1
|
Sarangi A, Das BS, Pahuja I, Ojha S, Singh V, Giri S, Bhaskar A, Bhattacharya D. Ajoene: a natural compound with enhanced antimycobacterial and antibiofilm properties mediated by efflux pump modulation and ROS generation against M. Smegmatis. Arch Microbiol 2024; 206:453. [PMID: 39487375 DOI: 10.1007/s00203-024-04189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Tuberculosis (TB) continues to be a primary worldwide health concern due to relatively ineffective treatments. The prolonged duration of conventional antibiotic therapy warrants innovative approaches to shorten treatment courses. In response to challenges, the study explores potential of Ajoene, a naturally occurring garlic extract-derived compound, for potential TB treatment. Mycobacterium smegmatis as a model organism for M. tuberculosis (M. tb) to investigate Ajoene's efficiency. In vitro techniques like antimicrobial susceptibility, antibiofilm, EtBr accumulation assay, and ROS assay evaluate the potency of Ajoene and conventional TB drugs against Mycobacterium smegmatis. An in-silico study also investigated the interaction between Ajoene and quorum-sensing proteins, specifically regX3, MSMEG_5244, and MSMEG_3944, which are involved in biofilm formation and sliding activity. In vitro findings revealed that Ajoene exhibited significant antibacterial activity by inhibiting growth and showing bactericidal effects. It also demonstrated additive interactions with common antibiotics such as Isoniazid and Rifampicin. Furthermore, Ajoene demonstrated a comparative interaction with commonly used antibiotics, such as Isoniazid and Rifampicin, and reduced M. smegmatis motility, both alone and in combination with these antibiotics. In silico analysis shows that Ajoene exhibited a higher binding affinity with regX3, a protein orthologous to the regX3 gene in M.tb. Ajoene also demonstrated consistent antibiofilm effects, particularly when combined synergistically with Isoniazid and Rifampicin. Mechanistic investigations demonstrated Ajoene's potential to inhibit efflux pumps and promote ROS generation in bacteria, suggesting a potential direct killing mechanism. Collectively, the findings emphasize Ajoene's effectiveness as a novel antimycobacterial and antibiofilm molecule for TB treatment.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suvendu Ojha
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Vishal Singh
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Sidhartha Giri
- ICMR-Regional Medical Research Centre (RMRC), Bhubaneswar, Odisha, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462030, India.
| |
Collapse
|
2
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Di Bonaventura G, Pompilio A. In Vitro Antimicrobial Susceptibility Testing of Biofilm-Growing Bacteria: Current and Emerging Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:33-51. [PMID: 33963526 DOI: 10.1007/5584_2021_641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antibiotic susceptibility of bacterial pathogens is typically determined based on planktonic cells, as recommended by several international guidelines. However, most of chronic infections - such as those established in wounds, cystic fibrosis lung, and onto indwelling devices - are associated to the formation of biofilms, communities of clustered bacteria attached onto a surface, abiotic or biotic, and embedded in an extracellular matrix produced by the bacteria and complexed with molecules from the host. Sessile microorganisms show significantly increased tolerance/resistance to antibiotics compared with planktonic counterparts. Consequently, antibiotic concentrations used in standard antimicrobial susceptibility tests, although effective against planktonic bacteria in vitro, are not predictive of the concentrations required to eradicate biofilm-related infections, thus leading to treatment failure, chronicization and removal of material in patients with indwelling medical devices.Meeting the need for the in vitro evaluation of biofilm susceptibility to antibiotics, here we reviewed several methods proposed in literature highlighting their advantages and limitations to guide scientists towards an appropriate choice.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Laboratory of Clinical Microbiology, Chieti, Italy.
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Laboratory of Clinical Microbiology, Chieti, Italy
| |
Collapse
|
4
|
Niño-Padilla EI, Velazquez C, Garibay-Escobar A. Mycobacterial biofilms as players in human infections: a review. BIOFOULING 2021; 37:410-432. [PMID: 34024206 DOI: 10.1080/08927014.2021.1925886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The role of biofilms in pathogenicity and treatment strategies is often neglected in mycobacterial infections. In recent years, the emergence of nontuberculous mycobacterial infections has necessitated the development of novel prophylactic strategies and elucidation of the mechanisms underlying the establishment of chronic infections. More importantly, the question arises whether members of the Mycobacterium tuberculosis complex can form biofilms and contribute to latent tuberculosis and drug resistance because of the long-lasting and recalcitrant nature of its infections. This review discusses some of the molecular mechanisms by which biofilms could play a role in infection or pathological events in humans.
Collapse
Affiliation(s)
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| |
Collapse
|
5
|
Mukherjee G, Mukherjee K, Das R, Mandal RS, Roy I, Mukhopadhyay B, Sil AK. Allyl piperidine-1-carbodiothioate and benzyl 1H-imidazole 1 carbodithioate: two potential agents to combat against mycobacteria. J Appl Microbiol 2020; 130:786-796. [PMID: 32615006 DOI: 10.1111/jam.14762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 11/27/2022]
Abstract
AIMS The emergence of multidrug resistant strains of Mycobacterium tuberculosis has made tuberculosis more difficult to manage clinically. With the aim of obtaining new and effective anti-mycobacterial agent(s), this study investigated the anti-mycobacterial activity of several imidazole and piperidine derivatives. METHODS AND RESULTS Towards obtaining new anti-mycobacterial agents, Mycobacterium smegmatis cells were treated with different compounds for their growth inhibitory activity. Among these, benzyl 1H-imidazole-1-carbodithioate and allyl piperidine-1-carbodiothioate exhibited better inhibition than the others. Thereafter, anti-biofilm property of these two was examined by treating M. smegmatis with these agents before and after the formation of biofilm. The result showed that both the compounds at their sublethal dose inhibited the formation of biofilm as well as dispersed preformed biofilm. Consistently, they augmented the activity of isoniazid or rifampicin against biofilm-encapsulated cells. MTT assay was performed to examine the toxic effects of this combinatorial therapy on different cell lines. Results exhibited a low cytotoxicity for this combinatorial treatment. The activity of these two was also verified against dormant mycobacterial cells and was found to be effective. CONCLUSION The present study identified two compounds that exhibited anti-mycobacterial activities against both planktonic and dormant cells. These two also exhibited anti-biofilm activity at their sublethal dose and augmented the activity of isoniazid and rifampicin against biofilm encapsulated cells. SIGNIFICANCE AND IMPACT OF THE STUDY The current study provides two new agents that have the potential to be used in anti-mycobacterial therapy and may help in public health management.
Collapse
Affiliation(s)
- G Mukherjee
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - K Mukherjee
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| | - R Das
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal, India
| | - R S Mandal
- National Institute of Cholera and Enteric Diseases, Biomedical Informatics Centre, Kolkata, West Bengal, India
| | - I Roy
- Clinical Microbiology, Calcutta Medical Research Institute, Kolkata, West Bengal, India
| | - B Mukhopadhyay
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal, India
| | - A K Sil
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Karbysheva S, Di Luca M, Butini ME, Winkler T, Schütz M, Trampuz A. Comparison of sonication with chemical biofilm dislodgement methods using chelating and reducing agents: Implications for the microbiological diagnosis of implant associated infection. PLoS One 2020; 15:e0231389. [PMID: 32267888 PMCID: PMC7141651 DOI: 10.1371/journal.pone.0231389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023] Open
Abstract
The diagnosis of implant-associated infections is hampered due to microbial adherence and biofilm formation on the implant surface. Sonication of explanted devices was shown to improve the microbiological diagnosis by physical removal of biofilms. Recently, chemical agents have been investigated for biofilm dislodgement such as the chelating agent ethylenediaminetetraacetic acid (EDTA) and the reducing agent dithiothreitol (DTT). We compared the activity of chemical methods for biofilm dislodgement to sonication in an established in vitro model of artificial biofilm. Biofilm-producing laboratory strains of Staphylococcus epidermidis (ATCC 35984), S. aureus (ATCC 43300), E. coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 53278) were used. After 3 days of biofilm formation, porous glass beads were exposed to control (0.9% NaCl), sonication or chemical agents. Quantitative and qualitative biofilm analyses were performed by colony counting, isothermal microcalorimetry and scanning electron microscopy. Recovered colony counts after treatment with EDTA and DTT were similar to those after exposure to 0.9% NaCl for biofilms of S. epidermidis (6.3 and 6.1 vs. 6.0 log10 CFU/mL, S. aureus (6.4 and 6.3 vs. 6.3 log10 CFU/mL), E. coli (5.2 and 5.1 vs. 5.1 log10 CFU/mL and P. aeruginosa (5.1 and 5.2 vs. 5.0 log10 CFU/mL, respectively). In contrast, with sonication higher CFU counts were detected with all tested microorganisms (7.5, 7.3, 6.2 and 6.5 log10 CFU/mL, respectively) (p <0.05). Concordant results were observed with isothermal microcalorimetry and scanning electron microscopy. In conclusion, sonication is superior to both tested chemical methods (EDTA and DTT) for dislodgement of S. epidermidis, S. aureus, E. coli and P. aeruginosa biofilms. Future studies may evaluate potential additive effect of chemical dislodgement to sonication.
Collapse
Affiliation(s)
- Svetlana Karbysheva
- Center for Musculoskeletal Surgery, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Berlin, Germany
| | - Mariagrazia Di Luca
- Center for Musculoskeletal Surgery, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Berlin, Germany
| | - Maria Eugenia Butini
- Center for Musculoskeletal Surgery, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schütz
- Department of Orthopaedics and Trauma, Jamieson Trauma Institute, Queensland University of Technology, Brisbane, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Berlin, Germany
- * E-mail:
| |
Collapse
|