1
|
Sachdeva KS, Chadha VK. TB-vaccines: Current status & challenges. Indian J Med Res 2024; 160:338-345. [PMID: 39632643 PMCID: PMC11619029 DOI: 10.25259/ijmr_1478_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Tuberculosis continues to be among the leading causes of morbidity as well as mortality. It is appreciated that our aim of eliminating TB in the foreseeable future will not be realized until we have a new vaccine with significant efficacy among diverse populations and all age-groups. Although impressive strides have been made in more refined development of new TB vaccines based on learnings from past experiences, the substitute or a booster vaccine for the BCG vaccine is not available yet. This article puts in perspective the recent efforts in re-positioning BCG, development of newer vaccines based on novel approaches, the current TB vaccine pipeline, yet unmet challenges in vaccine development, exploring newer ideas in vaccine development and what the future holds.
Collapse
Affiliation(s)
| | - Vineet K. Chadha
- Epidemiology and Research Division, National Tuberculosis Institute, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
López-Suárez A, Santos-Sebastián M, Hernanz-Lobo A, Rincón-López E, Aguilera-Alonso D, Saavedra-Lozano J, Ruiz Serrano MJ, Hernández-Bartolomé Á, Medrano de Dios LM, Jiménez Fuentes JL, Navarro ML, Tebruegge M, Santiago-García B. Diagnostic potential of combining plasma biomarkers of tissue damage and inflammation in pediatric TB. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:937-946. [PMID: 39271436 DOI: 10.1016/j.jmii.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Immune-based diagnostic tests for tuberculosis (TB) have suboptimal sensitivity in children and cannot differentiate between latent infection (LTBI) and active disease. This study evaluated the diagnostic potential of a broad range of biomarkers of tissue damage and inflammation in unstimulated plasma in children. METHODS We analyzed 17 biomarkers in 15 non-M. tuberculosis (MTB)-infected controls and 33 children with TB infection (LTBI, n = 8; probable TB, n = 19; confirmed TB, n = 6). Biomarker concentrations were measured using a Luminex magnetic bead-based platform and multiplex sandwich immunoassays. Concentrations, correlations and diagnostic accuracy assessments were conducted among patient groups. RESULTS Confirmed TB cases had significantly higher concentrations of IFN-γ and IL-2 and higher IFN-γ/MCP-1 and IL-2/MCP-1 ratios compared to LTBI and non-MTB-infected children. Among children with confirmed TB, there was a strong correlation between IFN-γ and IL-10 (r = 0.95; p < 0.001) and a significant correlation between IL-2 and IL-1ra (r = 0.92), IL-21 (r = 0.91), MCP-3 (r = 0.84), and MMP-1 (r = 0.85). The IFN-γ/MCP-1 ratio was the most accurate biomarker combination for differentiating between MTB-infected and non-MTB-infected children (AUC, 0.82; sensitivity, 87.9%; specificity, 66.6%; p < 0.001) and between active TB and non-MTB-infected children (AUC 0.82; sensitivity 88.0%; specificity 60.0%; p < 0.001). None of the biomarkers investigated were able to discriminate between LTBI and active TB. CONCLUSION Our data suggest that combining the analyses of multiple biomarkers in plasma has the potential to enhance diagnosis of TB in children and, thus, warrants additional investigation. In particular, the diagnostic potential of IFN-γ/MCP-1 ratios should be further explored in larger pediatric cohorts.
Collapse
Affiliation(s)
- Andrea López-Suárez
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain.
| | - Mar Santos-Sebastián
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain; Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| | - Alicia Hernanz-Lobo
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Elena Rincón-López
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain; Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| | - David Aguilera-Alonso
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain; Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| | - Jesús Saavedra-Lozano
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain; Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| | - María Jesús Ruiz Serrano
- Microbiology and Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Carlos III Health Institute, Madrid, Spain
| | | | - Luz María Medrano de Dios
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Jiménez Fuentes
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain; Laboratory Platform (Immunology), General Universitary Hospital Gregorio Marañon (HGUGM), Madrid, 28007, Spain; Spanish HIV HGM BioBank, Madrid, 28007, Spain
| | - María Luisa Navarro
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain; Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| | - Marc Tebruegge
- Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Paediatrics and National Reference Centre for Paediatric Tuberculosis, Klinik Ottakring, Wiener Gesundheitsverbund, Vienna, Austria; Department of Paediatrics, Royal Children's Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Begoña Santiago-García
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain; Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain; Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| |
Collapse
|
3
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
5
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
6
|
Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Sci Rep 2020; 10:11635. [PMID: 32669636 PMCID: PMC7363909 DOI: 10.1038/s41598-020-68443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis is a highly infectious and potentially fatal disease accompanied by wasting symptoms, which cause severe metabolic changes in infected people. In this study we have compared the effect of mycobacteria infection on the level of metabolites in blood of humans and mice and whole zebrafish larvae using one highly standardized mass spectrometry pipeline, ensuring technical comparability of the results. Quantification of a range of circulating small amines showed that the levels of the majority of these compounds were significantly decreased in all three groups of infected organisms. Ten of these metabolites were common between the three different organisms comprising: methionine, asparagine, cysteine, threonine, serine, tryptophan, leucine, citrulline, ethanolamine and phenylalanine. The metabolomic changes of zebrafish larvae after infection were confirmed by nuclear magnetic resonance spectroscopy. Our study identified common biomarkers for tuberculosis disease in humans, mice and zebrafish, showing across species conservation of metabolic reprogramming processes as a result of disease. Apparently, the mechanisms underlying these processes are independent of environmental, developmental and vertebrate evolutionary factors. The zebrafish larval model is highly suited to further investigate the mechanism of metabolic reprogramming and the connection with wasting syndrome due to infection by mycobacteria.
Collapse
|
7
|
Early dynamics of innate immunity during pulmonary tuberculosis. Immunol Lett 2020; 221:56-60. [DOI: 10.1016/j.imlet.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
|
8
|
Abstract
Tuberculosis (TB) is the leading killer among all infectious diseases worldwide despite extensive use of the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine. A safer and more effective vaccine than BCG is urgently required. More than a dozen TB vaccine candidates are under active evaluation in clinical trials aimed to prevent infection, disease, and recurrence. After decades of extensive research, renewed promise of an effective vaccine against this ancient airborne disease has recently emerged. In two innovative phase 2b vaccine clinical trials, one for the prevention of Mycobacterium tuberculosis infection in healthy adolescents and another for the prevention of TB disease in M. tuberculosis-infected adults, efficacy signals were observed. These breakthroughs, based on the greatly expanded knowledge of the M. tuberculosis infection spectrum, immunology of TB, and vaccine platforms, have reinvigorated the TB vaccine field. Here, we review our current understanding of natural immunity to TB, limitations in BCG immunity that are guiding vaccinologists to design novel TB vaccine candidates and concepts, and the desired attributes of a modern TB vaccine. We provide an overview of the progress of TB vaccine candidates in clinical evaluation, perspectives on the challenges faced by current vaccine concepts, and potential avenues to build on recent successes and accelerate the TB vaccine research-and-development trajectory.
Collapse
|
9
|
Mottram L, Chakraborty S, Cox E, Fleckenstein J. How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions. Vaccine 2019; 37:4805-4810. [PMID: 30709726 PMCID: PMC6663652 DOI: 10.1016/j.vaccine.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Thanks to the modern sequencing era, the extent to which infectious disease imposes selective pressures on the worldwide human population is being revealed. This is aiding our understanding of the underlying immunological and host mechanistic defenses against these pathogens, as well as potentially assisting in the development of vaccines and therapeutics to control them. As a consequence, the workshop "How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions" at the VASE 2018 meeting, aimed to discuss how genomics and related tools could be used to assist Shigella and ETEC vaccine development. The workshop featured four short presentations which highlighted how genomic applications can be used to assist in the identification of genetic patterns related to the virulence of disease, or host genetic factors that could contribute to immunity or successful vaccine responses. Following the presentations, there was an open debate with workshop attendees to discuss the best ways to utilise such genomic studies, to improve or accelerate the process of both Shigella and ETEC vaccine development. The workshop concluded by making specific recommendations on how genomic research methods could be strengthened and harmonised within the ETEC and Shigella research communities.
Collapse
Affiliation(s)
- Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - James Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States; Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
10
|
Mantilla Galindo A, Ocampo M, Patarroyo MA. Experimental models used in evaluating anti-tuberculosis vaccines: the latest advances in the field. Expert Rev Vaccines 2019; 18:365-377. [PMID: 30773949 DOI: 10.1080/14760584.2019.1583558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Tuberculosis is an infectious disease which is caused by bacilli from the M. tuberculosis complex. The Mycobacterium bovis Bacillus Calmette-Guérin vaccine is currently available as a prophylactic tool for preventing the disease; it has been shown to be efficient in preventing disseminated forms of tuberculosis during early ages; however, its efficiency is limited in areas where individuals have had prior exposure to environmental mycobacteria, and its efficacy decreases with a host's age. AREAS COVERED Following a comprehensive search of the available literature, this review describes some of the most frequently used animal models, the most frequently used methods for evaluating efficacy in animal models and some in vitro strategies as alternatives for evaluating vaccines. EXPERT OPINION Identifying the animal models used up to now for evaluating vaccines during their development stages, their characteristics and limitations, as well as knowledge regarding strategies for evaluating promising vaccine candidate efficacy, will ensure more efficient, reliable and reproducible pre-clinical trials. Although much of the knowledge accrued to date concerning vaccine effectiveness against tuberculosis has been based on animal models, it is clear that large questions still need to be resolved and that extrapolation of such efficacy to humans has yet to be achieved.
Collapse
Affiliation(s)
| | - Marisol Ocampo
- b Basic Sciences Department, School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia.,c Department of Tuberculosis and Molecular Biology , Fundación Instituto de Inmunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Manuel Alfonso Patarroyo
- b Basic Sciences Department, School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia.,c Department of Tuberculosis and Molecular Biology , Fundación Instituto de Inmunología de Colombia (FIDIC) , Bogotá , Colombia
| |
Collapse
|
11
|
Differential DNA methylation of potassium channel KCa3.1 and immune signalling pathways is associated with infant immune responses following BCG vaccination. Sci Rep 2018; 8:13086. [PMID: 30166570 PMCID: PMC6117309 DOI: 10.1038/s41598-018-31537-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG) is the only licensed vaccine for tuberculosis (TB) and induces highly variable protection against pulmonary disease in different countries. We hypothesised that DNA methylation is one of the molecular mechanisms driving variability in BCG-induced immune responses. DNA methylation in peripheral blood mononuclear cells (PBMC) from BCG vaccinated infants was measured and comparisons made between low and high BCG-specific cytokine responders. We found 318 genes and 67 pathways with distinct patterns of DNA methylation, including immune pathways, e.g. for T cell activation, that are known to directly affect immune responses. We also highlight signalling pathways that could indirectly affect the BCG-induced immune response: potassium and calcium channel, muscarinic acetylcholine receptor, G Protein coupled receptor (GPCR), glutamate signalling and WNT pathways. This study suggests that in addition to immune pathways, cellular processes drive vaccine-induced immune responses. Our results highlight mechanisms that require consideration when designing new TB vaccines.
Collapse
|
12
|
Lee S, Hwang KA, Ahn JH, Nam JH. Evaluation of EZplex MTBC/NTM Real-Time PCR kit: diagnostic accuracy and efficacy in vaccination. Clin Exp Vaccine Res 2018; 7:111-118. [PMID: 30112350 PMCID: PMC6082673 DOI: 10.7774/cevr.2018.7.2.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/04/2022] Open
Abstract
Purpose Tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, which is a pathogenic mycobacterial species grouped under Mycobacterium tuberculosis complex (MTBC) with four other pathogenic mycobacterial species. The mycobacteria not included in MTBC are known as nontuberculous mycobacteria (NTM), and cause several pulmonary diseases including pneumonia. Currently, NTM occurrences in TB-suspected respiratory specimens have increased, due to which, precise detection of MTBC and NTM is considered critical for the diagnosis and vaccination of TB. Among the various methods available, real-time PCR is frequently adopted for MTBC/NTM detection due to its rapidness, accuracy, and ease of handling. In this study, we evaluated a new real-time PCR kit for analytical and clinical performance on sputum, bronchial washing, and culture specimens. Materials and Methods For assessing its analytical performance, limit of detection (LOD), reactivity, and repeatability test were performed using DNA samples. To evaluate clinical performance, 612 samples were collected and clinically tested at a tertiary hospital. Results LOD was confirmed as 0.584 copies/µL for MTBC and 47.836 copies/µL for NTM by probit analysis (95% positive). For the reactivity test, all intended strains were detected and, in the repeatability test, stable and steady results were confirmed with coefficient of variation ranging from 0.36 to 1.59. For the clinical test, sensitivity and specificity were 98.6%–100% and 98.8%–100% for MTBC and NTM, respectively. Conclusion The results proved the usefulness of the kit in TB diagnosis. Furthermore, it could be adopted for the assessment of vaccine efficacy.
Collapse
Affiliation(s)
- Suengmok Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Korea.,Department of Research and Development, Genetree Research, Seoul, Korea
| | - Kyung-A Hwang
- Department of Research and Development, Genetree Research, Seoul, Korea
| | - Ji-Hoon Ahn
- Department of Research and Development, Genetree Research, Seoul, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
13
|
Abebe F, Belay M, Legesse M, K. L. M. C. F, Ottenhoff THM. IgA and IgG against Mycobacterium tuberculosis Rv2031 discriminate between pulmonary tuberculosis patients, Mycobacterium tuberculosis-infected and non-infected individuals. PLoS One 2018; 13:e0190989. [PMID: 29373577 PMCID: PMC5786301 DOI: 10.1371/journal.pone.0190989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
As part of a major project to investigate protective and diagnostic immune markers against tuberculosis (TB), we measured antibody isotype responses to Mycobacterium tuberculosis (Mtb) antigens (LAM, Rv2031, and HBHA) in cohorts of 149 pulmonary tuberculosis patients (PTBP), 148 household contacts (HHCs), and 68 community controls (CCs) in an endemic setting. ELISA was used to measure levels of IgA, IgG, and IgM from sera of cohorts at baseline, and at 6 and 12 months from entry. The results show that there were significant differences in IgA, IgG, and IgM responses to the different antigens and in the three cohorts. At baseline, the level of IgM against RV2031 and LAM did not vary between cohorts, but the levels of IgA and IgG against Rv2031 were significantly higher in PTB patients than HHCs and CCs, followed by HHCs, and the lowest in CCs. In patients, there was a significant variation in antibody responses before and after chemotherapy. The levels of IgA and IgG against HBHA, and IgA against Rv2031 decreased significantly and remained low, while IgA and IgG against LAM increased significantly and remained high following chemotherapy. However, the levels of IgM against Rv2031 and LAM increased at 6 months but decreased again at 12 months. IgM against HBHA did not show any significant variation before and after chemotherapy. Similarly, there were also significant variations in antibody responses in HHCs over time. Our results show that there are significant variations in IgA, IgG and IgM responses to the different antigens and in the three cohorts, implying that not all antibody isotype responses are markers of clinical TB. In addition, the current and previous studies consistently show that IgA and IgG against Rv2031 discriminate between clinical disease, Mtb-infected and non-infected individuals.
Collapse
Affiliation(s)
- Fekadu Abebe
- University of Oslo, Faculty of Medicine, Institute of Health and Society, Department of Community Medicine and Global health, Oslo, Norway
| | - Mulugeta Belay
- Center for Immuno-biology, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mengistu Legesse
- Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | - Franken K. L. M. C.
- Department of Infectious Diseases, Leiden Medical Center, Leiden, the Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Abstract
Co-infection with Mycobacterium tuberculosis is the leading cause of death in individuals infected with HIV-1. It has long been known that HIV-1 infection alters the course of M. tuberculosis infection and substantially increases the risk of active tuberculosis (TB). It has also become clear that TB increases levels of HIV-1 replication, propagation and genetic diversity. Therefore, co-infection provides reciprocal advantages to both pathogens. In this Review, we describe the epidemiological associations between the two pathogens, selected interactions of each pathogen with the host and our current understanding of how they affect the pathogenesis of TB and HIV-1/AIDS in individuals with co-infections. We evaluate the mechanisms and consequences of HIV-1 depletion of T cells on immune responses to M. tuberculosis. We also discuss the effect of HIV-1 infection on the control of M. tuberculosis by macrophages through phagocytosis, autophagy and cell death, and we propose models by which dysregulated inflammatory responses drive the pathogenesis of TB and HIV-1/AIDS.
Collapse
|
15
|
Abstract
Tuberculosis infects millions of people worldwide and remains a leading global killer despite widespread neonatal administration of the tuberculosis vaccine, bacillus Calmette-Guérin (BCG). BCG has clear and sustained efficacy, but after 10 years, its efficacy appears to wane, at least in some populations. Fortunately, there are many new tuberculosis vaccines in development today, some in advanced stages of clinical trial testing. Here we review the epidemiological need for tuberculosis vaccination, including evolving standards for administration to at risk individuals in developing countries. We also examine proven sources of immune protection from tuberculosis, which to date have exclusively involved natural or vaccine exposure to whole cell mycobacteria. After summarizing evidence for the use and efficacy of BCG, we detail the most promising new candidate vaccines against tuberculosis. The global need for a new tuberculosis vaccine is acute and huge, but clinical trials to be completed in the coming few years are likely either to identify a new tuberculosis vaccine or to substantially reframe how we understand immune protection from this historical scourge.
Collapse
|
16
|
Huang L, Russell DG. Protective immunity against tuberculosis: what does it look like and how do we find it? Curr Opin Immunol 2017; 48:44-50. [PMID: 28826036 PMCID: PMC5697896 DOI: 10.1016/j.coi.2017.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
An absence of immune correlates of protection is a barrier to vaccine development. The immune mechanisms behind tuberculosis progression are not understood. Fluorescent Mtb reporter strains identify permissive and controller host cells. Bacterial burden can be impacted by the magnitude of host cell population. Bacterial reporter strains offer new insights into host immune mechanisms.
Progress towards the development of an effective vaccine against tuberculosis is hampered by the lack of correlative readouts of immune protection, coupled with our limited understanding of the immune mechanisms that determine disease progression versus containment. In this article we discuss the value of microbial readouts of bacterial fitness to probe the host immune environments and determine those host cell subsets that promote or control bacterial growth. Ultimately, we feel that these bacterial reporters will prove to be key in understanding the immune mechanisms underpinning disease outcome, and that this knowledge is critical to any program developing vaccines or immune-modulatory therapeutics as a means of controlling tuberculosis.
Collapse
Affiliation(s)
- Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
17
|
Kaufmann SH, Weiner J, Maertzdorf J. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers. Expert Rev Vaccines 2017; 16:845-853. [DOI: 10.1080/14760584.2017.1341316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
18
|
Correia CN, Nalpas NC, McLoughlin KE, Browne JA, Gordon SV, MacHugh DE, Shaughnessy RG. Circulating microRNAs as Potential Biomarkers of Infectious Disease. Front Immunol 2017; 8:118. [PMID: 28261201 PMCID: PMC5311051 DOI: 10.3389/fimmu.2017.00118] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease.
Collapse
Affiliation(s)
- Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland; University College Dublin, UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; University College Dublin, UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Ronan G Shaughnessy
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| |
Collapse
|