1
|
Santos-Júnior PFDS, Batista VDM, Nascimento IJDS, Nunes IC, Silva LR, Costa CACB, Freitas JDD, Quintans-Júnior LJ, Araújo-Júnior JXD, Freitas MEGD, Zhan P, Green KD, Garneau-Tsodikova S, Mendonça-Júnior FJB, Rodrigues-Junior VS, Silva-Júnior EFD. A consensus reverse docking approach for identification of a competitive inhibitor of acetyltransferase enhanced intracellular survival protein from Mycobacterium tuberculosis. Bioorg Med Chem 2024; 108:117774. [PMID: 38833750 DOI: 10.1016/j.bmc.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which remains a significant global health challenge. The emergence of multidrug-resistant (MDR) Mtb strains imposes the development of new therapeutic strategies. This study focuses on the identification and evaluation of potential inhibitors against Mtb H37Ra through a comprehensive screening of an in-house chemolibrary. Subsequently, a promising pyrimidine derivative (LQM495) was identified as promising and then further investigated by experimental and in silico approaches. In this context, computational techniques were used to elucidate the potential molecular target underlying the inhibitory action of LQM495. Then, a consensus reverse docking (CRD) protocol was used to investigate the interactions between this compound and several Mtb targets. Out of 98 Mtb targets investigated, the enhanced intracellular survival (Eis) protein emerged as a target for LQM495. To gain insights into the stability of the LQM495-Eis complex, molecular dynamics (MD) simulations were conducted over a 400 ns trajectory. Further insights into its binding modes within the Eis binding site were obtained through a Quantum mechanics (QM) approach, using density functional theory (DFT), with B3LYP/D3 basis set. These calculations shed light on the electronic properties and reactivity of LQM495. Subsequently, inhibition assays and kinetic studies of the Eis activity were used to investigate the activity of LQM495. Then, an IC50 value of 11.0 ± 1.4 µM was found for LQM495 upon Eis protein. Additionally, its Vmax, Km, and Ki parameters indicated that it is a competitive inhibitor. Lastly, this study presents LQM495 as a promising inhibitor of Mtb Eis protein, which could be further explored for developing novel anti-TB drugs in the future.
Collapse
Affiliation(s)
| | - Vitoria de Melo Batista
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | - Igor José Dos Santos Nascimento
- Post-Graduation Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, Brazil
| | - Isabelle Cavalcante Nunes
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | - Leandro Rocha Silva
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió campus, Mizael Domingues Street, 57020-600 Maceió, Alagoas, Brazil
| | - Lucindo José Quintans-Júnior
- Pharmaceutical Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, Sergipe 49100-001, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, United States
| | | | - Valnês S Rodrigues-Junior
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil; Post-Graduation Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil.
| |
Collapse
|
2
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
3
|
Hanscheid T, Del Portal Luyten CR, Hermans SM, Grobusch MP. Repurposing of anti-malarial drugs for the treatment of tuberculosis: realistic strategy or fanciful dead end? Malar J 2024; 23:132. [PMID: 38702649 PMCID: PMC11067164 DOI: 10.1186/s12936-024-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Drug repurposing offers a strategic alternative to the development of novel compounds, leveraging the known safety and pharmacokinetic profiles of medications, such as linezolid and levofloxacin for tuberculosis (TB). Anti-malarial drugs, including quinolones and artemisinins, are already applied to other diseases and infections and could be promising for TB treatment. METHODS This review included studies on the activity of anti-malarial drugs, specifically quinolones and artemisinins, against Mycobacterium tuberculosis complex (MTC), summarizing results from in vitro, in vivo (animal models) studies, and clinical trials. Studies on drugs not primarily developed for TB (doxycycline, sulfonamides) and any novel developed compounds were excluded. Analysis focused on in vitro activity (minimal inhibitory concentrations), synergistic effects, pre-clinical activity, and clinical trials. RESULTS Nineteen studies, including one ongoing Phase 1 clinical trial, were analysed: primarily investigating quinolones like mefloquine and chloroquine, and, to a lesser extent, artemisinins. In vitro findings revealed high MIC values for anti-malarials versus standard TB drugs, suggesting a limited activity. Synergistic effects with anti-TB drugs were modest, with some synergy observed in combinations with isoniazid or pyrazinamide. In vivo animal studies showed limited activity of anti-malarials against MTC, except for one study of the combination of chloroquine with isoniazid. CONCLUSIONS The repurposing of anti-malarials for TB treatment is limited by high MIC values, poor synergy, and minimal in vivo effects. Concerns about potential toxicity at effective dosages and the risk of antimicrobial resistance, especially where TB and malaria overlap, further question their repurposing. These findings suggest that focusing on novel compounds might be both more beneficial and rewarding.
Collapse
Affiliation(s)
- Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claire Ruiz Del Portal Luyten
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Sabine M Hermans
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon.
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone.
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
5
|
Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS OMEGA 2023; 8:17362-17380. [PMID: 37251185 PMCID: PMC10210030 DOI: 10.1021/acsomega.2c05511] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
The devastating impact of Tuberculosis (TB) has been a menace to mankind for decades. The World Health Organization (WHO) End TB Strategy aims to reduce TB mortality up to 95% and 90% of overall TB cases worldwide, by 2035. This incessant urge will be achieved with a breakthrough in either a new TB vaccine or novel drugs with higher efficacy. However, the development of novel drugs is a laborious process involving a timeline of almost 20-30 years with huge expenditure; on the other hand, repurposing previously approved drugs is a viable technique for overcoming current bottlenecks in the identification of new anti-TB agents. The present comprehensive review discusses the progress of almost all the repurposed drugs that have been identified to the present day (∼100) and are in the development or clinical testing phase against TB. We have also emphasized the efficacy of repurposed drugs in combination with already available frontline anti-TB medications along with the scope of future investigations. This study would provide the researchers a detailed overview of nearly all identified anti-TB repurposed drugs and may assist them in selecting the lead compounds for further in vivo/clinical research.
Collapse
Affiliation(s)
- Khushbu Sharma
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Ahmed
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
6
|
Antimicrobial Potential of Betulinic Acid and Investigation of the Mechanism of Action against Nuclear and Metabolic Enzymes with Molecular Modeling. Pathogens 2023; 12:pathogens12030449. [PMID: 36986372 PMCID: PMC10058483 DOI: 10.3390/pathogens12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Natural products have important pharmacological activities. This study sought to investigate the activity of the compound betulinic acid (BA) against different strains of bacteria and fungi. The minimum inhibitory concentration (MIC) was determined and then the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). After performing the in vitro tests, molecular modeling studies were carried out to investigate the mechanism of action of BA against the selected microorganisms. The results showed that BA inhibited the growth of microbial species. Among the 12 species (Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Mycobacterium tuberculosis, Candida albicans, C. tropicalis, C. glabrata, Aspergillus flavus, Penicillium citrinum, Trichophyton rubrum, and Microsporum canis) investigated, 9 (75%) inhibited growth at a concentration of 561 µM and 1 at a concentration of 100 µM. In general, the MBC and MFC of the products were between 561 and 1122 μM. In silico studies showed that BA presented a mechanism of action against DNA gyrase and beta-lactamase targets for most of the bacteria investigated, while for fungi the mechanism of action was against sterol 14α-demethylase (CYP51) targets and dihydrofolate reductase (DHFR). We suggest that BA has antimicrobial activity against several species.
Collapse
|
7
|
Egorova A, Salina EG, Makarov V. Targeting Non-Replicating Mycobacterium tuberculosis and Latent Infection: Alternatives and Perspectives (Mini-Review). Int J Mol Sci 2021; 22:ijms222413317. [PMID: 34948114 PMCID: PMC8707483 DOI: 10.3390/ijms222413317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a major challenge to curing TB disease. Current guidelines for LTBI management include only three older drugs and their combinations-isoniazid and rifamycins (rifampicin and rifapentine). These available control strategies have little impact on latent TB elimination, and new specific therapeutics are urgently needed. In the present mini-review, we highlight some of the alternatives that may potentially be included in LTBI treatment recommendations and a list of early-stage prospective small molecules that act on drug targets specific for Mycobacterium tuberculosis latency.
Collapse
Affiliation(s)
- Anna Egorova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
| | - Elena G. Salina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Correspondence:
| |
Collapse
|