1
|
Gupta MM, Gilhotra R, Deopa D, Bhat AA, Thapa R, Singla N, Kulshrestha R, Gupta G. Epigenetics of Pulmonary Tuberculosis. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:127-144. [DOI: 10.1007/978-981-99-4780-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Peng Z, Yue Y, Xiong S. Mycobacterial PPE36 Modulates Host Inflammation by Promoting E3 Ligase Smurf1-Mediated MyD88 Degradation. Front Immunol 2022; 13:690667. [PMID: 35237255 PMCID: PMC8882603 DOI: 10.3389/fimmu.2022.690667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) PPE36, a cell-wall-associated protein, is highly specific and conserved for the Mtb complex group. Although PPE36 has been proven essential for iron utilization, little is known about it in regulating host immune responses. Here we exhibited that PPE36 was preferentially enriched in Mtb virulent strains and could efficiently inhibit host inflammatory responses and increase bacterial loads in infected macrophages and mice. In exploring the underlying mechanisms, we found that PPE36 could robustly inhibit the activation of inflammatory NF-κB and MAPK (Erk, p38, and Jnk) pathways by promoting E3 ligase Smurf1-mediated ubiquitination and proteasomal degradation of MyD88 protein. Our research revealed a previously unknown function of PPE36 on modulating host immune responses and provided some clues to the development of novel tuberculosis treatment strategies based on immune regulation.
Collapse
Affiliation(s)
- Zhangli Peng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Pu W, Zhao C, Wazir J, Su Z, Niu M, Song S, Wei L, Li L, Zhang X, Shi X, Wang H. Comparative transcriptomic analysis of THP-1-derived macrophages infected with Mycobacterium tuberculosis H37Rv, H37Ra and BCG. J Cell Mol Med 2021; 25:10504-10520. [PMID: 34632719 PMCID: PMC8581329 DOI: 10.1111/jcmm.16980] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) remains a worldwide healthcare concern, and the exploration of the host‐pathogen interaction is essential to develop therapeutic modalities and strategies to control Mycobacterium tuberculosis (M.tb). In this study, RNA sequencing (transcriptome sequencing) was employed to investigate the global transcriptome changes in the macrophages during the different strains of M.tb infection. THP‐1 cells derived from macrophages were exposed to the virulent M.tb strain H37Rv (Rv) or the avirulent M.tb strain H37Ra (Ra), and the M.tb BCG vaccine strain was used as a control. The cDNA libraries were prepared from M.tb‐infected macrophages and then sequenced. To assess the transcriptional differences between the expressed genes, the bioinformatics analysis was performed using a standard pipeline of quality control, reference mapping, differential expression analysis, protein‐protein interaction (PPI) networks, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Q‐PCR and Western blot assays were also performed to validate the data. Our findings indicated that, when compared to BCG or M.tb H37Ra infection, the transcriptome analysis identified 66 differentially expressed genes in the M.tb H37Rv‐infected macrophages, out of which 36 genes were up‐regulated, and 30 genes were down‐regulated. The up‐regulated genes were associated with immune response regulation, chemokine secretion, and leucocyte chemotaxis. In contrast, the down‐regulated genes were associated with amino acid biosynthetic and energy metabolism, connective tissue development and extracellular matrix organization. The Q‐PCR and Western blot assays confirmed increased expression of pro‐inflammatory factors, altered energy metabolic processes, enhanced activation of pro‐inflammatory signalling pathways and increased pyroptosis in H37Rv‐infected macrophage. Overall, our RNA sequencing‐based transcriptome study successfully identified a comprehensive, in‐depth gene expression/regulation profile in M.tb‐infected macrophages. The results demonstrated that virulent M.tb strain H37Rv infection triggers a more severe inflammatory immune response associated with increased tissue damage, which helps in understanding the host‐pathogen interaction dynamics and pathogenesis features in different strains of M.tb infection.
Collapse
Affiliation(s)
- Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyuan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xia Zhang
- Nanjing Public Health Clinical Center, the Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Shi
- Nanjing Public Health Clinical Center, the Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, Aazami H, Siadat SD, Fuso A. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020; 12:455-469. [PMID: 32267165 DOI: 10.2217/epi-2019-0187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epigenetics regulate gene function without any alteration in the DNA sequence. The epigenetics represent one of the most important regulators in different cellular processes and have initially been developed in microorganisms as a protective strategy. The evaluation of the epigenetic mechanisms is also important in achieving an efficient control strategy in tuberculosis (TB). TB is one of the most significant epidemiological concerns in human history. Despite several in vivo and in vitro studies that have evaluated different epigenetic modifications in TB, many aspects of the association between epigenetics and TB are not fully understood. The current paper is aimed at reviewing our knowledge on histone modifications and DNA methylation modifications, as well as miRNAs regulation in TB.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laboratory of Molecular Medicine, IRCCS Institute Giannina Gaslini, Genova, Italy
| | - Nayereh Ebrahimzadeh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Aazami
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.,Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
5
|
Cao T, Lyu L, Jia H, Wang J, Du F, Pan L, Li Z, Xing A, Xiao J, Ma Y, Zhang Z. A Two-Way Proteome Microarray Strategy to Identify Novel Mycobacterium tuberculosis-Human Interactors. Front Cell Infect Microbiol 2019; 9:65. [PMID: 30984625 PMCID: PMC6448480 DOI: 10.3389/fcimb.2019.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a serious threat to human health which is caused by mycobacterium tuberculosis (Mtb). The main reason for failure to eliminate TB is lack of clearly understanding the molecular mechanism of Mtb pathogenesis. Determining human Mtb-interacting proteins enables us to characterize the mechanism and identify potential molecular targets for TB diagnosis and treatment. However, experimentally systematic Mtb interactors are not readily available. In this study, we performed an unbiased, comprehensive two-way proteome microarray based approach to systematically screen global human Mtb interactors and determine the binding partners of Mtb effectors. Our results, for the first time, screened 84 potential human Mtb interactors. Bioinformatic analysis further highlighted these protein candidates might engage in a wide range of cellular functions such as activation of DNA endogenous promoters, transcription of DNA/RNA and necrosis, as well as immune-related signaling pathways. Then, using Mtb proteome microarray followed His tagged pull-down assay and Co-IP, we identified one interacting partner (Rv0577) for the protein candidate NRF1 and three binding partners (Rv0577, Rv2117, Rv2423) for SMAD2, respectively. This study gives new insights into the profile of global Mtb interactors potentially involved in Mtb pathogenesis and demonstrates a powerful strategy in the discovery of Mtb effectors.
Collapse
Affiliation(s)
- Tingming Cao
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lingna Lyu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fengjiao Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jing Xiao
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yu Ma
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Danjuma L, Mok PL, Higuchi A, Hamat RA, Teh SW, Koh AEH, Munusamy MA, Arulselvan P, Rajan M, Nambi A, Swamy K, Vijayaraman K, Murugan K, Natarajaseenivasan K, Subbiah SK. Modulatory and regenerative potential of transplanted bone marrow-derived mesenchymal stem cells on rifampicin-induced kidney toxicity. Regen Ther 2018; 9:100-110. [PMID: 30525080 PMCID: PMC6223029 DOI: 10.1016/j.reth.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy. METHODS The rats (male and female) were divided into three experimental groups, as follows: Group 1: control rats (4 males & 4 females); Group 2: rats treated with rifampicin only (4 males & 4 females); and Group 3: rats treated with rifampicin plus MSCs (4 males & 4 females). Therapeutic doses of rifampicin (9 mg/kg/day for 3-months) and MSCs infusions (twice/month for 3-months) were administered orally and intravenously respectively. At the end of the three months, the animals were bred together to determine if the effects would carry over to the next generation. Following breeding, the rats were sacrificed to harvest serum for biochemical analysis and the kidneys were also harvested for histological analysis and quantification of the glomeruli size, for the adult rats and their progenies. RESULTS The results showed some level of alterations in the biochemical indicators and histopathological damage in the rats that received rifampicin treatment alone, while the control and stem cells treated group showed apparently normal to nearly normal levels of both bio-indicators and normal histological architecture. CONCLUSIONS Intravenous administration of MSCs yielded sensible development, as seen from biochemical indicators, histology and the quantitative cell analysis, hence implying the modulatory and regenerative properties of MSCs.
Collapse
Affiliation(s)
- Lawal Danjuma
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology and Biotechnology, Faculty of Science, Federal University Duste, P.M.B 7156, Duste, Jigawa, Nigeria
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Science Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Aljouf Province, Saudi Arabia
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001, Taiwan
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Seoh Wei Teh
- Department of Biomedical Science, Faculty of Medicine and Health Science Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Science Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Arivudai Nambi
- Faculty of Medicine, Lincoln University College, Malaysia
| | - K.B. Swamy
- Faculty of Medicine, Lincoln University College, Malaysia
| | - Kiruthiga Vijayaraman
- Department of Medical Biotechnology, Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Malaysia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India
| |
Collapse
|
7
|
Barik MR, Rath S, Modi R, Rana R, Reddy MM, Basu S. Normalised quantitative polymerase chain reaction for diagnosis of tuberculosis-associated uveitis. Tuberculosis (Edinb) 2018; 110:30-35. [DOI: 10.1016/j.tube.2018.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 11/29/2022]
|