanks to the recent development of novel technologies and methods for real-time single-cell analysis. In particular, the combination of fluorescent reporter dyes and strains, microfluidic and microelectromechanical systems, and time-lapse fluorescence microscopy offers tremendous and largely untapped potential for future exploration of the physiology of non-replicating cells.
Collapse
Affiliation(s)
- Giulia Manina
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland,
| | | |
Collapse
|