1
|
Kukker A, Sharma R, Pandey G, Faseehuddin M. Fuzzy lattices assisted EJAYA Q-learning for automated pulmonary diseases classification. Biomed Phys Eng Express 2024; 10:065001. [PMID: 39178885 DOI: 10.1088/2057-1976/ad72f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
This work proposes a novel technique called Enhanced JAYA (EJAYA) assisted Q-Learning for the classification of pulmonary diseases, such as pneumonia and tuberculosis (TB) sub-classes using chest x-ray images. The work introduces Fuzzy lattices formation to handle real time (non-linear and non-stationary) data based feature extraction using Schrödinger equation. Features based adaptive classification is made possible through the Q-learning algorithm wherein optimal Q-values selection is done via EJAYA optimization algorithm. Fuzzy lattice is formed using x-ray image pixels and lattice Kinetic Energy (K.E.) is calculated using the Schrödinger equation. Feature vector lattices having highest K.E. have been used as an input features for the classifier. The classifier has been employed for pneumonia classification (normal, mild and severe) and Tuberculosis detection (presence or absence). A total of 3000 images have been used for pneumonia classification yielding an accuracy, sensitivity, specificity, precision and F-scores of 97.90%, 98.43%, 97.25%, 97.78% and 98.10%, respectively. For Tuberculosis 600 samples have been used. The achived accuracy, sensitivity, specificity, precision and F-score are 95.50%, 96.39%, 94.40% 95.52% and 95.95%, respectively. Computational time are 40.96 and 39.98 s for pneumonia and TB classification. Classifier learning rate (training accuracy) for pneumonia classes (normal, mild and severe) are 97.907%, 95.375% and 96.391%, respectively and for tuberculosis (present and absent) are 96.928% and 95.905%, respectively. The results have been compared with contemporary classification techniques which shows superiority of the proposed approach in terms of accuracy and speed of classification. The technique could serve as a fast and accurate tool for automated pneumonia and tuberculosis classification.
Collapse
Affiliation(s)
- Amit Kukker
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, U.P., 201204, India
| | - Rajneesh Sharma
- ICE Division, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Gaurav Pandey
- ICE Division, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Mohammad Faseehuddin
- Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| |
Collapse
|
2
|
Parveen Rahamathulla M, Sam Emmanuel WR, Bindhu A, Mustaq Ahmed M. YOLOv8's advancements in tuberculosis identification from chest images. Front Big Data 2024; 7:1401981. [PMID: 38994120 PMCID: PMC11236731 DOI: 10.3389/fdata.2024.1401981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Tuberculosis (TB) is a chronic and pathogenic disease that leads to life-threatening situations like death. Many people have been affected by TB owing to inaccuracy, late diagnosis, and deficiency of treatment. The early detection of TB is important to protect people from the severity of the disease and its threatening consequences. Traditionally, different manual methods have been used for TB prediction, such as chest X-rays and CT scans. Nevertheless, these approaches are identified as time-consuming and ineffective for achieving optimal results. To resolve this problem, several researchers have focused on TB prediction. Conversely, it results in a lack of accuracy, overfitting of data, and speed. For improving TB prediction, the proposed research employs the Selection Focal Fusion (SFF) block in the You Look Only Once v8 (YOLOv8, Ultralytics software company, Los Angeles, United States) object detection model with attention mechanism through the Kaggle TBX-11k dataset. The YOLOv8 is used for its ability to detect multiple objects in a single pass. However, it struggles with small objects and finds it impossible to perform fine-grained classifications. To evade this problem, the proposed research incorporates the SFF technique to improve detection performance and decrease small object missed detection rates. Correspondingly, the efficacy of the projected mechanism is calculated utilizing various performance metrics such as recall, precision, F1Score, and mean Average Precision (mAP) to estimate the performance of the proposed framework. Furthermore, the comparison of existing models reveals the efficiency of the proposed research. The present research is envisioned to contribute to the medical world and assist radiologists in identifying tuberculosis using the YOLOv8 model to obtain an optimal outcome.
Collapse
Affiliation(s)
- Mohamudha Parveen Rahamathulla
- Department of Basic Medical Science, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - W. R. Sam Emmanuel
- Department of Computer Science and Research Centre, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
| | - A. Bindhu
- Department of Computer Science, Infant Jesus College of Arts and Science for Women, Mulagumoodu, Tamil Nadu, India
| | - Mohamed Mustaq Ahmed
- Department of Information Technology, The New College, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Kim TH, Krichen M, Ojo S, Alamro MA, Sampedro GA. TSSG-CNN: A Tuberculosis Semantic Segmentation-Guided Model for Detecting and Diagnosis Using the Adaptive Convolutional Neural Network. Diagnostics (Basel) 2024; 14:1174. [PMID: 38893700 PMCID: PMC11172024 DOI: 10.3390/diagnostics14111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium. It primarily impacts the lungs but can also endanger other organs, such as the renal system, spine, and brain. When an infected individual sneezes, coughs, or speaks, the virus can spread through the air, which contributes to its high contagiousness. The goal is to enhance detection recognition with an X-ray image dataset. This paper proposed a novel approach, named the Tuberculosis Segmentation-Guided Diagnosis Model (TSSG-CNN) for Detecting Tuberculosis, using a combined semantic segmentation and adaptive convolutional neural network (CNN) architecture. The proposed approach is distinguished from most of the previously proposed approaches in that it uses the combination of a deep learning segmentation model with a follow-up classification model based on CNN layers to segment chest X-ray images more precisely as well as to improve the diagnosis of TB. It contrasts with other approaches like ILCM, which is optimized for sequential learning, and explainable AI approaches, which focus on explanations. Moreover, our model is beneficial for the simplified procedure of feature optimization from the perspectives of approach using the Mayfly Algorithm (MA). Other models, including simple CNN, Batch Normalized CNN (BN-CNN), and Dense CNN (DCNN), are also evaluated on this dataset to evaluate the effectiveness of the proposed approach. The performance of the TSSG-CNN model outperformed all the models with an impressive accuracy of 98.75% and an F1 score of 98.70%. The evaluation findings demonstrate how well the deep learning segmentation model works and the potential for further research. The results suggest that this is the most accurate strategy and highlight the potential of the TSSG-CNN Model as a useful technique for precise and early diagnosis of TB.
Collapse
Affiliation(s)
- Tae Hoon Kim
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, No. 318, Hangzhou 310023, China
| | - Moez Krichen
- ReDCAD Laboratory, University of Sfax, Sfax 3038, Tunisia
| | - Stephen Ojo
- Department of Electrical and Computer Engineering, College of Engineering, Anderson University, Anderson, SC 29621, USA;
| | - Meznah A. Alamro
- Department of Information Technology, College of Computer & Information Science, Princess Nourah Bint Abdul Rahman University, Riyadh 11564, Saudi Arabia;
| | - Gabriel Avelino Sampedro
- Faculty of Information and Communication Studies, University of the Philippines Open University, Los Baños 4031, Philippines;
- Gokongwei College of Engineering, De La Salle University, 2401 Taft Ave., Malate, Manila 1004, Philippines
| |
Collapse
|
4
|
Maheswari BU, Sam D, Mittal N, Sharma A, Kaur S, Askar SS, Abouhawwash M. Explainable deep-neural-network supported scheme for tuberculosis detection from chest radiographs. BMC Med Imaging 2024; 24:32. [PMID: 38317098 PMCID: PMC10840197 DOI: 10.1186/s12880-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Chest radiographs are examined in typical clinical settings by competent physicians for tuberculosis diagnosis. However, this procedure is time consuming and subjective. Due to the growing usage of machine learning techniques in applied sciences, researchers have begun applying comparable concepts to medical diagnostics, such as tuberculosis screening. In the period of extremely deep neural nets which comprised of hundreds of convolution layers for feature extraction, we create a shallow-CNN for screening of TB condition from Chest X-rays so that the model is able to offer appropriate interpretation for right diagnosis. The suggested model consists of four convolution-maxpooling layers with various hyperparameters that were optimized for optimal performance using a Bayesian optimization technique. The model was reported with a peak classification accuracy, F1-score, sensitivity and specificity of 0.95. In addition, the receiver operating characteristic (ROC) curve for the proposed shallow-CNN showed a peak area under the curve value of 0.976. Moreover, we have employed class activation maps (CAM) and Local Interpretable Model-agnostic Explanations (LIME), explainer systems for assessing the transparency and explainability of the model in comparison to a state-of-the-art pre-trained neural net such as the DenseNet.
Collapse
Affiliation(s)
- B Uma Maheswari
- Department of Computer Science and Engineering, St. Joseph's College of Engineering, OMR, Chennai, Tamilnadu, 600119, India
| | - Dahlia Sam
- Department of Information Technology, Dr. M.G.R Educational and Research Institute, Periyar E.V.R High Road, Vishwas Nagar, Maduravoyal, Chennai, Tamilnadu, 600095, India
| | - Nitin Mittal
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sandeep Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - S S Askar
- Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Abouhawwash
- Department of Computational Mathematics, Science, and Engineering (CMSE), College of Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Ali Z, Khan MA, Hamza A, Alzahrani AI, Alalwan N, Shabaz M, Khan F. A deep learning‐based x‐ray imaging diagnosis system for classification of tuberculosis, COVID‐19, and pneumonia traits using evolutionary algorithm. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34. [DOI: 10.1002/ima.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 08/25/2024]
Abstract
AbstractTo aid in detection of tuberculosis, researchers have concentrated on developing computer‐aided diagnostic technologies based on x‐ray imaging. Since it generates noninvasive standard‐of‐care data, a chest x‐ray image is one of the most often used diagnostic imaging modalities in computer‐aided solutions. Due to their significant interclass similarities and low intra‐class variation abnormalities, chest x‐ray pictures continue to pose difficulty for proper diagnosis. In this paper, a novel automated framework is proposed for the classification of tuberculosis, COVID‐19, and pneumonia from chest x‐ray images using deep learning and improved optimization technique. Two pre‐trained convolutional neural network models such as EfficientB0 and ResNet50 have been utilized and fine‐tuned based on the additional layers. Both models are trained with fixed hyperparameters on the selected datasets and obtained newly trained models. A novel feature selection technique has been proposed that selects the best features. In the novel version, distance and update position formulation has been modified. The selected features are further fused using a novel technique that is based on the serial and standard deviation threshold function. The experimental process of the proposed framework is conducted on three datasets and obtained an accuracy of 98.2%, 99.0%, and 98.7%, respectively. In addition, a detailed Wilcoxon signed‐rank analysis is conducted and shows the proposed method significance performance. Based on the results, it is concluded that the proposed method accuracy is improved after the fusion process. In addition, the comparison with recent techniques shows the proposed method as more significant in terms of accuracy and precision rate.
Collapse
Affiliation(s)
- Zeeshan Ali
- Department of Computer Science HITEC University Taxila Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science HITEC University Taxila Pakistan
- Department of Computer Science and Mathematics Lebanese American University Beirut Lebanon
| | - Ameer Hamza
- Department of Computer Science HITEC University Taxila Pakistan
| | | | - Nasser Alalwan
- Computer Science Department, Community College King Saud University Riyadh Saudi Arabia
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology Jammu Jammu and Kashmir India
| | - Faheem Khan
- Department of Computer Engineering Gachon University Seongnam‐si South Korea
| |
Collapse
|
6
|
Arslan M, Haider A, Khurshid M, Abu Bakar SSU, Jani R, Masood F, Tahir T, Mitchell K, Panchagnula S, Mandair S. From Pixels to Pathology: Employing Computer Vision to Decode Chest Diseases in Medical Images. Cureus 2023; 15:e45587. [PMID: 37868395 PMCID: PMC10587792 DOI: 10.7759/cureus.45587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Radiology has been a pioneer in the healthcare industry's digital transformation, incorporating digital imaging systems like picture archiving and communication system (PACS) and teleradiology over the past thirty years. This shift has reshaped radiology services, positioning the field at a crucial junction for potential evolution into an integrated diagnostic service through artificial intelligence and machine learning. These technologies offer advanced tools for radiology's transformation. The radiology community has advanced computer-aided diagnosis (CAD) tools using machine learning techniques, notably deep learning convolutional neural networks (CNNs), for medical image pattern recognition. However, the integration of CAD tools into clinical practice has been hindered by challenges in workflow integration, unclear business models, and limited clinical benefits, despite development dating back to the 1990s. This comprehensive review focuses on detecting chest-related diseases through techniques like chest X-rays (CXRs), magnetic resonance imaging (MRI), nuclear medicine, and computed tomography (CT) scans. It examines the utilization of computer-aided programs by researchers for disease detection, addressing key areas: the role of computer-aided programs in disease detection advancement, recent developments in MRI, CXR, radioactive tracers, and CT scans for chest disease identification, research gaps for more effective development, and the incorporation of machine learning programs into diagnostic tools.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Emergency Medicine, Royal Infirmary of Edinburgh, National Health Service (NHS) Lothian, Edinburgh, GBR
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, PAK
| | | | - Rutva Jani
- Department of Internal Medicine, C. U. Shah Medical College and Hospital, Gujarat, IND
| | - Fatima Masood
- Department of Internal Medicine, Gulf Medical University, Ajman, ARE
| | - Tuba Tahir
- Department of Business Administration, Iqra University, Karachi, PAK
| | - Kyle Mitchell
- Department of Internal Medicine, University of Science, Arts and Technology, Olveston, MSR
| | - Smruthi Panchagnula
- Department of Internal Medicine, Ganni Subbalakshmi Lakshmi (GSL) Medical College, Hyderabad, IND
| | - Satpreet Mandair
- Department of Internal Medicine, Medical University of the Americas, Charlestown, KNA
| |
Collapse
|
7
|
Malik H, Anees T, Al-Shamaylehs AS, Alharthi SZ, Khalil W, Akhunzada A. Deep Learning-Based Classification of Chest Diseases Using X-rays, CT Scans, and Cough Sound Images. Diagnostics (Basel) 2023; 13:2772. [PMID: 37685310 PMCID: PMC10486427 DOI: 10.3390/diagnostics13172772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Chest disease refers to a variety of lung disorders, including lung cancer (LC), COVID-19, pneumonia (PNEU), tuberculosis (TB), and numerous other respiratory disorders. The symptoms (i.e., fever, cough, sore throat, etc.) of these chest diseases are similar, which might mislead radiologists and health experts when classifying chest diseases. Chest X-rays (CXR), cough sounds, and computed tomography (CT) scans are utilized by researchers and doctors to identify chest diseases such as LC, COVID-19, PNEU, and TB. The objective of the work is to identify nine different types of chest diseases, including COVID-19, edema (EDE), LC, PNEU, pneumothorax (PNEUTH), normal, atelectasis (ATE), and consolidation lung (COL). Therefore, we designed a novel deep learning (DL)-based chest disease detection network (DCDD_Net) that uses a CXR, CT scans, and cough sound images for the identification of nine different types of chest diseases. The scalogram method is used to convert the cough sounds into an image. Before training the proposed DCDD_Net model, the borderline (BL) SMOTE is applied to balance the CXR, CT scans, and cough sound images of nine chest diseases. The proposed DCDD_Net model is trained and evaluated on 20 publicly available benchmark chest disease datasets of CXR, CT scan, and cough sound images. The classification performance of the DCDD_Net is compared with four baseline models, i.e., InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and Xception, as well as state-of-the-art (SOTA) classifiers. The DCDD_Net achieved an accuracy of 96.67%, a precision of 96.82%, a recall of 95.76%, an F1-score of 95.61%, and an area under the curve (AUC) of 99.43%. The results reveal that DCDD_Net outperformed the other four baseline models in terms of many performance evaluation metrics. Thus, the proposed DCDD_Net model can provide significant assistance to radiologists and medical experts. Additionally, the proposed model was also shown to be resilient by statistical evaluations of the datasets using McNemar and ANOVA tests.
Collapse
Affiliation(s)
- Hassaan Malik
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan; (H.M.); (T.A.)
| | - Tayyaba Anees
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan; (H.M.); (T.A.)
| | - Ahmad Sami Al-Shamaylehs
- Department of Networks and Cybersecurity, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Salman Z. Alharthi
- Department of Information System, College of Computers and Information Systems, Al-Lith Campus, Umm AL-Qura University, P.O. Box 7745, AL-Lith 21955, Saudi Arabia
| | - Wajeeha Khalil
- Department of Computer Science and Information Technology, University of Engineering and Technology Peshawar, Peshawar 25000, Pakistan;
| | - Adnan Akhunzada
- College of Computing & IT, University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar;
| |
Collapse
|
8
|
Ahmed MS, Rahman A, AlGhamdi F, AlDakheel S, Hakami H, AlJumah A, AlIbrahim Z, Youldash M, Alam Khan MA, Basheer Ahmed MI. Joint Diagnosis of Pneumonia, COVID-19, and Tuberculosis from Chest X-ray Images: A Deep Learning Approach. Diagnostics (Basel) 2023; 13:2562. [PMID: 37568925 PMCID: PMC10417844 DOI: 10.3390/diagnostics13152562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Pneumonia, COVID-19, and tuberculosis are some of the most fatal and common lung diseases in the current era. Several approaches have been proposed in the literature for the diagnosis of individual diseases, since each requires a different feature set altogether, but few studies have been proposed for a joint diagnosis. A patient being diagnosed with one disease as negative may be suffering from the other disease, and vice versa. However, since said diseases are related to the lungs, there might be a likelihood of more than one disease being present in the same patient. In this study, a deep learning model that is able to detect the mentioned diseases from the chest X-ray images of patients is proposed. To evaluate the performance of the proposed model, multiple public datasets have been obtained from Kaggle. Consequently, the proposed model achieved 98.72% accuracy for all classes in general and obtained a recall score of 99.66% for Pneumonia, 99.35% for No-findings, 98.10% for Tuberculosis, and 96.27% for COVID-19, respectively. Furthermore, the model was tested using unseen data from the same augmented dataset and was proven to be better than state-of-the-art studies in the literature in terms of accuracy and other metrics.
Collapse
Affiliation(s)
- Mohammed Salih Ahmed
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Atta Rahman
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Faris AlGhamdi
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Saleh AlDakheel
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hammam Hakami
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ali AlJumah
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zuhair AlIbrahim
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mustafa Youldash
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Aftab Alam Khan
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Imran Basheer Ahmed
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Iqbal A, Usman M, Ahmed Z. Tuberculosis chest X-ray detection using CNN-based hybrid segmentation and classification approach. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Sethanan K, Pitakaso R, Srichok T, Khonjun S, Weerayuth N, Prasitpuriprecha C, Preeprem T, Jantama SS, Gonwirat S, Enkvetchakul P, Kaewta C, Nanthasamroeng N. Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification. Front Med (Lausanne) 2023; 10:1122222. [PMID: 37441685 PMCID: PMC10333053 DOI: 10.3389/fmed.2023.1122222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction This study aims to develop a web application, TB-DRD-CXR, for the categorization of tuberculosis (TB) patients into subgroups based on their level of drug resistance. The application utilizes an ensemble deep learning model that classifies TB strains into five subtypes: drug sensitive tuberculosis (DS-TB), drug resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), pre-extensively drug-resistant TB (pre-XDR-TB), and extensively drug-resistant TB (XDR-TB). Methods The ensemble deep learning model employed in the TB-DRD-CXR web application incorporates novel fusion techniques, image segmentation, data augmentation, and various learning rate strategies. The performance of the proposed model is compared with state-of-the-art techniques and standard homogeneous CNN architectures documented in the literature. Results Computational results indicate that the suggested method outperforms existing methods reported in the literature, providing a 4.0%-33.9% increase in accuracy. Moreover, the proposed model demonstrates superior performance compared to standard CNN models, including DenseNet201, NASNetMobile, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively. Conclusion The TB-DRD-CXR web application was developed and tested with 33 medical staff. The computational results showed a high accuracy rate of 96.7%, time-based efficiency (ET) of 4.16 goals/minutes, and an overall relative efficiency (ORE) of 100%. The system usability scale (SUS) score of the proposed application is 96.7%, indicating user satisfaction and a likelihood of recommending the TB-DRD-CXR application to others based on previous literature.
Collapse
Affiliation(s)
- Kanchana Sethanan
- Department of Industrial Engineer, Faculty of Engineering, Research Unit on System Modelling for Industry, Khon Kaen University, Khon Kaen, Thailand
| | - Rapeepan Pitakaso
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Nantawatana Weerayuth
- Ubon Ratchathani University, Department of Mechanical Engineer, Faculty of Engineering, Ubon Ratchathani, Thailand
| | - Chutinun Prasitpuriprecha
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Thanawadee Preeprem
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Sirima Suvarnakuta Jantama
- Ubon Ratchathani University, Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani, Thailand
| | - Sarayut Gonwirat
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Computer Engineering and Automation, Faculty of Engineering, Kalasin University, Kalasin, Thailand
| | - Prem Enkvetchakul
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Information Technology, Faculty of Sciences, Buriram Rajabhat University, Buriram, Thailand
| | - Chutchai Kaewta
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Computer Science, Faculty of Computer Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | - Natthapong Nanthasamroeng
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Engineering Technology, Faculty of Industrial Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| |
Collapse
|
11
|
Ahmed IA, Senan EM, Shatnawi HSA, Alkhraisha ZM, Al-Azzam MMA. Multi-Techniques for Analyzing X-ray Images for Early Detection and Differentiation of Pneumonia and Tuberculosis Based on Hybrid Features. Diagnostics (Basel) 2023; 13:diagnostics13040814. [PMID: 36832302 PMCID: PMC9955018 DOI: 10.3390/diagnostics13040814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
An infectious disease called tuberculosis (TB) exhibits pneumonia-like symptoms and traits. One of the most important methods for identifying and diagnosing pneumonia and tuberculosis is X-ray imaging. However, early discrimination is difficult for radiologists and doctors because of the similarities between pneumonia and tuberculosis. As a result, patients do not receive the proper care, which in turn does not prevent the disease from spreading. The goal of this study is to extract hybrid features using a variety of techniques in order to achieve promising results in differentiating between pneumonia and tuberculosis. In this study, several approaches for early identification and distinguishing tuberculosis from pneumonia were suggested. The first proposed system for differentiating between pneumonia and tuberculosis uses hybrid techniques, VGG16 + support vector machine (SVM) and ResNet18 + SVM. The second proposed system for distinguishing between pneumonia and tuberculosis uses an artificial neural network (ANN) based on integrating features of VGG16 and ResNet18, before and after reducing the high dimensions using the principal component analysis (PCA) method. The third proposed system for distinguishing between pneumonia and tuberculosis uses ANN based on integrating features of VGG16 and ResNet18 separately with handcrafted features extracted by local binary pattern (LBP), discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) algorithms. All the proposed systems have achieved superior results in the early differentiation between pneumonia and tuberculosis. An ANN based on the features of VGG16 with LBP, DWT and GLCM (LDG) reached an accuracy of 99.6%, sensitivity of 99.17%, specificity of 99.42%, precision of 99.63%, and an AUC of 99.58%.
Collapse
Affiliation(s)
- Ibrahim Abdulrab Ahmed
- Computer Department, Applied College, Najran University, Najran 66462, Saudi Arabia
- Correspondence: author: (I.A.A.); (E.M.S.)
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen
- Correspondence: author: (I.A.A.); (E.M.S.)
| | | | | | | |
Collapse
|
12
|
Iqbal A, Sharif M. BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Ait Nasser A, Akhloufi MA. A Review of Recent Advances in Deep Learning Models for Chest Disease Detection Using Radiography. Diagnostics (Basel) 2023; 13:159. [PMID: 36611451 PMCID: PMC9818166 DOI: 10.3390/diagnostics13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Chest X-ray radiography (CXR) is among the most frequently used medical imaging modalities. It has a preeminent value in the detection of multiple life-threatening diseases. Radiologists can visually inspect CXR images for the presence of diseases. Most thoracic diseases have very similar patterns, which makes diagnosis prone to human error and leads to misdiagnosis. Computer-aided detection (CAD) of lung diseases in CXR images is among the popular topics in medical imaging research. Machine learning (ML) and deep learning (DL) provided techniques to make this task more efficient and faster. Numerous experiments in the diagnosis of various diseases proved the potential of these techniques. In comparison to previous reviews our study describes in detail several publicly available CXR datasets for different diseases. It presents an overview of recent deep learning models using CXR images to detect chest diseases such as VGG, ResNet, DenseNet, Inception, EfficientNet, RetinaNet, and ensemble learning methods that combine multiple models. It summarizes the techniques used for CXR image preprocessing (enhancement, segmentation, bone suppression, and data-augmentation) to improve image quality and address data imbalance issues, as well as the use of DL models to speed-up the diagnosis process. This review also discusses the challenges present in the published literature and highlights the importance of interpretability and explainability to better understand the DL models' detections. In addition, it outlines a direction for researchers to help develop more effective models for early and automatic detection of chest diseases.
Collapse
Affiliation(s)
| | - Moulay A. Akhloufi
- Perception, Robotics and Intelligent Machines Research Group (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1C 3E9, Canada
| |
Collapse
|
14
|
Prasitpuriprecha C, Jantama SS, Preeprem T, Pitakaso R, Srichok T, Khonjun S, Weerayuth N, Gonwirat S, Enkvetchakul P, Kaewta C, Nanthasamroeng N. Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System. Pharmaceuticals (Basel) 2022; 16:13. [PMID: 36678508 PMCID: PMC9864877 DOI: 10.3390/ph16010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
This research develops the TB/non-TB detection and drug-resistant categorization diagnosis decision support system (TB-DRC-DSS). The model is capable of detecting both TB-negative and TB-positive samples, as well as classifying drug-resistant strains and also providing treatment recommendations. The model is developed using a deep learning ensemble model with the various CNN architectures. These architectures include EfficientNetB7, mobileNetV2, and Dense-Net121. The models are heterogeneously assembled to create an effective model for TB-DRC-DSS, utilizing effective image segmentation, augmentation, and decision fusion techniques to improve the classification efficacy of the current model. The web program serves as the platform for determining if a patient is positive or negative for tuberculosis and classifying several types of drug resistance. The constructed model is evaluated and compared to current methods described in the literature. The proposed model was assessed using two datasets of chest X-ray (CXR) images collected from the references. This collection of datasets includes the Portal dataset, the Montgomery County dataset, the Shenzhen dataset, and the Kaggle dataset. Seven thousand and eight images exist across all datasets. The dataset was divided into two subsets: the training dataset (80%) and the test dataset (20%). The computational result revealed that the classification accuracy of DS-TB against DR-TB has improved by an average of 43.3% compared to other methods. The categorization between DS-TB and MDR-TB, DS-TB and XDR-TB, and MDR-TB and XDR-TB was more accurate than with other methods by an average of 28.1%, 6.2%, and 9.4%, respectively. The accuracy of the embedded multiclass model in the web application is 92.6% when evaluated with the test dataset, but 92.8% when evaluated with a random subset selected from the aggregate dataset. In conclusion, 31 medical staff members have evaluated and utilized the online application, and the final user preference score for the web application is 9.52 out of a possible 10.
Collapse
Affiliation(s)
- Chutinun Prasitpuriprecha
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sirima Suvarnakuta Jantama
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanawadee Preeprem
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Rapeepan Pitakaso
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nantawatana Weerayuth
- Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarayut Gonwirat
- Department of Computer Engineering and Automation, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand
| | - Prem Enkvetchakul
- Department of Information Technology, Faculty of Science, Buriram University, Buriram 31000, Thailand
| | - Chutchai Kaewta
- Department of Computer Science, Faculty of Computer Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Natthapong Nanthasamroeng
- Department of Engineering Technology, Faculty of Industrial Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| |
Collapse
|
15
|
Duong LT, Nguyen PT, Iovino L, Flammini M. Automatic detection of Covid-19 from chest X-ray and lung computed tomography images using deep neural networks and transfer learning. Appl Soft Comput 2022; 132:109851. [PMCID: PMC9686054 DOI: 10.1016/j.asoc.2022.109851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
The world has been undergoing the most ever unprecedented circumstances caused by the coronavirus pandemic, which is having a devastating global effect in different aspects of life. Since there are not effective antiviral treatments for Covid-19 yet, it is crucial to early detect and monitor the progression of the disease, thereby helping to reduce mortality. While different measures are being used to combat the virus, medical imaging techniques have been examined to support doctors in diagnosing the disease. In this paper, we present a practical solution for the detection of Covid-19 from chest X-ray (CXR) and lung computed tomography (LCT) images, exploiting cutting-edge Machine Learning techniques. As the main classification engine, we make use of EfficientNet and MixNet, two recently developed families of deep neural networks. Furthermore, to make the training more effective and efficient, we apply three transfer learning algorithms. The ultimate aim is to build a reliable expert system to detect Covid-19 from different sources of images, making it be a multi-purpose AI diagnosing system. We validated our proposed approach using four real-world datasets. The first two are CXR datasets consist of 15,000 and 17,905 images, respectively. The other two are LCT datasets with 2,482 and 411,528 images, respectively. The five-fold cross-validation methodology was used to evaluate the approach, where the dataset is split into five parts, and accordingly the evaluation is conducted in five rounds. By each evaluation, four parts are combined to form the training data, and the remaining one is used for testing. We obtained an encouraging prediction performance for all the considered datasets. In all the configurations, the obtained accuracy is always larger than 95.0%. Compared to various existing studies, our approach yields a substantial performance gain. Moreover, such an improvement is statistically significant.
Collapse
Affiliation(s)
- Linh T. Duong
- Institute of Research and Development, Duy Tan University, Viet Nam
| | - Phuong T. Nguyen
- Department of Information Engineering, Computer Science and Mathematics University of L’Aquila, Italy,Corresponding author
| | | | | |
Collapse
|