1
|
Sharma K, Sharma M, Ayyadurai N, Dogra M, Sharma A, Gupta V, Singh R, Gupta A. Evaluating Truenat Assay for the Diagnosis of Ocular Tuberculosis and Detection of Drug Resistance. Ocul Immunol Inflamm 2024; 32:976-982. [PMID: 36726220 DOI: 10.1080/09273948.2023.2170888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Truenat MTB Plus assay was evaluated for diagnosing ocular tuberculosis (OTB) and detecting multi-drug resistant (MDR) and extremely-drug resistant (XDR) OTB. METHODS A total of 75 vitreous fluid specimens [five confirmed OTB, 40 clinically suspected OTB and 30 controls] were subjected to Truenat MTB Plus, multiplex PCR, and Xpert Ultra. Chips of Truenat were used for detecting rifampicin, isoniazid, fluoroquinolone and bedaquiline resistance. The performance was compared against culture, composite reference standard, and gene sequencing. RESULTS The overall sensitivity of TruePlus, MPCR, and Ultra in diagnosing OTB was 66.6%, 73.3%, and 55.5%, respectively. Out of six cases with mutations in rpoB gene, RifR was detected in five by TrueRif and four by Ultra. Three MDR and one XDR-OTB were reported by Truenat. CONCLUSION Truenat assay along with its strategic chips is a rapid and reliable tool for diagnosis of OTB and detection of drug resistance, including MDR and XDR-OTB.Abbreviations: OTB: Ocular tuberculosis; XDR: Extremely drug resistant; Ultra: Xpert MTB/RIF Ultra; Xpert: Xpert MTB/RIF; PCR: polymerase chain reaction; NAATs: Nucleic acid amplification tests; MDR: Multi Drug Resistant; NSP: National Strategic plan for elimination of tuberculosis; FqR: Fluoroquinolone resistant; BdqR: bedaquiline resistant; TrueRif: Truenat MTB Rif Dx; TruePlus: Truenat Plus; INH: Isoniazid; DST: Drug susceptibility testing; MGIT: Mycobacterial growth indicator tube; CRF: Composite reference standard; PPV: positive predictive value; NPV: negative predictive value; EPTB: extrapulmonary tuberculosis; VF: vitreous fluid; DNA: deoxyribonucleic acid; ATT: antitubercular therapy; RifR: Rifampicin resistance; RifS: Rifampicin susceptible; RifI: Rifampicin indeterminate.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Megha Sharma
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS) Bilaspur, Himachal Pradesh, India
| | - Nikitha Ayyadurai
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mohit Dogra
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Hemeg HA, Albulushi HO, Ozbak HA, Ali HM, Alahmadi EK, Almutawif YA, Alhuofie ST, Alaeq RA, Alhazmi AA, Najim MA, Hanafy AM. Evaluating the Sensitivity of Different Molecular Techniques for Detecting Mycobacterium tuberculosis Complex in Patients with Pulmonary Infection. Pol J Microbiol 2023; 72:421-431. [PMID: 37934050 PMCID: PMC10725165 DOI: 10.33073/pjm-2023-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
This study aimed to evaluate the accuracy of detecting drug-resistant Mycobacterium tuberculosis complex (MTBC)-specific DNA in sputum specimens from 48 patients diagnosed with pulmonary tuberculosis. The presence of MTBC DNA in the specimens was validated using the GeneXpert MTB/RIF system and compared with a specific PCR assay targeting the IS6110 and the mtp40 gene sequence fragments. Additionally, the results obtained by multiplex PCR assays to detect the most frequently encountered rifampin, isoniazid, and ethambutol resistance-conferring mutations were matched with those obtained by GeneXpert and phenotypic culture-based drug susceptibility tests. Of the 48 sputum samples, 25 were positive for MTBC using the GeneXpert MTB/RIF test. Nevertheless, the IS6110 and mtp40 single-step PCR revealed the IS6110 in 27 of the 48 sputum samples, while the mtp40 gene fragment was found in only 17 of them. Furthermore, multiplex PCR assays detected drug-resistant conferring mutations in 21 (77.8%) of the 27 samples with confirmed MTBC DNA, 10 of which contained single drug-resistant conferring mutations towards ethambutol and two towards rifampin, and the remaining nine contained double-resistant mutations for ethambutol and rifampin. In contrast, only five sputum specimens (18.5%) contained drug-resistant MTBC isolates, and two contained mono-drug-resistant MTBC species toward ethambutol and rifampin, respectively, and the remaining three were designated as multi-drug resistant toward both drugs using GeneXpert and phenotypic culture-based drug susceptibility tests. Such discrepancies in the results emphasize the need to develop novel molecular tests that associate with phenotypic non-DNA-based assays to improve the detection of drug-resistant isolates in clinical specimens in future studies.
Collapse
Affiliation(s)
- Hassan A. Hemeg
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamzah O. Albulushi
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hani A. Ozbak
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamza M. Ali
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Emad K. Alahmadi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Yahya A. Almutawif
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Sari T. Alhuofie
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Rana A. Alaeq
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Areej A. Alhazmi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mustafa A. Najim
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Ahmed M. Hanafy
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Cao WF, Leng EL, Liu SM, Zhou YL, Luo CQ, Xiang ZB, Cai W, Rao W, Hu F, Zhang P, Wen A. Recent advances in microbiological and molecular biological detection techniques of tuberculous meningitis. Front Microbiol 2023; 14:1202752. [PMID: 37700862 PMCID: PMC10494440 DOI: 10.3389/fmicb.2023.1202752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most common type of central nervous system tuberculosis (TB) and has the highest mortality and disability rate. Early diagnosis is key to improving the prognosis and survival rate of patients. However, laboratory diagnosis of TBM is often difficult due to its paucibacillary nature and sub optimal sensitivity of conventional microbiology and molecular tools which often fails to detect the pathogen. The gold standard for TBM diagnosis is the presence of MTB in the CSF. The recognised methods for the identification of MTB are acid-fast bacilli (AFB) detected under CSF smear microscopy, MTB cultured in CSF, and MTB detected by polymerase chain reaction (PCR). Currently, many studies consider that all diagnostic techniques for TBM are not perfect, and no single technique is considered simple, fast, cheap, and efficient. A definite diagnosis of TBM is still difficult in current clinical practice. In this review, we summarise the current state of microbiological and molecular biological diagnostics for TBM, the latest advances in research, and discuss the advantages of these techniques, as well as the issues and challenges faced in terms of diagnostic effectiveness, laboratory infrastructure, testing costs, and clinical expertise, for clinicians to select appropriate testing methods.
Collapse
Affiliation(s)
- Wen-Feng Cao
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Er-Ling Leng
- Department of Pediatrics, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
| | - Shi-Min Liu
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Yong-Liang Zhou
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Chao-Qun Luo
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Zheng-Bing Xiang
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Wen Cai
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| | - An Wen
- Department of Neurology, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, China
- Department of neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Yadav B, Sharma M, Singla N, Shree R, Goyal M, Modi T, Sharma A, Sharma A, Sharma N, Ray P, Modi M, Sharma K. Molecular diagnosis of Tuberculous meningitis: sdaA-based multi-targeted LAMP and GeneXpert Ultra. Tuberculosis (Edinb) 2023; 140:102339. [PMID: 37011559 DOI: 10.1016/j.tube.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
SETTING Nucleic acid amplification techniques like GeneXpert and GeneXpert Ultra (Xpert Ultra), the first-line tests for diagnosing Tuberculous meningitis (TBM), are expensive and depend on sophisticated equipment. OBJECTIVE The diagnostic potential of multitargeted loop-mediated isothermal assay (MLAMP), a low-cost simple test using novel gene combination, was evaluated for TBM. DESIGN 300 CSF specimen (200 TBM patients, 100 controls) processed between January 2017 and December 2021 were subjected to MLAMP (using sdaA, IS1081 and IS6110 gene targets), sdaA PCR and Xpert Ultra. The performance was evaluated against uniform case definition as per Marais criteria, and against culture. RESULTS Uniform case definition classified 50 as definite TBM and 150 as probable or definite TBM. Against this uniform case definition, the sensitivity and specificity of MLAMP was 88% and 100%, respectively. The sensitivity was 96% against culture-positive cases and 85.3% against culture-negative cases. The sensitivity of sdaA-LAMP, IS1081-LAMP, IS6110-LAMP, Xpert Ultra and sdaA-PCR was 82.5%, 80.5%, 85.3%, 67% and 71%, respectively against uniform case definition. sdaA-LAMP detected additional two cases and IS1081-LAMP detected nine. 11 of 134 (8.2%) cases were reported rifampicin resistant by Xpert Ultra. CONCLUSION MLAMP, incorporating sdaA and IS1081, is a cheap, easy and accurate first-line diagnostic test for TBM.
Collapse
|
5
|
Krishnakumariamma K, Ellappan K, Muthuraj M, Tamilarasu K, Kumar SV, Joseph NM. Diagnostic performance of real time PCR for the detection of Mycobacterium tuberculosis in cerebrospinal fluid samples. Indian J Med Microbiol 2023; 42:7-11. [PMID: 36967219 DOI: 10.1016/j.ijmmb.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE We aimed this study to standardize real time - polymerase chain reaction (RT-PCR) for the detection of Mycobacterium tuberculosis (Mtb) in cerebrospinal fluid (CSF) samples and compare its diagnostic performance with GeneXpert (Xpert), Mycobacteria Growth Indicator Tube (MGIT) and Multiplex PCR (MPCR) for tuberculous meningitis (TBM). METHODOLOGY A total of 217 CSF samples were obtained from patients with suspected TBM during the study period between January 2019 and December 2021. The optimal cycle threshold (CT) of RT-PCR was determined by comparing different gene targets of Mtb (IS6110, 16SrRNA, HSP65 and Ag85B). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) was determined for RT-PCR, Xpert, MGIT960 and MPCR. Diagnostic accuracy of these assays was compared by using clinical diagnosis as reference standard. RESULTS IS6110RT-PCR was found to be highly sensitive as compared to other gene targets. Sensitivities of IS6110RT-PCR, MPCR, Xpert and MGIT against a reference standard of definite, probable and possible TBM were 36.7%, 21.1%, 16.7% and 6.7%, respectively; specificities were 97.6%, 100%, 100% and 100%, respectively. Xpert, RT-PCR, MPCR and MGIT960 detected 6.91% (n = 15), 5.99% (n = 13), 5.99% (n = 13) and 2.76% (n = 6) of definite TBM, respectively. RT-PCR detected 6.45% (n = 14) and 2.76% (n = 6) of possible TBM and probable TBM, respectively and MPCR detected 1.38% (n = 3) of possible and probable TBM each. CONCLUSION IS6110RT-PCR is highly sensitive for primary screening of suspected TB cases, which may help clinicians to start appropriate patient's treatment with clinical suspicion of TBM.
Collapse
|
6
|
Muacevic A, Adler JR, LNU P, Sharma K, Sharma A, Sharma N, Modi M. Comparison of Protein B Polymerase Chain Reaction (PCR) With IS6110 PCR for Diagnosis of Tuberculous Meningitis Patients. Cureus 2023; 15:e33783. [PMID: 36798623 PMCID: PMC9926138 DOI: 10.7759/cureus.33783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 01/16/2023] Open
Abstract
Purpose Tuberculous meningitis (TBM) is a diagnostic challenge. With the conventional staining and culture techniques being too insensitive and time-consuming, and the commercial detection systems being costly, polymerase chain reaction (PCR) seems lucrative for routine laboratories. The purpose of this study was to evaluate the diagnostic potential of protein b antigen polymerase chain reaction (Pab PCR) for TBM, in comparison to IS6110. Another purpose was to compute a cut-off at which adenosine deaminase (ADA) could diagnose TBM. Material and methods This is a prospective case-control study to measure the diagnostic accuracy of PCR, BACTEC culture, Lowenstein-Jensen (LJ) culture, ADA, and acid-fast bacilli (AFB) smear tests in TBM. CSF from 50 TBM patients (10 confirmed, 40 clinically suspected) and 40 controls was subjected to Pab PCR and IS6110 PCR, and performance was compared against culture and composite reference standards. Results The overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of Pab PCR in diagnosing TBM were 82%, 100%, 100%, and 81.63%, respectively, and that of IS6110 PCR were 74%, 100%, 100%, and 75.47%, respectively. Both PCRs outperformed culture (p<0.001). Though performance of both PCRs was comparable (p=0.335) with excellent agreement (k=0.86), Pab PCR detected four additional cases, one culture-positive and three culture-negative clinically suspected. ADA of 6.5 IU/L was able to differentiate between TBM and non-TBM with 86% sensitivity and 63% specificity. Conclusions Molecular tools such as PCR have the potential to increase the clinician's ability to diagnose tuberculous meningitis. Pab PCR is a rapid and reliable method for diagnosing TBM in routine microbiology laboratories.
Collapse
|
7
|
de Almeida SM, Santana LB, Jr GG, Kussen GB, Nogueira K. Real-time Polymerase Chain Reaction for Mycobacterium tuberculosis Meningitis is More Sensitive in Patients with HIV Co-Infection. Curr HIV Res 2021; 18:267-276. [PMID: 32368978 DOI: 10.2174/1570162x18666200505083728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculous meningitis (TbM) is the most severe complication of extra pulmonary tuberculosis (Tb). There is a higher frequency of positive cerebrospinal fluid (CSF) cultures for Mycobacterium tuberculosis (MTb) in samples from human immunodeficiency virus (HIV) co-infected patients than in those from HIV-negative patients. We hypothesized that real time PCR assays for MTb (MTb qPCR) using CSF would be more sensitive in HIV co-infected patients owing to a greater MTb burden. The present study aimed to verify the diagnostic performance of MTb qPCR in CSF of TbM patients who either were co-infected with HIV or were HIVnegative. METHODS A total of 334 consecutive participants with suspected TbM were divided into two groups: HIV co-infected and HIV-negative; each group was categorized into definite TbM, probable TbM, possible TbM, and TbM-negative subgroups based on clinical, laboratory and imaging data. We evaluated the diagnostic characteristics of MTb qPCR analysis to detect TbM in CSF by comparing the results to those obtained for definite TbM (i.e., positive MTb culture) and/or probable TbM in CSF, as gold standard. RESULTS The sensitivity of MTb qPCR in the definite and probable subgroups of the HIV coinfected participants (n = 14) was 35.7%, with a specificity of 93.8%, negative predictive value (NPV) of 94.4%, and negative clinical utility index (CUI-) of 0.89. Results of the HIV-negative group (n = 7) showed lower sensitivity (14.3%) and similar specificity, NPV, and CUI-. CONCLUSION The findings confirmed our hypothesis, despite the low sensitivity. MTb qPCR may significantly contribute to diagnosis when associated with clinical criteria and complementary examinations.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Neuroinfection Outclinic, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lucas B Santana
- Neuroinfection Outclinic, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gilberto Golin Jr
- Neuroinfection Outclinic, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gislene B Kussen
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Keite Nogueira
- Bacteriology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
8
|
Pooled analysis of the Xpert MTB/RIF assay for diagnosing tuberculous meningitis. Biosci Rep 2021; 40:221365. [PMID: 31778149 PMCID: PMC6946622 DOI: 10.1042/bsr20191312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberculous meningitis (TBM) is one of the most serious types of extrapulmonary tuberculosis. However, low sensitivity of culture of cerebrospinal fluid (CSF) increases the difficulty in clinical diagnosis, leading to diagnostic delay, and misdiagnosis. Xpert MTB/RIF assay is a rapid and simple method to detect tuberculosis. However, the efficacy of this technique in diagnosing TBM remains unclear. Therefore, a meta-analysis was conducted to evaluate the diagnostic efficacy of Xpert MTB/RIF for TBM, which may enhance the development of early diagnosis of TBM. METHODS Relevant studies in the PubMed, Embase, and Web of Science databases were retrieved using the keywords 'Xpert MTB/RIF', 'tuberculous meningitis (TBM)'. The pooled sensitivity, pooled specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, summary receiver operator characteristic curve, and area under the curve (AUC) of Xpert MTB/RIF were determined and analyzed. RESULTS A total of 162 studies were enrolled and only 14 met the criteria for meta-analysis. The overall pooled sensitivity of Xpert MTB/RIF was 63% [95% confidence interval (CI), 59-66%], while the overall pooled specificity was 98.1% (95% CI, 97.5-98.5%). The pooled values of positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 20.91% (12.71-52.82%), 0.40% (0.32-0.50%), and 71.49% (32.64-156.56%), respectively. The AUC was 0.76. CONCLUSIONS Xpert MTB/RIF exhibited high specificity in diagnosing TBM in CSF samples, but its sensitivity was relatively low. It is necessary to combine other high-sensitive detection methods for the early diagnosis of TBM. Moreover, the centrifugation of CSF samples was found to be beneficial in improving the sensitivity.
Collapse
|
9
|
Cresswell FV, Davis AG, Sharma K, Basu Roy R, Ganiem AR, Kagimu E, Solomons R, Wilkinson RJ, Bahr NC, Thuong NTT. Recent Developments in Tuberculous Meningitis Pathogenesis and Diagnostics. Wellcome Open Res 2021; 4:164. [PMID: 33364436 PMCID: PMC7739117 DOI: 10.12688/wellcomeopenres.15506.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of Tuberculous meningitis (TBM) is poorly understood, but contemporary molecular biology technologies have allowed for recent improvements in our understanding of TBM. For instance, neutrophils appear to play a significant role in the immunopathogenesis of TBM, and either a paucity or an excess of inflammation can be detrimental in TBM. Further, severity of HIV-associated immunosuppression is an important determinant of inflammatory response; patients with the advanced immunosuppression (CD4+ T-cell count of <150 cells/μL) having higher CSF neutrophils, greater CSF cytokine concentrations and higher mortality than those with CD4+ T-cell counts > 150 cells/μL. Host genetics may also influence outcomes with LT4AH genotype predicting inflammatory phenotype, steroid responsiveness and survival in Vietnamese adults with TBM. Whist in Indonesia, CSF tryptophan level was a predictor of survival, suggesting tryptophan metabolism may be important in TBM pathogenesis. These varying responses mean that we must consider whether a "one-size-fits-all" approach to anti-bacillary or immunomodulatory treatment in TBM is truly the best way forward. Of course, to allow for proper treatment, early and rapid diagnosis of TBM must occur. Diagnosis has always been a challenge but the field of TB diagnosis is evolving, with sensitivities of at least 70% now possible in less than two hours with GeneXpert MTB/Rif Ultra. In addition, advanced molecular techniques such as CRISPR-MTB and metagenomic next generation sequencing may hold promise for TBM diagnosis. Host-based biomarkers and signatures are being further evaluated in childhood and adult TBM as adjunctive biomarkers as even with improved molecular assays, cases are still missed. A better grasp of host and pathogen behaviour may lead to improved diagnostics, targeted immunotherapy, and possibly biomarker-based, patient-specific treatment regimens.
Collapse
Affiliation(s)
- Fiona V Cresswell
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Angharad G. Davis
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
| | - Kusum Sharma
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
| | - Robindra Basu Roy
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ahmad Rizal Ganiem
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
| | - Enock Kagimu
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robert J. Wilkinson
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
| | - Nathan C Bahr
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
| | | | - Tuberculous Meningitis International Research Consortium
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Kohli M, Schiller I, Dendukuri N, Yao M, Dheda K, Denkinger CM, Schumacher SG, Steingart KR. Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2021; 1:CD012768. [PMID: 33448348 PMCID: PMC8078545 DOI: 10.1002/14651858.cd012768.pub3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Xpert MTB/RIF Ultra (Xpert Ultra) and Xpert MTB/RIF are World Health Organization (WHO)-recommended rapid nucleic acid amplification tests (NAATs) widely used for simultaneous detection of Mycobacterium tuberculosis complex and rifampicin resistance in sputum. To extend our previous review on extrapulmonary tuberculosis (Kohli 2018), we performed this update to inform updated WHO policy (WHO Consolidated Guidelines (Module 3) 2020). OBJECTIVES To estimate diagnostic accuracy of Xpert Ultra and Xpert MTB/RIF for extrapulmonary tuberculosis and rifampicin resistance in adults with presumptive extrapulmonary tuberculosis. SEARCH METHODS Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature, Scopus, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number Registry, and ProQuest, 2 August 2019 and 28 January 2020 (Xpert Ultra studies), without language restriction. SELECTION CRITERIA Cross-sectional and cohort studies using non-respiratory specimens. Forms of extrapulmonary tuberculosis: tuberculous meningitis and pleural, lymph node, bone or joint, genitourinary, peritoneal, pericardial, disseminated tuberculosis. Reference standards were culture and a study-defined composite reference standard (tuberculosis detection); phenotypic drug susceptibility testing and line probe assays (rifampicin resistance detection). DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed risk of bias and applicability using QUADAS-2. For tuberculosis detection, we performed separate analyses by specimen type and reference standard using the bivariate model to estimate pooled sensitivity and specificity with 95% credible intervals (CrIs). We applied a latent class meta-analysis model to three forms of extrapulmonary tuberculosis. We assessed certainty of evidence using GRADE. MAIN RESULTS 69 studies: 67 evaluated Xpert MTB/RIF and 11 evaluated Xpert Ultra, of which nine evaluated both tests. Most studies were conducted in China, India, South Africa, and Uganda. Overall, risk of bias was low for patient selection, index test, and flow and timing domains, and low (49%) or unclear (43%) for the reference standard domain. Applicability for the patient selection domain was unclear for most studies because we were unsure of the clinical settings. Cerebrospinal fluid Xpert Ultra (6 studies) Xpert Ultra pooled sensitivity and specificity (95% CrI) against culture were 89.4% (79.1 to 95.6) (89 participants; low-certainty evidence) and 91.2% (83.2 to 95.7) (386 participants; moderate-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 168 would be Xpert Ultra-positive: of these, 79 (47%) would not have tuberculosis (false-positives) and 832 would be Xpert Ultra-negative: of these, 11 (1%) would have tuberculosis (false-negatives). Xpert MTB/RIF (30 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 71.1% (62.8 to 79.1) (571 participants; moderate-certainty evidence) and 96.9% (95.4 to 98.0) (2824 participants; high-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 99 would be Xpert MTB/RIF-positive: of these, 28 (28%) would not have tuberculosis; and 901 would be Xpert MTB/RIF-negative: of these, 29 (3%) would have tuberculosis. Pleural fluid Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity against culture were 75.0% (58.0 to 86.4) (158 participants; very low-certainty evidence) and 87.0% (63.1 to 97.9) (240 participants; very low-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 192 would be Xpert Ultra-positive: of these, 117 (61%) would not have tuberculosis; and 808 would be Xpert Ultra-negative: of these, 25 (3%) would have tuberculosis. Xpert MTB/RIF (25 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 49.5% (39.8 to 59.9) (644 participants; low-certainty evidence) and 98.9% (97.6 to 99.7) (2421 participants; high-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 60 would be Xpert MTB/RIF-positive: of these, 10 (17%) would not have tuberculosis; and 940 would be Xpert MTB/RIF-negative: of these, 50 (5%) would have tuberculosis. Lymph node aspirate Xpert Ultra (1 study) Xpert Ultra sensitivity and specificity (95% confidence interval) against composite reference standard were 70% (51 to 85) (30 participants; very low-certainty evidence) and 100% (92 to 100) (43 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 70 would be Xpert Ultra-positive and 0 (0%) would not have tuberculosis; 930 would be Xpert Ultra-negative and 30 (3%) would have tuberculosis. Xpert MTB/RIF (4 studies) Xpert MTB/RIF pooled sensitivity and specificity against composite reference standard were 81.6% (61.9 to 93.3) (377 participants; low-certainty evidence) and 96.4% (91.3 to 98.6) (302 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 118 would be Xpert MTB/RIF-positive and 37 (31%) would not have tuberculosis; 882 would be Xpert MTB/RIF-negative and 19 (2%) would have tuberculosis. In lymph node aspirate, Xpert MTB/RIF pooled specificity against culture was 86.2% (78.0 to 92.3), lower than that against a composite reference standard. Using the latent class model, Xpert MTB/RIF pooled specificity was 99.5% (99.1 to 99.7), similar to that observed with a composite reference standard. Rifampicin resistance Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity were 100.0% (95.1 to 100.0), (24 participants; low-certainty evidence) and 100.0% (99.0 to 100.0) (105 participants; moderate-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 100 would be Xpert Ultra-positive (resistant): of these, zero (0%) would not have rifampicin resistance; and 900 would be Xpert Ultra-negative (susceptible): of these, zero (0%) would have rifampicin resistance. Xpert MTB/RIF (19 studies) Xpert MTB/RIF pooled sensitivity and specificity were 96.5% (91.9 to 98.8) (148 participants; high-certainty evidence) and 99.1% (98.0 to 99.7) (822 participants; high-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 105 would be Xpert MTB/RIF-positive (resistant): of these, 8 (8%) would not have rifampicin resistance; and 895 would be Xpert MTB/RIF-negative (susceptible): of these, 3 (0.3%) would have rifampicin resistance. AUTHORS' CONCLUSIONS Xpert Ultra and Xpert MTB/RIF may be helpful in diagnosing extrapulmonary tuberculosis. Sensitivity varies across different extrapulmonary specimens: while for most specimens specificity is high, the tests rarely yield a positive result for people without tuberculosis. For tuberculous meningitis, Xpert Ultra had higher sensitivity and lower specificity than Xpert MTB/RIF against culture. Xpert Ultra and Xpert MTB/RIF had similar sensitivity and specificity for rifampicin resistance. Future research should acknowledge the concern associated with culture as a reference standard in paucibacillary specimens and consider ways to address this limitation.
Collapse
MESH Headings
- Adult
- Antibiotics, Antitubercular/therapeutic use
- Bias
- Drug Resistance, Bacterial
- False Negative Reactions
- False Positive Reactions
- Humans
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/isolation & purification
- Nucleic Acid Amplification Techniques/methods
- Nucleic Acid Amplification Techniques/statistics & numerical data
- Reagent Kits, Diagnostic
- Rifampin/therapeutic use
- Sensitivity and Specificity
- Tuberculosis/cerebrospinal fluid
- Tuberculosis/diagnosis
- Tuberculosis/drug therapy
- Tuberculosis, Lymph Node/cerebrospinal fluid
- Tuberculosis, Lymph Node/diagnosis
- Tuberculosis, Lymph Node/drug therapy
- Tuberculosis, Meningeal/cerebrospinal fluid
- Tuberculosis, Meningeal/diagnosis
- Tuberculosis, Meningeal/drug therapy
- Tuberculosis, Multidrug-Resistant/cerebrospinal fluid
- Tuberculosis, Multidrug-Resistant/diagnosis
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Pleural/cerebrospinal fluid
- Tuberculosis, Pleural/diagnosis
- Tuberculosis, Pleural/drug therapy
Collapse
Affiliation(s)
- Mikashmi Kohli
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Ian Schiller
- Centre for Outcomes Research, McGill University Health Centre - Research Institute, Montreal, Canada
| | - Nandini Dendukuri
- Centre for Outcomes Research, McGill University Health Centre - Research Institute, Montreal, Canada
| | - Mandy Yao
- Centre for Outcomes Research, McGill University Health Centre - Research Institute, Montreal, Canada
| | - Keertan Dheda
- Centre for Lung Infection and Immunity Unit, Department of Medicine and UCT Lung Institute, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Claudia M Denkinger
- FIND, Geneva , Switzerland
- Division of Tropical Medicine, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Karen R Steingart
- Honorary Research Fellow, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
11
|
de Almeida SM, Kussen GMB, Cogo L, Carvalho JH, Nogueira K. Diagnostic characteristics of Xpert MTB/RIF assay for the diagnosis of tuberculous meningitis and rifampicin resistance in Southern Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:700-707. [PMID: 33331464 DOI: 10.1590/0004-282x20200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The timely diagnosis of tuberculous meningitis (TBM) is challenging. Molecular diagnostic tools are necessary for TBM, particularly in low- and middle-income countries. OBJECTIVES We aimed to calculate the diagnostics characteristics of Xpert MTB/RIF for the detection of Mycobacterium tuberculosis in the cerebrospinal fluid (CSF) and the frequency of rifampicin (RIF)-resistance in the CSF samples. METHODS A total of 313 consecutive CSF samples were studied and categorized into TBM definite, probable, possible, or not TBM cases based on the clinical, laboratory, and imaging data. RESULTS For the definite TBM cases (n=7), the sensitivity, specificity, efficiency, and positive likelihood ratio were 100, 97, 97, and 38%, respectively. However, for the TBM definite associated with the probable cases (n=24), the sensitivity decreased to 46%. All CSF samples that were Xpert MTB/RIF-positive were RIF susceptible. CONCLUSION Xpert MTB/RIF showed high discriminating value among the microbiology-proven TBM cases, although the values for the probable and possible TBM cases were reduced. Xpert MTB/RIF contributes significantly to the diagnosis of TBM, mainly when coupled with the conventional microbiological tests and clinical algorithms.
Collapse
Affiliation(s)
- Sergio Monteiro de Almeida
- Universidade Federal do Paraná, Hospital de Clínicas, Ambulatório de Neuroinfecção Curitiba PR, Brazil.,Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de virologia, Curitiba PR, Brazil
| | | | - Laura Cogo
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil
| | - José Henrique Carvalho
- Universidade Federal do Paraná, Hospital de Clínicas, Ambulatório de Neuroinfecção Curitiba PR, Brazil
| | - Keite Nogueira
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil
| |
Collapse
|
12
|
Ahlawat S, Chaudhary R, Dangi M, Bala K, Singh M, Chhillar AK. Advances in tuberculous meningitis diagnosis. Expert Rev Mol Diagn 2020; 20:1229-1241. [PMID: 33259249 DOI: 10.1080/14737159.2020.1858805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Tuberculous meningitis (TBM) is the most devastating form of central nervous system tuberculosis (TB) and causes high mortality worldwide. Nonspecific clinical manifestations and limited sensitivity of existing laboratory methods make the diagnosis elusive due to the paucibacillary nature of the infection. Areas Covered: We reviewed current literature on the adequacy and limitations of globally existing laboratory methods for diagnosing TBM. Expert opinion: TBM is deadliest among all TB forms, as the outcome may lead to death in 50% of cases, and survivors undergo irreversible neurological disorders. Therefore, early diagnosis and prompt treatment are cornerstones of effective disease management. Conventional microscopy and culture are widely used modalities but remain inadequate in most TBM cases. Although expanded use of rapid molecular tests such as real-time PCR and Xpert Ultra, even in resource-limited settings, hold promising results for TB diagnosis but need optimization for early detection of TBM. Moreover, CSF IGRA is also used but unable to differentiate between active and latent TB. Overall no single test for diagnosing TBM has adequate accuracy so, there is an urgent need to devise a point-of-care test.
Collapse
Affiliation(s)
- Sonia Ahlawat
- Centre for Biotechnology, Maharshi Dayanand University (MDU) , Rohtak, India.,Amity Institute of Biotechnology, Amity University Haryana , Manesar, India
| | - Renu Chaudhary
- Council of Scientific & Industrial Research (CSIR)-institute of Genomics and Integrative Biology (IGIB) , New Delhi, India
| | - Mehak Dangi
- Department of Bioinformatics, Maharshi Dayanand University (MDU) , Rohtak, India
| | - Kiran Bala
- Department of Neurology, University of Health Sciences (UHS) , Rohtak, India
| | - Machiavelli Singh
- Amity Institute of Biotechnology, Amity University Haryana , Manesar, India
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University (MDU) , Rohtak, India
| |
Collapse
|
13
|
Xpert MTB/RIF ultra for the diagnosis of tuberculous meningitis: A diagnostic accuracy study from India. Tuberculosis (Edinb) 2020; 125:101990. [PMID: 32920283 DOI: 10.1016/j.tube.2020.101990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
SETTING Studies evaluating Xpert MTB/RIF Ultra assay (Xpert Ultra) for diagnosing tuberculous meningitis (TBM) are scarce and have reported contrasting results in comparison to Xpert MTB/RIF assay (Xpert). OBJECTIVE To evaluate the performance of Xpert Ultra in diagnosing TBM and compare it with Xpert and multiplex polymerase chain reaction (MPCR). DESIGN Xpert Ultra was performed on 244 cerebrospinal fluid (CSF) samples: 56 definite TBM, 148 probable TBM and 40 non-TBM controls. 105/244 CSF samples were also subjected to Xpert and MPCR (IS6110, MPB64, protein B). RESULTS The overall sensitivity of Xpert Ultra in diagnosing TBM from 244 CSF samples was 72.05% (96.42% - definite TBM, 62.83% - probable TBM) with a specificity of 100%. 18 (12.24%) cases [8 definite TBM, 10 probable TBM] were reported rifampicin resistant (RifR) by Xpert Ultra and confirmed by rpoB sequencing. 60 (40.81%) cases [9 definite TBM, 51 probable TBM] were reported rifampicin indeterminate (RifI) by Xpert Ultra (all trace category), out of which 45 [8 definite, 37 probable) were rifampicin susceptible (RifS) and 5 probable cases were RifR on rpoB sequencing. Out of 105 CSF samples subjected to all three techniques, TBM was diagnosed in 70.66%, 28% and 88% by Xpert Ultra, Xpert and MPCR, respectively. CONCLUSION Xpert Ultra detected TBM with higher sensitivity than Xpert. Among trace category, constituting 40% of TBM cases, rpoB gene sequencing confirmed 5 RifR cases.
Collapse
|
14
|
Luo Y, Xue Y, Guo X, Lin Q, Mao L, Tang G, Song H, Wang F, Sun Z. Diagnostic Accuracy of T-SPOT.TB Assay for Tuberculous Meningitis: An Updated Meta-Analysis. Front Neurol 2020; 11:866. [PMID: 33013621 PMCID: PMC7494808 DOI: 10.3389/fneur.2020.00866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The role of T-SPOT.TB (T-SPOT) assay for tuberculous meningitis (TBM) diagnosis has not been fully assessed. Here, we conducted an updated meta-analysis to evaluate the diagnostic accuracy of peripheral blood (PB) T-SPOT and cerebrospinal fluid (CSF) T-SPOT for diagnosing TBM. Methods: Relevant studies in the PubMed database, EmBase database, Cochrane database, Scopus database, Google Scholar, China National Knowledge Internet, and Wan-Fang database were retrieved from August 1, 2005, to June 22, 2020. Statistical analysis was performed using Stata, Revman, and Meta-Disc software. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), summary receiver operating characteristic curves, and the area under the curve were determined and analyzed. Results: A total of 27 studies were eligible for inclusion within the meta-analysis. The pooled sensitivity and specificity of PB T-SPOT for TBM diagnosis were 0.78 (95% CI, 0.76-0.81) and 0.68 (95% CI, 0.66-0.71), respectively, whereas the pooled PLR, NLR, and DOR were 2.80 (95% CI, 2.29-3.42), 0.32 (95% CI, 0.27-0.38), and 10.08 (95% CI, 7.21-14.08), respectively. On the other hand, the pooled sensitivity and specificity of CSF T-SPOT on diagnosing TBM were 0.76 (95% CI, 0.72-0.80) and 0.88 (95% CI, 0.85-0.90), respectively, whereas the pooled PLR, NLR, and DOR were 5.92 (95% CI, 4.25-8.25), 0.28 (95% CI, 0.21-0.39), and 29.05 (95% CI, 16.40-51.45), respectively. The area under the summary receiver operating characteristic curve values of PB T-SPOT and CSF T-SPOT for TBM diagnosis were 0.83 (95% CI, 0.80-0.86) and 0.92 (95% CI, 0.89-0.94), respectively. Conclusions: CSF T-SPOT showed a higher specificity compared with PB T-SPOT for diagnosing TBM. Both two T-SPOT assays have considerable potential in improving the diagnosis of TBM. Furthermore, the standardization of the operating procedure is further needed when performing CSF T-SPOT.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xueyun Guo
- Department of Dermatology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Cresswell FV, Davis AG, Sharma K, Basu Roy R, Ganiem AR, Kagimu E, Solomons R, Wilkinson RJ, Bahr NC, Thuong NTT. Recent Developments in Tuberculous Meningitis Pathogenesis and Diagnostics. Wellcome Open Res 2020; 4:164. [PMID: 33364436 PMCID: PMC7739117 DOI: 10.12688/wellcomeopenres.15506.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of Tuberculous meningitis (TBM) is poorly understood, but contemporary molecular biology technologies have allowed for recent improvements in our understanding of TBM. For instance, neutrophils appear to play a significant role in the immunopathogenesis of TBM, and either a paucity or an excess of inflammation can be detrimental in TBM. Further, severity of HIV-associated immunosuppression is an important determinant of inflammatory response; patients with the advanced immunosuppression (CD4+ T-cell count of <150 cells/μL) having higher CSF neutrophils, greater CSF cytokine concentrations and higher mortality than those with CD4+ T-cell counts > 150 cells/μL. Host genetics may also influence outcomes with LT4AH genotype predicting inflammatory phenotype, steroid responsiveness and survival in Vietnamese adults with TBM. Whist in Indonesia, CSF tryptophan level was a predictor of survival, suggesting tryptophan metabolism may be important in TBM pathogenesis. These varying responses mean that we must consider whether a "one-size-fits-all" approach to anti-bacillary or immunomodulatory treatment in TBM is truly the best way forward. Of course, to allow for proper treatment, early and rapid diagnosis of TBM must occur. Diagnosis has always been a challenge but the field of TB diagnosis is evolving, with sensitivities of at least 70% now possible in less than two hours with GeneXpert MTB/Rif Ultra. In addition, advanced molecular techniques such as CRISPR-MTB and metagenomic next generation sequencing may hold promise for TBM diagnosis. Host-based biomarkers and signatures are being further evaluated in childhood and adult TBM as adjunctive biomarkers as even with improved molecular assays, cases are still missed. A better grasp of host and pathogen behaviour may lead to improved diagnostics, targeted immunotherapy, and possibly biomarker-based, patient-specific treatment regimens.
Collapse
Affiliation(s)
- Fiona V Cresswell
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Angharad G. Davis
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
| | - Kusum Sharma
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
| | - Robindra Basu Roy
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ahmad Rizal Ganiem
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
| | - Enock Kagimu
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robert J. Wilkinson
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
| | - Nathan C Bahr
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
| | | | - Tuberculous Meningitis International Research Consortium
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Sharma K, Sharma M, Modi M, Goyal M, Sharma A, Ray P. Magnetic bead flocculation test: Improving the diagnosis of tuberculous meningitis (TBM) in low-resource settings. Mol Cell Probes 2020; 53:101595. [PMID: 32437884 DOI: 10.1016/j.mcp.2020.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Despite several recent advances in detection techniques, there is still an unmet need for simple tests for the diagnosis of tuberculous meningitis (TBM). Therefore, in an effort towards developing a simple and rapid diagnostic test for resource-poor settings, we designed an assay in which magnetic bead flocculation test (MBF) was used to detect the amplified DNA. Multi-targeted (using two multicopy gene targets IS6110 and IS1081) loop-mediated isothermal amplification (MLAMP) was used for amplification. METHODS MLAMP-MBF assay was performed on CSF samples of 600 patients, out of which 120 were definite TBM (culture confirmed), 280 were probable TBM and 200 were non-TB controls, based on Marais's criteria. The performance of assay was evaluated by comparing the result of definite TBM with culture and that of probable TBM with composite reference standard consisting of clinical, microbiological(smear/culture) and radiological parameters. RESULTS The overall sensitivity of MLAMP-MBF (using any of the two gene targets) was 89.5% and specificity was 100%. The sensitivity was 96.6% (116/120) in diagnosing definite TBM and 86.4% (242/280) in diagnosing probable TBM. The sensitivity of IS1081 was 88% and that of IS6110 was 83% in diagnosing TBM. Specificity of both the gene targets was 100%. There were 20 cases positive only by IS1081 LAMP and 6 cases positive only by IS6110; thus 26 of 400 (6.5%) TBM cases could be additionally detected following multi-targeted approach. CONCLUSION MLAMP-MBF is a sensitive, robust, cost-effective and promising technique for diagnosis of TBM in low-resource high-endemic settings.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Megha Sharma
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallab Ray
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Li X, Du W, Wang Y, Liu Z, Li K, Chen H, Liu R, Ma L, Zhang L, Dong Y, Che N, Gao M. Rapid Diagnosis of Tuberculosis Meningitis by Detecting Mycobacterium tuberculosis Cell-Free DNA in Cerebrospinal Fluid. Am J Clin Pathol 2020; 153:126-130. [PMID: 31585003 DOI: 10.1093/ajcp/aqz135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Tuberculosis meningitis (TBM) is one of the most severe forms of tuberculosis. However, TBM diagnosis is quite challenging due to nonspecific clinical presentation and the paucity of the pathogen in cerebrospinal fluid (CSF) samples. In this study, we report a new method for detecting cell-free Mycobacterium tuberculosis DNA (cf-TB) in CSF and evaluate its clinical value for TBM diagnosis. METHODS Of 68 patients prospectively recruited, 46 were diagnosed as having TBM and 22 as non-TBM. We compared the cf-TB method with CSF smear microscopy, mycobacterial culture, and the Xpert MTB/RIF assay (Xpert) using the consensus case definition for TBM proposed in 2009 as a reference standard. RESULTS The sensitivity of the cf-TB test was 56.5% (26/46) in patients with TBM, and it was significantly higher than other methods: microscopy (2.2%, 1/46; P < .001), mycobacterial culture (13.0%, 6/46; P < .001), and Xpert (23.9%, 11/46; P = .001). For specificity, none of the four methods reported false-positive results in the non-TBM group. CONCLUSIONS The new method detecting cell-free M tuberculosis DNA in CSF is rapid and accurate for diagnosis of TBM and easily incorporated into regular laboratory tests.
Collapse
Affiliation(s)
- Xuelian Li
- The 2nd Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weili Du
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Wang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zichen Liu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Kun Li
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongmei Chen
- The 2nd Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rongmei Liu
- The 2nd Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Ma
- The 2nd Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liqun Zhang
- The 2nd Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yujie Dong
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mengqiu Gao
- The 2nd Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Garg RK. Microbiological diagnosis of tuberculous meningitis: Phenotype to genotype. Indian J Med Res 2019; 150:448-457. [PMID: 31939388 PMCID: PMC6977359 DOI: 10.4103/ijmr.ijmr_1145_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 11/22/2022] Open
Abstract
Tuberculous meningitis (TBM) is a commonly encountered central nervous system infection. Characteristic clinical, imaging and cerebrospinal fluid parameters help clinicians to make a prompt presumptive diagnosis that enables them to start empirical anti-tuberculosis treatment. There are several close mimic to TBM, such as partially treated pyogenic meningitis, fungal meningitis, sarcoidosis, meningeal metastases and meningeal lymphomatosis. Microbiological confirmation instils a sense of confidence amongst treating physicians. With conventional phenotypic methods (cerebrospinal fluid microscopy and culture), in more than 50 per cent patients, microbiological confirmation is not achieved. Moreover, these methods take a long time before providing conclusive results. Negative result does not rule out Mycobacterium tuberculosis infection of the brain. Genotypic methods, such as IS 6110 polymerase chain reaction and automated Xpert M. tuberculosis/rifampicin (MTB/RIF) assay system improved the TBM diagnostics, as results are rapidly available. Xpert MTB/RIF assay, in addition, detects rifampicin resistance. Xpert MTB/RIF Ultra is advanced technology which has higher (60-70%) sensitivity and is being considered a game-changer in the diagnostics of TBM. A large number of TBM cases remain unconfirmed. The situation of TBM diagnostics will remain grim, if low-cost technologies are not widely available. Till then, physicians continue to rely on their clinical acumen to start empirical anti-tuberculosis treatment.
Collapse
Affiliation(s)
- Ravindra Kumar Garg
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Cresswell FV, Davis AG, Sharma K, Basu Roy R, Ganiem AR, Kagimu E, Solomons R, Wilkinson RJ, Bahr NC, Thuong NTT. Recent Developments in Tuberculous Meningitis Pathogenesis and Diagnostics. Wellcome Open Res 2019; 4:164. [PMID: 33364436 PMCID: PMC7739117 DOI: 10.12688/wellcomeopenres.15506.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of Tuberculous meningitis (TBM) is poorly understood, but contemporary molecular biology technologies have allowed for recent improvements in our understanding of TBM. For instance, neutrophils appear to play a significant role in the immunopathogenesis of TBM, and either a paucity or an excess of inflammation can be detrimental in TBM. Further, severity of HIV-associated immunosuppression is an important determinant of inflammatory response; patients with the advanced immunosuppression (CD4+ T-cell count of <150 cells/μL) having higher CSF neutrophils, greater CSF cytokine concentrations and higher mortality than those with CD4+ T-cell counts > 150 cells/μL. Host genetics may also influence outcomes with LT4AH genotype predicting inflammatory phenotype, steroid responsiveness and survival in Vietnamese adults with TBM. Whist in Indonesia, CSF tryptophan level was a predictor of survival, suggesting tryptophan metabolism may be important in TBM pathogenesis. These varying responses mean that we must consider whether a "one-size-fits-all" approach to anti-bacillary or immunomodulatory treatment in TBM is truly the best way forward. Of course, to allow for proper treatment, early and rapid diagnosis of TBM must occur. Diagnosis has always been a challenge but the field of TB diagnosis is evolving, with sensitivities of at least 70% now possible in less than two hours with GeneXpert MTB/Rif Ultra. In addition, advanced molecular techniques such as CRISPR-MTB and metagenomic next generation sequencing may hold promise for TBM diagnosis. Host-based biomarkers and signatures are being further evaluated in childhood and adult TBM as adjunctive biomarkers as even with improved molecular assays, cases are still missed. A better grasp of host and pathogen behaviour may lead to improved diagnostics, targeted immunotherapy, and possibly biomarker-based, patient-specific treatment regimens.
Collapse
Affiliation(s)
- Fiona V Cresswell
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Angharad G. Davis
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
| | - Kusum Sharma
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
| | - Robindra Basu Roy
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ahmad Rizal Ganiem
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
| | - Enock Kagimu
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robert J. Wilkinson
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
| | - Nathan C Bahr
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
| | | | - Tuberculous Meningitis International Research Consortium
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Simple Assay for Detection of the Central Asia Outbreak Clade of the Mycobacterium tuberculosis Beijing Genotype. J Clin Microbiol 2019; 57:JCM.00215-19. [PMID: 31043465 DOI: 10.1128/jcm.00215-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022] Open
Abstract
The Central Asia outbreak (CAO) clade is a branch of the Mycobacterium tuberculosis Beijing genotype that is associated with multidrug resistance, increased transmissibility, and epidemic spread in parts of the former Soviet Union. Furthermore, migration flows bring these strains far beyond their areas of origin. We aimed to find a specific molecular marker of the Beijing CAO clade and develop a simple and affordable method for its detection. Based on the bioinformatics analysis of the large M. tuberculosis whole-genome sequencing (WGS) data set (n = 1,398), we identified an IS6110 insertion in the Rv1359-Rv1360 intergenic region as a specific molecular marker of the CAO clade. We further designed and optimized a multiplex PCR method to detect this insertion. The method was validated in silico with the recently published WGS data set from Central Asia (n = 277) and experimentally with M. tuberculosis isolates from European and Asian parts of Russia, the former Soviet Union, and East Asia (n = 319). The developed molecular assay may be recommended for rapid screening of retrospective collections and for prospective surveillance when comprehensive but expensive WGS is not available or practical. The assay may be especially useful in high multidrug-resistant tuberculosis (MDR-TB) burden countries of the former Soviet Union and in countries with respective immigrant communities.
Collapse
|