1
|
Conley HE, Davis KU, Adler KB, Lavoie JP, Sheats MK. MARCKS protein is a potential target in a naturally occurring equine model of neutrophilic asthma. Respir Res 2025; 26:126. [PMID: 40176021 PMCID: PMC11967018 DOI: 10.1186/s12931-025-03194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory airway disease that affects millions of people worldwide. Horses develop asthma spontaneously and serve as a relevant model for multiple phenotypes and endotypes of human asthma. In horses with equine asthma (EA), environmental organic dust triggers increased inflammatory cytokines, excess airway mucus, reversible bronchoconstriction, and airway inflammation. In horses with severe EA (sEA), lower airway inflammation is invariably neutrophilic, making sEA a potential model for severe neutrophilic asthma in humans. Alveolar macrophages (AM) and airway neutrophils contribute to lower airway inflammation and tissue damage through the release of cytokines and toxic mediators including reactive oxygen species. Previous work shows that the Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein is increased in activated macrophages and neutrophils and is an essential regulator of inflammatory functions in these cell types. We hypothesized that MARCKS protein would be increased in bronchoalveolar lavage (BAL) cells from horses with EA, and that in vitro inhibition of MARCKS with a specific inhibitor peptide known as MyristoylAted N-terminal Sequence (MANS), would diminish cytokine production and respiratory burst. METHODS BAL cells from two populations of healthy and asthmatic horses were evaluated for cytology and MARCKS protein analysis. Isolated alveolar macrophages and peripheral blood neutrophils were stimulated with zymosan to evaluate MARCKS inhibition in cytokine secretion and respiratory burst. RESULTS We found increased levels of normalized MARCKS protein in total BAL cells from horses with asthma compared to normal horses. MARCKS inhibition with the MANS peptide had no effect on zymosan-stimulated release of tumor necrosis factor alpha (TNFα) or interleukin-8 (IL-8) from alveolar macrophages but did attenuate zymosan-stimulated respiratory burst in both alveolar macrophages and peripheral blood neutrophils. CONCLUSIONS These findings point to a possible role for MARCKS in the pathophysiology of neutrophilic equine asthma and support further investigation of MARCKS as a novel anti-inflammatory target for severe neutrophilic asthma.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Kenneth B Adler
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Department of Molecular and Biomedical Science, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Jean-Pierre Lavoie
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
2
|
Padoan E, Ferraresso S, Pegolo S, Barnini C, Castagnaro M, Bargelloni L. Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals (Basel) 2022; 13:ani13010004. [PMID: 36611613 PMCID: PMC9817691 DOI: 10.3390/ani13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mild equine asthma (MEA) and severe equine asthma (SEA) are two of the most frequent equine airway inflammatory diseases, but knowledge about their pathogenesis is limited. The goal of this study was to investigate gene expression differences in the respiratory tract of MEA- and SEA-affected horses and their relationship with clinical signs. METHODS Clinical examination and endoscopy were performed in 8 SEA- and 10 MEA-affected horses and 7 healthy controls. Cytological and microbiological analyses of bronchoalveolar lavage (BAL) fluid were performed. Gene expression profiling of BAL fluid was performed by means of a custom oligo-DNA microarray. RESULTS In both MEA and SEA, genes involved in the genesis, length, and motility of respiratory epithelium cilia were downregulated. In MEA, a significant overexpression for genes encoding inflammatory mediators was observed. In SEA, transcripts involved in bronchoconstriction, apoptosis, and hypoxia pathways were significantly upregulated, while genes involved in the formation of the protective muco-protein film were underexpressed. The SEA group also showed enrichment of gene networks activated during human asthma. CONCLUSIONS The present study provides new insight into equine asthma pathogenesis, representing the first step in transcriptomic analysis to improve diagnostic and therapeutic approaches for this respiratory disease.
Collapse
Affiliation(s)
- Elisa Padoan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
- Correspondence: ; Tel.: +39-049-8272506
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | | | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
3
|
Differential Gene Expression Profiles and Selected Cytokine Protein Analysis of Mediastinal Lymph Nodes of Horses with Chronic Recurrent Airway Obstruction (RAO) Support an Interleukin-17 Immune Response. PLoS One 2015; 10:e0142622. [PMID: 26561853 PMCID: PMC4642978 DOI: 10.1371/journal.pone.0142622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] Open
Abstract
Recurrent airway obstruction (RAO) is a pulmonary inflammatory condition that afflicts certain mature horses exposed to organic dust particulates in hay. Its clinical and pathological features, manifested by reversible bronchoconstriction, excessive mucus production and airway neutrophilia, resemble the pulmonary alterations that occur in agricultural workers with occupational asthma. The immunological basis of RAO remains uncertain although its chronicity, its localization to a mucosal surface and its domination by a neutrophilic, non-septic inflammatory response, suggest involvement of Interleukin-17 (IL-17). We examined global gene expression profiles in mediastinal (pulmonary-draining) lymph nodes isolated from RAO-affected and control horses. Differential expression of > 200 genes, coupled with network analysis, supports an IL-17 response centered about NF-κB. Immunohistochemical analysis of mediastinal lymph node sections demonstrated increased IL-17 staining intensity in diseased horses. This result, along with the finding of increased IL-17 concentrations in lymph node homogenates from RAO-affected horses (P = 0.1) and a down-regulation of IL-4 gene and protein expression, provides additional evidence of the involvement of IL-17 in the chronic stages of RAO. Additional investigations are needed to ascertain the cellular source of IL-17 in this equine model of occupational asthma. Understanding the immunopathogenesis of this disorder likely will enhance the development of therapeutic interventions beneficial to human and animal pulmonary health.
Collapse
|
4
|
McIlwraith CW, Clegg PD. Science in brief: Report on the Havemeyer Foundation workshop on equine musculoskeletal biomarkers--current knowledge and future needs. Equine Vet J 2015; 46:651-3. [PMID: 25319159 DOI: 10.1111/evj.12339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C W McIlwraith
- Gail Holmes Equine Orthopaedic Research Center, Colorado State University, Fort Collins, USA
| | | |
Collapse
|
5
|
Ramery E, Fraipont A, Richard EA, Art T, Pirottin D, van Delm W, Bureau F, Lekeux P. Expression microarray as a tool to identify differentially expressed genes in horses suffering from inflammatory airway disease. Vet Clin Pathol 2014; 44:37-46. [PMID: 25488254 DOI: 10.1111/vcp.12216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammatory airway disease (IAD) affects performance and well-being of horses. Diagnosis is primarily reached by bronchoalveolar lavage (BAL) cytology which is invasive and requires sedation. OBJECTIVES The purpose of this study was to identify differential gene expression in peripheral blood of horses with IAD using species-specific expression microarrays. METHODS Equine gene expression microarrays were used to investigate global mRNA expression in circulating leukocytes from healthy, IAD-affected, and low-performing Standardbred and endurance horses. RESULTS Nine genes in Standardbred and 61 genes in endurance horses were significantly differentially regulated (P < .001). These genes were related to inflammation (eg, ALOX15B, PLA2G12B, and PENK), oxidant/antioxidant balance (eg, DUOXA2 and GSTO1-1), and stress (eg, V1aR, GRLF1, Homer-2, and MAOB). All these genes were up-regulated, except down-regulated Homer-2 and MAOB. DUOXA2, ALOX15B, PLA2G12B, MAOB, and GRLF1 expression was further validated by RT-qPCR. An increase in glutathione peroxidase (GPx) activity in heparinized whole blood of IAD-affected Standardbred (P = .0025) and endurance horses (P = .0028) also suggests a deregulation of the oxidant/antioxidant balance. There was good correlation (r = .7354) between BAL neutrophil percentage and whole blood GPx activity in all horses. CONCLUSIONS This study showed that circulating blood cell gene expression reflects inflammatory responses in tissues. Whether any of the genes have potential for diagnostic applications in the future remains to be investigated. Although not specific for IAD, whole blood GPx activity appears to be correlated with BAL neutrophil percentage. This finding should be further assessed by testing a larger number of horses.
Collapse
Affiliation(s)
- Eve Ramery
- Department for Functional Sciences, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Graham NS, Clutterbuck AL, James N, Lea RG, Mobasheri A, Broadley MR, May ST. Equine transcriptome quantification using human GeneChip arrays can be improved using genomic DNA hybridisation and probe selection. Vet J 2010; 186:323-7. [PMID: 19786357 DOI: 10.1016/j.tvjl.2009.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/07/2009] [Accepted: 08/18/2009] [Indexed: 11/27/2022]
|
7
|
Yang H, Ma YH, Li B, Dugarjaviin M. [Progress on horse genome project]. YI CHUAN = HEREDITAS 2010; 32:211-8. [PMID: 20233697 DOI: 10.3724/sp.j.1005.2010.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is unique genetic information belonging to various kinds of living beings. Understanding of the formation process of organisms and a variety of vital movement is associated with the achievements of genome study. As horse has a notable health condition and great record of the genealogy in the world, thus it becomes a valuable model animal for studying life science. Despite of a late start, the map of the horse genome has undergone unprecedented expansion during the last few years. The current progresses of the horse genome, including genetic map, physical map, comparative genomic map, and functional genomics, were reviewed in this paper. The maps are currently used worldwide to discover genes associated with various traits of significance in horse including general health, disease resistance, reproduction, fertility, athletic performance, phenotypic characteristics like coat color, etc. The results are believed to provide new ideas and approaches for prevention, diagnostics, and therapeutic for horses, and also better foundation of breed selection and equine genetic breeding.
Collapse
Affiliation(s)
- Hong Yang
- College of Animal Science and Animal Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | | | | | | |
Collapse
|
8
|
Ramery E, Fievez L, Fraipont A, Bureau F, Lekeux P. Characterization of pentraxin 3 in the horse and its expression in airways. Vet Res 2009; 41:18. [PMID: 19863902 PMCID: PMC2789332 DOI: 10.1051/vetres/2009066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/28/2009] [Indexed: 01/05/2023] Open
Abstract
The long pentraxin 3 (PTX3) plays an important role in host defence and its over-expression may contribute to airway injury. The aim of the present study was therefore to characterize in more detail PTX3 and its expression in the horses’ airway. Six healthy horses and six horses affected by recurrent airway obstruction (R.A.O.) were submitted to a dusty environment challenge. PTX3 DNA and cDNA were cloned and sequenced. PTX3 expression was evaluated by RT-qPCR, Western blotting and immuno-histochemistry in bronchoalveolar lavage fluid (BALF) cells, BALF supernatant and bronchial epithelial cells. An alternative splicing of the second exon of PTX3 occurred, resulting in two forms of the protein: “spliced” (32 kDa) and “full length” (42 kDa). PTX3 was detected in BALF macrophages, neutrophils and bronchial epithelial cells. It was over-expressed in the BALF supernatant from R.A.O.-affected horses in crisis. However, dust was unable to induce PTX3 in BALF cells ex vivo, indicating that dust is an indirect inducer of PTX3. Dust exposure in-vivo induced PTX3 in BALF macrophages but there was no significant difference between healthy and R.A.O.-affected horses. Conversely, PTX3 was over-expressed in the bronchial epithelial cells from R.A.O.-affected horses in crisis. These data indicate a differential regulatory mechanism in inflammatory and bronchial epithelial cells and offer therapeutically interesting perspectives.
Collapse
Affiliation(s)
- Eve Ramery
- Department for Functional Sciences, Faculty of Veterinary Medicine, University of Liege, Bvd de Colonster, 20, B-4000 Liege, Belgium.
| | | | | | | | | |
Collapse
|
9
|
Gene expression in the lamellar dermis–epidermis during the developmental phase of carbohydrate overload-induced laminitis in the horse. Vet Immunol Immunopathol 2009; 131:86-96. [DOI: 10.1016/j.vetimm.2009.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/21/2022]
|
10
|
Nolen-Walston RD, Kuehn H, Boston RC, Mazan MR, Wilkins PA, Bruns S, Hoffman AM. Reproducibility of Airway Responsiveness in Horses Using Flowmetric Plethysmography and Histamine Bronchoprovocation. J Vet Intern Med 2009; 23:631-5. [DOI: 10.1111/j.1939-1676.2009.0307.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Ramery E, Closset R, Art T, Bureau F, Lekeux P. Expression microarrays in equine sciences. Vet Immunol Immunopathol 2009; 127:197-202. [DOI: 10.1016/j.vetimm.2008.10.314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 07/31/2008] [Accepted: 10/09/2008] [Indexed: 11/29/2022]
|
12
|
Report of the 3rd Havemeyer workshop on allergic diseases of the Horse, Hólar, Iceland, June 2007. Vet Immunol Immunopathol 2008; 126:351-61. [DOI: 10.1016/j.vetimm.2008.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022]
|
13
|
Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence. Chromosome Res 2008; 16:109-27. [PMID: 18274866 DOI: 10.1007/s10577-008-1204-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The map of the horse genome has undergone unprecedented expansion during the past six years. Beginning from a modest collection of approximately 300 mapped markers scattered on the 31 pairs of autosomes and the X chromosome in 2001, today the horse genome is among the best-mapped in domestic animals. Presently, high-resolution linearly ordered gene maps are available for all autosomes as well as the X and the Y chromosome. The approximately 4350 mapped markers distributed over the approximately 2.68 Gbp long equine genome provide on average 1 marker every 620 kb. Among the most remarkable developments in equine genome analysis is the availability of the assembled sequence (EquCab2) of the female horse genome and the generation approximately 1.5 million single nucleotide polymorphisms (SNPs) from diverse breeds. This has triggered the creation of new tools and resources like the 60K SNP-chip and whole genome expression microarrays that hold promise to study the equine genome and transcriptome in ways not previously envisaged. As a result of these developments it is anticipated that, during coming years, the genetics underlying important monogenic traits will be analyzed with improved accuracy and speed. Of larger interest will be the prospects of dissecting the genetic component of various complex/multigenic traits that are of vital significance for equine health and welfare. The number of investigations recently initiated to study a multitude of such traits hold promise for improved diagnostics, prevention and therapeutic approaches for horses.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| | | |
Collapse
|