1
|
Lorenz N, McGregor R, Whitcombe AL, Sharma P, Ramiah C, Middleton F, Baker MG, Martin WJ, Wilson NJ, Chung AW, Moreland NJ. An acute rheumatic fever immune signature comprising inflammatory markers, IgG3, and Streptococcus pyogenes-specific antibodies. iScience 2024; 27:110558. [PMID: 39184444 PMCID: PMC11342286 DOI: 10.1016/j.isci.2024.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding the immune profile of acute rheumatic fever (ARF), a serious post-infectious sequelae of Streptococcal pyogenes (group A Streptococcus [GAS]), could inform disease pathogenesis and management. Circulating cytokines, immunoglobulins, and complement were analyzed in participants with first-episode ARF, swab-positive GAS pharyngitis and matched healthy controls. A striking elevation of total IgG3 was observed in ARF (90% > clinical reference range for normal). ARF was also associated with an inflammatory triad with significant correlations between interleukin-6, C-reactive protein, and complement C4 absent in controls. Quantification of GAS-specific antibody responses revealed that subclass polarization was remarkably consistent across the disease spectrum; conserved protein antigens polarized to IgG1, while M-protein responses polarized to IgG3 in all groups. However, the magnitude of responses was significantly higher in ARF. Taken together, these findings emphasize the association of exaggerated GAS antibody responses, IgG3, and inflammatory cytokines in ARF and suggest IgG3 testing could beneficially augment clinical diagnosis.
Collapse
Affiliation(s)
- Natalie Lorenz
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Alana L. Whitcombe
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Prachi Sharma
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Ciara Ramiah
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Francis Middleton
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Michael G. Baker
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Public Health, University of Otago, Wellington, New Zealand
| | | | - Nigel J. Wilson
- Starship Children’s Hospital, Health New Zealand – Te Whatu Ora, Auckland, New Zealand
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole J. Moreland
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Gupta A, Chandra E, Anand S, Kumar N, Arora R, Rana D, Mrigpuri P. Latent tuberculosis diagnostics: current scenario and review. Monaldi Arch Chest Dis 2024. [PMID: 38700134 DOI: 10.4081/monaldi.2024.2984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
This review presents a comprehensive examination of the contemporary landscape pertaining to latent tuberculosis infection (LTBI) diagnostics, with a particular emphasis on the global ramifications and the intricacies surrounding LTBI diagnosis and treatment. It accentuates the imperative of bolstering diagnostic, preventive, and treatment modalities for tuberculosis (TB) to fulfill the ambitious targets set forth by the World Health Organization aimed at reducing TB-related mortalities and the incidence of new TB cases. The document underscores the significance of addressing LTBI as a means of averting the progression to active TB, particularly in regions burdened with high TB prevalence, such as India. An in-depth analysis of the spectrum delineating latent and active TB disease is provided, elucidating the risk factors predisposing individuals with LTBI to progress towards active TB, including compromised immune functionality, concurrent HIV infection, and other immunosuppressive states. Furthermore, the challenges associated with LTBI diagnosis are elucidated, encompassing the absence of a definitive diagnostic assay, and the merits and demerits of tuberculin skin testing (TST) and interferon-γ release assays (IGRAs) are expounded upon. The document underscores the necessity of confronting these challenges and furnishes a meticulous examination of the advantages and limitations of TST and IGRAs, along with the intricacies involved in interpreting their outcomes across diverse demographics and settings. Additionally, attention is drawn towards the heritability of the interferon-γ response to mycobacterial antigens and the potential utility of antibodies in LTBI diagnosis.
Collapse
Affiliation(s)
- Amitesh Gupta
- Department of Pulmonary Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi.
| | - Eshutosh Chandra
- Department of Pulmonary Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi.
| | - Shipra Anand
- Department of Pulmonary Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi.
| | - Naresh Kumar
- Department of Pulmonary Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi.
| | - Richa Arora
- Department of Pulmonary Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi.
| | - Divyanshi Rana
- Department of Pulmonary Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi.
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi.
| |
Collapse
|
3
|
Burel JG, Wang W, Wuhrer M, Dedicoat M, Fletcher TE, Cunningham AF, O'Shea MK. IgG glycosylation associates with risk of progression from latent to active tuberculosis. J Infect 2024; 88:106115. [PMID: 38309308 DOI: 10.1016/j.jinf.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVES Glycosylation motifs shape antibody structure, stability and antigen affinity and play an important role in antibody localization and function. Serum IgG glycosylation profiles are significantly altered in infectious diseases, including tuberculosis (TB), but have not been studied in the context of progression from latent to active TB. METHODS We performed a longitudinal study of paired bulk IgG glycosylation and transcriptomic profiling in blood from individuals with active TB (ATB) or latent TB infection (LTBI) before and after treatment. RESULTS We identified that a combination of two IgG1 glycosylation traits were sufficient to distinguish ATB from LTBI with high specificity and sensitivity, prior to, and after treatment. Importantly, these two features positively correlated with previously defined cellular and RNA signatures of ATB risk in LTBI, namely monocyte to lymphocyte ratio and the expression of interferon (IFN)-associated gene signature of progression (IFN-risk signature) in blood prior to treatment. Additional glycosylation features at higher prevalence in LTBI individuals with high expression of the IFN-risk signature prior to treatment included fucosylation on IgG1, IgG2 and IgG3. CONCLUSIONS Together, our results demonstrate that bulk IgG glycosylation features could be useful in stratifying the risk of LTBI reactivation and progression to ATB.
Collapse
Affiliation(s)
- Julie G Burel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Dedicoat
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Thomas E Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Swain S, Kumar A, Vishwakarma VK, Aayilliath K A, Mittal A, Wig N. Diagnosis and Management of Latent Tuberculosis Infection: Updates. Infect Disord Drug Targets 2024; 24:12-19. [PMID: 38031772 DOI: 10.2174/0118715265275319231124053615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
India has the largest problem of tuberculosis (TB) infection globally (estimated at about 35-40 crores cases), and around 18-36 lakh develop active tuberculosis annually. Latent TB is defined as a state of persistent immune response to stimulation by Mycobacterium tuberculosis antigens with no evidence of clinically manifested active TB. The progression of a latent infection to active tuberculosis increases several-fold in children < 5 years of age and in people with some or the other form of an immunocompromising condition. Therefore, to cater to this gigantic problem of tuberculosis, it is necessary to have awareness about latent tuberculosis infection (LTBI) amongst clinicians and to prioritise its diagnosis and treatment in high-risk groups. India plans to end TB well before the deadline set by the World Health organisation (WHO). However, this can only be achieved with effective strategies targeting LTBI. Multiple treatment regimens have been approved for LTBI treatment, and all have comparable efficacy. The selection of one regimen over the other depends on various factors, such as availability, risk of adverse events, age, and drug interactions. Recently, the WHO, as well as the Revised National TB Control Programme (RNTCP), have updated their guidelines on TB preventive treatment in 2020 and 2021, respectively. This review has been especially prepared to acknowledge the differences in approach to LTBI in developed and developing countries.
Collapse
Affiliation(s)
- Satish Swain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Adarsh Aayilliath K
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Mittal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Malatji K, Singh A, Thobakgale C, Alexandre K. Development of a Multiplex HIV/TB Diagnostic Assay Based on the Microarray Technology. BIOSENSORS 2023; 13:894. [PMID: 37754128 PMCID: PMC10526232 DOI: 10.3390/bios13090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Currently there are diagnostic tests available for human immunodeficiency virus (HIV) and tuberculosis (TB); however, they are still diagnosed separately, which can delay treatment in cases of co-infection. Here we report on a multiplex microarray technology for the detection of HIV and TB antibodies using p24 as well as TB CFP10, ESAT6 and pstS1 antigens on epoxy-silane slides. To test this technology for antigen-antibody interactions, immobilized antigens were exposed to human sera spiked with physiological concentrations of primary antibodies, followed by secondary antibodies conjugated to a fluorescent reporter. HIV and TB antibodies were captured with no cross-reactivity observed. The sensitivity of the slides was compared to that of high-binding plates. We found that the slides were more sensitive, with the detection limit being 0.000954 µg/mL compared to 4.637 µg/mL for the plates. Furthermore, stability studies revealed that the immobilized antigens could be stored dry for at least 90 days and remained stable across all pH and temperatures assessed, with pH 7.4 and 25 °C being optimal. The data collectively suggested that the HIV/TB multiplex detection technology we developed has the potential for use to diagnose HIV and TB co-infection, and thus can be developed further for the purpose.
Collapse
Affiliation(s)
- Kanyane Malatji
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
| | - Advaita Singh
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa
| | - Christina Thobakgale
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
- Centre for HIV and STIs, National Institute for Communicable Diseases, Sandringham, Johannesburg 2192, South Africa
| | - Kabamba Alexandre
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
| |
Collapse
|
7
|
Dewi DNSS, Mertaniasih NM, Soedarsono, Hagino K, Yamazaki T, Ozeki Y, Artama WT, Kobayashi H, Inouchi E, Yoshida Y, Ishikawa S, Shaban AK, Tateishi Y, Nishiyama A, Ato M, Matsumoto S. Antibodies against native proteins of Mycobacterium tuberculosis can detect pulmonary tuberculosis patients. Sci Rep 2023; 13:12685. [PMID: 37542102 PMCID: PMC10403504 DOI: 10.1038/s41598-023-39436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Accurate point-of-care testing (POCT) is critical for managing tuberculosis (TB). However, current antibody-based diagnosis shows low specificity and sensitivity. To find proper antigen candidates for TB diagnosis by antibodies, we assessed IgGs responsiveness to Mycobacterium tuberculosis proteins in pulmonary TB (PTB) patients. We employed major secreted proteins, such as Rv1860, Ag85C, PstS1, Rv2878c, Ag85B, and Rv1926c that were directly purified from M. tuberculosis. In the first screening, we found that IgG levels were significantly elevated in PTB patients only against Rv1860, PstS1, and Ag85B among tested antigens. However, recombinant PstS1 and Ag85B from Escherichia coli (E. coli) couldn't distinguish PTB patients and healthy controls (HC). Recombinant Rv1860 was not checked due to its little expression. Then, the 59 confirmed PTB patients from Soetomo General Academic Hospital, Surabaya, Indonesia, and 102 HC were tested to Rv1860 and Ag85B only due to the low yield of the PstS1 from M. tuberculosis. The ROC analysis using native Ag85B and Rv1860 showed an acceptable area under curve for diagnosis, which is 0.812 (95% CI 0.734-0.890, p < 0.0001) and 0.821 (95% CI 0.752-0.890, p < 0.0001). This study indicates that taking consideration of native protein structure is key in developing TB's POCT by antibody-based diagnosis.
Collapse
Affiliation(s)
- Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan.
- Department of Microbiology, Faculty of Medicine, Universitas Ciputra, CitraLand CBD Boulevard, Made, Kec. Sambikerep, Surabaya, 60219, Indonesia.
| | - Ni Made Mertaniasih
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo 47, Surabaya, 60131, Indonesia.
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia.
| | - Soedarsono
- Sub-Pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Komplek Barat RSAL Dr. Ramelan, Jl. Gadung No.1, Jagir, Surabaya, 60111, Indonesia
| | - Kimika Hagino
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Tomoya Yamazaki
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Wayan Tunas Artama
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2 Karangmalang, Yogyakarta, 55281, Indonesia
- One Health/Eco-Health Resource Center, Universitas Gadjah Mada, Jl. Teknika Utara, Barek, Sleman, Yogyakarta, 55281, Indonesia
| | - Haruka Kobayashi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Erina Inouchi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Ishikawa
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
- Fukuyama Zoo, 276‑1, Fukuda, Ashida‑cho, Fukuyama, Hiroshima, 720‑1264, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho 4-2-1, Higashimurayama-shi, Tokyo, 189-0002, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan.
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo 47, Surabaya, 60131, Indonesia.
| |
Collapse
|
8
|
Pushpamithran G, Skoglund C, Olsson F, Méndez-Aranda M, Schön T, Segelmark M, Stendahl O, Gilman RH, Blomgran R. No impact of helminth coinfection in patients with smear positive tuberculosis on immunoglobulin levels using a novel method measuring Mycobacterium tuberculosis-specific antibodies. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:55. [PMID: 37386541 DOI: 10.1186/s13223-023-00808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
Helminth/tuberculosis (TB)-coinfection can reduce cell-mediated immunity against Mycobacterium tuberculosis (Mtb) and increase disease severity, although the effects are highly helminth species dependent. Mtb have long been ranked as the number one single infectious agent claiming the most lives. The only licensed vaccine for TB (BCG) offers highly variable protection against TB, and almost no protection against transmission of Mtb. In recent few years the identification of naturally occurring antibodies in humans that are protective during Mtb infection has reignited the interest in adaptive humoral immunity against TB and its possible implementation in novel TB vaccine design. The effects of helminth/TB coinfection on the humoral response against Mtb during active pulmonary TB are however still unclear, and specifically the effect by globally prevalent helminth species such as Ascaris lumbricoides, Strongyloides stercoralis, Ancylostoma duodenale, Trichuris trichiura. Plasma samples from smear positive TB patients were used to measure both total and Mtb-specific antibody responses in a Peruvian endemic setting where these helminths are dominating. Mtb-specific antibodies were detected by a novel approach coating ELISA-plates with a Mtb cell-membrane fraction (CDC1551) that contains a broad range of Mtb surface proteins. Compared to controls without helminths or TB, helminth/TB coinfected patients had high levels of Mtb-specific IgG (including an IgG1 and IgG2 subclass response) and IgM, which were similarly increased in TB patients without helminth infection. These data, indicate that helminth/TB coinfected have a sustained humoral response against Mtb at the level of active TB only. More studies on the species-specific impact of helminths on the adaptive humoral response against Mtb using a larger sample size, and in relation to TB disease severity, are needed.
Collapse
Affiliation(s)
- Giggil Pushpamithran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
| | - Camilla Skoglund
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fanny Olsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melissa Méndez-Aranda
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Thomas Schön
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
- Department of Infectious Diseases, County of Östergötland and Kalmar, Linköping University, Linköping, Sweden
| | - Mårten Segelmark
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Sciences, Lund University and Department of Nephrology, Skane University Hospital, Lund, Sweden
| | - Olle Stendahl
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
| | - Robert H Gilman
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Mayland, USA
| | - Robert Blomgran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden.
| |
Collapse
|
9
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
10
|
McLean MR, Wragg KM, Lopez E, Kiazyk SA, Ball TB, Bueti J, Kent SJ, Juno JA, Chung AW. Serological and cellular inflammatory signatures in end-stage kidney disease and latent tuberculosis. Clin Transl Immunology 2021; 10:e1355. [PMID: 34765193 PMCID: PMC8569694 DOI: 10.1002/cti2.1355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Tuberculosis comorbidity with chronic diseases including diabetes, HIV and chronic kidney disease is of rising concern. In particular, latent tuberculosis infection (LTBI) comorbidity with end‐stage kidney disease (ESKD) is associated with up to 52.5‐fold increased risk of TB reactivation to active tuberculosis infection (ATBI). The immunological mechanisms driving this significant rise in TB reactivation are poorly understood. To contribute to this understanding, we performed a comprehensive assessment of soluble and cellular immune features amongst a unique cohort of patients comorbid with ESKD and LTBI. Methods We assessed the plasma and cellular immune profiles from patients with and without ESKD and/or LTBI (N = 40). We characterised antibody glycosylation, serum complement and cytokine levels. We also assessed classical and non‐classical monocytes and T cells with flow cytometry. Using a systems‐based approach, we identified key immunological features that discriminate between the different disease states. Results Individuals with ESKD exhibited a highly inflammatory plasma profile and an activated cellular state compared with those without ESKD, including higher levels of inflammatory antibody Fc glycosylation structures and activated CX3CR1+ monocytes that correlate with increased inflammatory plasma cytokines. Similar elevated inflammatory signatures were also observed in ESKD+/LTBI+ compared with ESKD−/LTBI+, suggesting that ESKD induces an overwhelming inflammatory immune state. In contrast, no significant inflammatory differences were observed when comparing LTBI+ and LTBI− individuals. Conclusion Our study highlights the highly inflammatory state induced by ESKD. We hypothesise that this inflammatory state could contribute to the increased risk of TB reactivation in ESKD patients.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Ester Lopez
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Sandra A Kiazyk
- National HIV and Retrovirology Laboratory National Microbiology Laboratory JC Wilt Infectious Diseases Research Centre Public Health Agency of Canada Winnipeg MB Canada.,Department of Medical Microbiology and Infectious Diseases University of Manitoba Winnipeg MB Canada
| | - Terry Blake Ball
- National HIV and Retrovirology Laboratory National Microbiology Laboratory JC Wilt Infectious Diseases Research Centre Public Health Agency of Canada Winnipeg MB Canada
| | - Joe Bueti
- Department of Internal Medicine University of Manitoba Winnipeg MB Canada.,Section of Nephrology Department of Internal Medicine University of Manitoba MB Canada.,Health Sciences Centre Winnipeg MB Canada
| | - Stephen J Kent
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology University of Melbourne Melbourne VIC Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases Alfred Hospital and Central Clinical School Monash University Melbourne VIC Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Amy W Chung
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| |
Collapse
|
11
|
Chiwala G, Liu Z, Mugweru JN, Wang B, Khan SA, Bate PNN, Yusuf B, Hameed HMA, Fang C, Tan Y, Guan P, Hu J, Tan S, Liu J, Zhong N, Zhang T. A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen. Biomed Pharmacother 2021; 142:112047. [PMID: 34426260 DOI: 10.1016/j.biopha.2021.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine's safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG's therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the "recombinant" plus "drug-resistant" BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB.
Collapse
MESH Headings
- Amikacin/pharmacology
- Amikacin/therapeutic use
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antitubercular Agents/pharmacology
- Antitubercular Agents/therapeutic use
- BCG Vaccine/biosynthesis
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- BCG Vaccine/therapeutic use
- Disease Models, Animal
- Drug Resistance, Bacterial/genetics
- Levofloxacin/pharmacology
- Levofloxacin/therapeutic use
- Mice, Inbred BALB C
- Mice, SCID
- Mycobacterium bovis/chemistry
- Mycobacterium bovis/drug effects
- Mycobacterium bovis/genetics
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/pathogenicity
- Plasmids
- Prothionamide/pharmacology
- Prothionamide/therapeutic use
- Pyrazinamide/pharmacology
- Pyrazinamide/therapeutic use
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Virulence
- Mice
Collapse
Affiliation(s)
- Gift Chiwala
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Julius N Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, Embu 60100, Kenya
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Petuel Ndip Ndip Bate
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China.
| |
Collapse
|
12
|
Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, Torres M. Diagnosis for Latent Tuberculosis Infection: New Alternatives. Front Immunol 2020; 11:2006. [PMID: 33013856 PMCID: PMC7511583 DOI: 10.3389/fimmu.2020.02006] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Latent tuberculosis infection (LTBI) is a subclinical mycobacterial infection defined on the basis of cellular immune response to mycobacterial antigens. The tuberculin skin test (TST) and the interferon gamma release assay (IGRA) are currently used to establish the diagnosis of LTB. However, neither TST nor IGRA is useful to discriminate between active and latent tuberculosis. Moreover, these tests cannot be used to predict whether an individual with LTBI will develop active tuberculosis (TB) or whether therapy for LTBI could be effective to decrease the risk of developing active TB. Therefore, in this article, we review current approaches and some efforts to identify an immunological marker that could be useful in distinguishing LTBI from TB and in evaluating the effectiveness of treatment of LTB on the risk of progression to active TB.
Collapse
Affiliation(s)
- Claudia Carranza
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Sigifredo Pedraza-Sanchez
- Unidad de Bioquímica Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | | | - Martha Torres
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Subdirección de Investigación Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
13
|
IFN-γ and IgG responses to Mycobacterium tuberculosis latency antigen Rv2626c differentiate remote from recent tuberculosis infection. Sci Rep 2020; 10:7472. [PMID: 32366931 PMCID: PMC7198533 DOI: 10.1038/s41598-020-64428-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023] Open
Abstract
Tuberculin skin test (TST) and IFN-γ release assays are currently used to detect Mycobacterium tuberculosis (Mtb) infection but none of them differentiate active from latent infection (LTBI). Since improved tests to diagnose Mtb infection are required, we studied the immune response to Mtb latency antigen Rv2626c in individuals exposed to the bacteria during different periods. Tuberculosis patients (TB), TB close contacts (CC: subjects exposed to Mtb for less than three months) and healthcare workers (HW: individuals exposed to Mtb at least two years) were recruited and QuantiFERON (QFT) assay, TST and IFN-γ secretion to Rv2626c were analyzed. Twenty-two percent of the individuals assessed had discordant results between QFT and TST tests. Furthermore, QFT negative and QFT positive individuals produced differential levels of IFN-γ against Rv2626c, in direct association with their exposure period to Mtb. Actually, 91% of CC QFT negative subjects secreted low levels of IFN-γ to Rv2626c, whereas 43% of HW QFT negative people produced elevated IFN-γ amounts against Rv2626c. Conversely, 69% of CC QFT positive subjects didn´t produce IFN-γ to Rv2626c. Interestingly, a similar pattern of IgG anti-Rv2626c plasma levels was observed. Therefore, determination of IFN-γ and IgG levels against the dormancy antigen Rv2626c allows to identify established LTBI.
Collapse
|
14
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Dewi DNSS, Mertaniasih NM, Soedarsono, Ozeki Y, Artama WT, Fihiruddin, Niki M, Tateishi Y, Ato M, Matsumoto S. Characteristic profile of antibody responses to PPD, ESAT-6, and CFP-10 of Mycobacterium tuberculosis in pulmonary tuberculosis suspected cases in Surabaya, Indonesia. Braz J Infect Dis 2019; 23:246-253. [PMID: 31421107 PMCID: PMC9428029 DOI: 10.1016/j.bjid.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 12/23/2022] Open
Abstract
Accurate and rapid diagnostic tools are important aspects of managing tuberculosis (TB) cases appropriately. However, the sensitivity and specificity of diagnostic kits based on immune response such as the tuberculin skin test (TST) and interferon gamma release assay (IGRA) are still debated. Thus, the exploration and assessment of specific biomarker-targeted antibodies are needed for the development of an accurate and rapid diagnostic tool. The present study was conducted in patients with a respiratory problem suspected to be TB at Dr. Soetomo Hospital, Surabaya, Indonesia. Among 102 patients tested by GeneXpert and AFB, 59 serum samples were from cases retrospectively determined to have active TB. A total of 102 serum of healthy controls (HC) was also collected. The PPD antigen and the recombinant CFP-10 and ESAT-6 proteins were prepared. Antibody responses against these proteins were evaluated by ELISA. All samples were also screened for the possibility of Mycobacterium avium-intracellulare complex (MAC) infection using Capilla MaC kit. The results showed that TB patients had a significantly higher concentration of IgG antibody in response to PPD than the HC. In addition, the receiver operating characteristic (ROC) curve analysis showed that PPD was acceptable for diagnostic purposes with an AUC value of 0.835 (95% CI 0.770-0.900, p < 0.0001). However, ESAT-6 and CFP-10 had low AUCs, and 32 samples from both groups showed a low concentration of IgA antibody against all antigens. The MAC detection results also showed that the concentration of IgA in the HC group was the highest. The current results indicate that PPD is a better antigen for antibody-based detection of TB than ESAT-6 and CFP-10. Based on the MAC detection assay, 53 people in the HC group were probably infected with rapidly growing nontuberculous mycobacteria (NTM), although antibody response to PPD was low.
Collapse
Affiliation(s)
| | - Ni Made Mertaniasih
- Universitas Airlangga, Faculty of Medicine, Department of Medical Microbiology, Surabaya, Indonesia; Universitas Airlangga, Institute of Tropical Disease, Laboratory of Tuberculosis, Surabaya, Indonesia.
| | - Soedarsono
- Universitas Airlangga, Faculty of Medicine, Department of Pulmonology and Respiratory Medicine, Surabaya, Indonesia.
| | - Yuriko Ozeki
- Niigata University, School of Medicine, Department of Bacteriology, Niigata, Japan.
| | - Wayan Tunas Artama
- Universitas Gadjah Mada, Faculty of Veterinary Medicine, Department of Biochemistry, Yogyakarta, Indonesia; Universitas Gadjah Mada, One Health/Eco-health Resource Center, Yogyakarta, Indonesia.
| | - Fihiruddin
- Universitas Gadjah Mada, Doctoral Program, Research Center of Biotechnology, Yogyakarta, Indonesia; Politeknik Kesehatan Mataram, Department of Medical Laboratory Technology, Mataram, Indonesia.
| | - Mamiko Niki
- Osaka City University Graduate School of Medicine, Department of Bacteriology, Osaka, Japan.
| | - Yoshitaka Tateishi
- Niigata University, School of Medicine, Department of Bacteriology, Niigata, Japan.
| | - Manabu Ato
- National Institute of Infectious Diseases, Department of Mycobacteriology, Leprosy Research Center, Tokyo, Japan.
| | - Sohkichi Matsumoto
- Niigata University, School of Medicine, Department of Bacteriology, Niigata, Japan; Universitas Airlangga, Faculty of Medicine, Department of Medical Microbiology, Surabaya, Indonesia.
| |
Collapse
|
16
|
Steigler P, Verrall AJ, Kirman JR. Beyond memory T cells: mechanisms of protective immunity to tuberculosis infection. Immunol Cell Biol 2019; 97:647-655. [PMID: 31141205 DOI: 10.1111/imcb.12278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease caused by infection with Mycobacterium tuberculosis, and kills more people annually than any other single infectious agent. Although a vaccine is available, it is only moderately effective and an improved vaccine is urgently needed. The ability to develop a more effective vaccine has been thwarted by a lack of understanding of the mechanism of vaccine-induced immune protection. Over recent decades, many novel TB vaccines have been developed and almost all have aimed to generate memory CD4 T cells. In this review, we critically evaluate evidence in the literature that supports the contention that memory CD4 T cells are the prime mediators of vaccine-induced protection against TB. Because of the lack of robust evidence supporting memory CD4 T cells in this role, the potential for B-cell antibody and "trained" innate cells as alternative mediators of protective immunity is explored.
Collapse
Affiliation(s)
- Pia Steigler
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research (CIDRI), Cape Town, South Africa
| | - Ayesha J Verrall
- Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Joanna R Kirman
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Damelang T, Rogerson SJ, Kent SJ, Chung AW. Role of IgG3 in Infectious Diseases. Trends Immunol 2019; 40:197-211. [PMID: 30745265 DOI: 10.1016/j.it.2019.01.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
IgG3 comprises only a minor fraction of IgG and has remained relatively understudied until recent years. Key physiochemical characteristics of IgG3 include an elongated hinge region, greater molecular flexibility, extensive polymorphisms, and additional glycosylation sites not present on other IgG subclasses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the potential for triggering effector functions including complement activation, antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity (ADCC). Recent studies underscore the importance of IgG3 effector functions against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and excessive proinflammatory activation. Understanding the molecular and functional properties of IgG3 may facilitate the development of improved Ab-based immunotherapies and vaccines against infectious diseases.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|