1
|
Holmes CM, Babasyan S, Eady N, Schnabel CL, Wagner B. Immune horses rapidly increase antileukoproteinase and lack type I interferon secretion during mucosal innate immune responses against equine herpesvirus type 1. Microbiol Spectr 2024; 12:e0109224. [PMID: 39162558 PMCID: PMC11448092 DOI: 10.1128/spectrum.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is one of the most prevalent respiratory pathogens in horses with a high impact on animal health worldwide. Entry of the virus into epithelial cells of the upper respiratory tract and rapid local viral replication is followed by infection of local lymphoid tissues leading to cell-associated viremia and disease progression. Pre-existing mucosal immunity has previously been shown to reduce viral shedding and prevent viremia, consequently limiting severe disease manifestations. Here, nasopharyngeal transcriptomic profiling was used to identify differentially expressed genes following EHV-1 challenge in horses with different EHV-1 immune statuses. Immune horses (n = 4) did neither develop clinical disease nor viremia and did not shed virus after experimental infection, while non-immune horses (n = 4) did all the above. RNA sequencing was performed on nasopharyngeal samples pre- and 24 hours post-infection (24hpi). At 24hpi, 109 and 44 genes were upregulated in immune horses and non-immune horses, respectively, and three genes were explored in further detail. Antileukoproteinase (SLPI) gene expression increased 2.1-fold within 24 hours in immune horses in concert with protein secretion. Interferon (IFN)-induced proteins with tetratricopeptide repeats 2 (IFIT2) and 3 (IFIT3) were upregulated in non-immune horses, corresponding with nasal IFN-α secretion and viral replication. By contrast, neither IFIT expression nor IFN-α secretion was induced by EHV-1 infection of immune horses. Transcriptomic profiling offered a tool to identify, for the first time, the role of SLPI in innate immunity against EHV-1, and further emphasized the central role of the type I IFN response in the anti-viral defense of non-immune horses. IMPORTANCE Equine herpesvirus type 1 (EHV-1) remains a considerable concern in the equine industry, with yearly outbreaks resulting in morbidity, mortality, and economic losses. In addition to its importance in equine health, EHV-1 is a respiratory pathogen and an alphaherpesvirus, and it may serve as a model for other viruses with similar pathogenicity or phylogeny. Large animal models allow the collection of high-volume samples longitudinally, permitting in-depth investigation of immunological processes. This study was performed on bio-banked nasopharyngeal samples from an EHV-1 infection experiment, where clinical outcomes had previously been determined. Matched nucleic acid and protein samples throughout infection permitted longitudinal quantification of the protein or related proteins of selected differentially expressed genes detected during the transcriptomic screen. The results of this manuscript identified novel innate immune pathways of the upper respiratory tract during the first 24 hours of EHV-1 infection, offering a first look at the components of early mucosal immunity that are indicative of protection.
Collapse
Affiliation(s)
- Camille M. Holmes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Naya Eady
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Holmes CM, Wagner B. Characterization of Nasal Mucosal T Cells in Horses and Their Response to Equine Herpesvirus Type 1. Viruses 2024; 16:1514. [PMID: 39459849 PMCID: PMC11512333 DOI: 10.3390/v16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) enters through the upper respiratory tract (URT). Mucosal immunity at the URT is crucial in limiting viral infection and morbidity. Here, intranasal immune cells were collected from horses (n = 15) during an experimental EHV-1 infection. CD4+ and CD8+ T cells were the major intranasal cell populations before infection and increased significantly by day six and fourteen post-infection, respectively. Nasal mucosal T cells were further characterized in healthy horses. Compared to peripheral blood mononuclear cells (PBMC), mucosal CD8+ T-cell percentages were elevated, while CD4+ T-cell percentages were similar. A small population of CD4+CD8+ T cells was also recovered from mucosal samples. Within the URT tissue, CD4+ cells predominantly accumulated in the epithelial layer, while most CD8+ cells resided deeper in the mucosa or the submucosa below the basement membrane. In vitro stimulation of mucosal cells from healthy horses with (n = 5) or without (n = 5) peripheral T-cell immunity against EHV-1 induced IFN-γ production in nasal T cells upon polyclonal stimulation. However, after EHV-1 re-stimulation, mucosal T cells failed to respond with IFN-γ. This work provided the first characterization of mucosal T-cell phenotypes and functions in the URT of healthy horses and during EHV-1 infection.
Collapse
Affiliation(s)
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
3
|
Schramm A, Ackermann M, Eichwald C, Aguilar C, Fraefel C, Lechmann J. Antibody reactions of horses against various domains of the EHV-1 receptor-binding protein gD1. PLoS One 2024; 19:e0301987. [PMID: 38995916 PMCID: PMC11244823 DOI: 10.1371/journal.pone.0301987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 07/14/2024] Open
Abstract
Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.
Collapse
Affiliation(s)
- Andreina Schramm
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Catherine Eichwald
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudio Aguilar
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Lechmann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Goehring L, Dorman DC, Osterrieder K, Burgess BA, Dougherty K, Gross P, Neinast C, Pusterla N, Soboll‐Hussey G, Lunn DP. Pharmacologic interventions for the treatment of equine herpesvirus-1 in domesticated horses: A systematic review. J Vet Intern Med 2024; 38:1892-1905. [PMID: 38380685 PMCID: PMC11099759 DOI: 10.1111/jvim.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Equine herpes virus type 1 (EHV-1) infection in horses is associated with upper respiratory disease, neurological disease, abortions, and neonatal death. REVIEW QUESTION Does pharmacological therapy decrease either the incidence or severity of disease or infection caused by EHV-1 in domesticated horses? METHODS A systematic review was preformed searching AGRICOLA, CAB Abstracts, Cochrane, PubMed, Web of Science, and WHO Global Health Index Medicus Regional Databases to identify articles published before February 15, 2021. Selection criteria were original research reports published in peer reviewed journals, and studies investigating in vivo use of therapeutic agents for prevention or treatment of EHV-1 in horses. Outcomes assessed included measures related to clinical outcomes that reflect symptomatic EHV-1 infection or virus infection. We evaluated risk of bias and performed a GRADE evaluation of the quality of evidence for interventions. RESULTS A total of 7009 unique studies were identified, of which 9 met the inclusion criteria. Two studies evaluated valacyclovir or small interfering RNAs, and single studies evaluated the use of a Parapoxvirus ovis-based immunomodulator, human alpha interferon, an herbal supplement, a cytosine analog, and heparin. The level of evidence ranged between randomized controlled studies and observational trials. The risk of bias was moderate to high and sample sizes were small. Most studies reported either no benefit or minimal efficacy of the intervention tested. CONCLUSIONS AND CLINICAL IMPORTANCE Our review indicates minimal or limited benefit either as a prophylactic or post-exposure treatment for any of the studied interventions in the mitigation of EHV-1-associated disease outcome.
Collapse
Affiliation(s)
- Lutz Goehring
- University of Kentucky, College of Agriculture, Food and Environment, Maxwell H. Gluck Equine Research Center, 1400 Nicholasville RoadLexington, Kentucky 40546‐0099USA
| | - David C. Dorman
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore DriveRaleigh, North Carolina 27607USA
| | - Klaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Robert‐von‐Ostertag‐Str. 714163 BerlinGermany
| | - Brandy A. Burgess
- College of Veterinary MedicineUniversity of Georgia, 2200 College Station RoadAthens, Georgia 30602USA
| | - Kelsie Dougherty
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore DriveRaleigh, North Carolina 27607USA
| | - Peggy Gross
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore DriveRaleigh, North Carolina 27607USA
| | - Claire Neinast
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore DriveRaleigh, North Carolina 27607USA
| | - Nicola Pusterla
- School of Veterinary Medicine, University of California, Davis, One Garrod DriveDavis, California 95616USA
| | - Gisela Soboll‐Hussey
- College of Veterinary Medicine, Michigan State University, Veterinary Medical Center, Room G331, 784 Wilson RoadEast Lansing, Michigan 48824USA
| | - David P. Lunn
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High RoadNeston CH64 7TEUnited Kingdom
| |
Collapse
|
5
|
Anderson C, Baha H, Boghdeh N, Barrera M, Alem F, Narayanan A. Interactions of Equine Viruses with the Host Kinase Machinery and Implications for One Health and Human Disease. Viruses 2023; 15:v15051163. [PMID: 37243249 DOI: 10.3390/v15051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens that are vector-transmitted have and continue to contribute to several emerging infections globally. In recent years, spillover events of such zoonotic pathogens have increased in frequency as a result of direct contact with livestock, wildlife, and urbanization, forcing animals from their natural habitats. Equines serve as reservoir hosts for vector-transmitted zoonotic viruses that are also capable of infecting humans and causing disease. From a One Health perspective, equine viruses, therefore, pose major concerns for periodic outbreaks globally. Several equine viruses have spread out of their indigenous regions, such as West Nile virus (WNV) and equine encephalitis viruses (EEVs), making them of paramount concern to public health. Viruses have evolved many mechanisms to support the establishment of productive infection and to avoid host defense mechanisms, including promoting or decreasing inflammatory responses and regulating host machinery for protein synthesis. Viral interactions with the host enzymatic machinery, specifically kinases, can support the viral infectious process and downplay innate immune mechanisms, cumulatively leading to a more severe course of the disease. In this review, we will focus on how select equine viruses interact with host kinases to support viral multiplication.
Collapse
Affiliation(s)
- Carol Anderson
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Niloufar Boghdeh
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Michael Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
6
|
Giannetto C, Giudice E, Piccione G, Castronovo C, Arfuso F. Immune and inflammatory response in horse vaccinated against equine herpesviruses 1 (EHV-1) and 4 (EHV-4) assessed by serum protein electrophoretic pattern and leukocyte population. J Equine Vet Sci 2022; 116:104051. [PMID: 35753636 DOI: 10.1016/j.jevs.2022.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
Protection against infectious diseases can be obtained with vaccines generating immunogenic response through a combination of humoral and cellular immunity. In this study haematological and serum protein electrophoretic profiles of horses vaccinated against herpesvirus 1 (EHV-1) and 4 (EHV-4) were evaluated. Blood samples were collected from 16 horses before (T0), after 24h, 48h, 72h, 1st week, 2nd week and 3rd week (T1I, T2I, T3I, T7I, T14I and T21I) from the first EHV vaccine-dose administration as well as before (TPREII), and after 24h, 48h, 72h, 1st week, 2nd week, 3rd week and 4th week (T1II, T2II, T3II, T7II, T14II, T21II and T28II) from the EHV vaccine-booster. Total leukocyte values increased at T1I, T1II, T3II and T28II compared to T0 (P<0.01). Higher lymphocytes and lower neutrophils values were found after first vaccine-dose and vaccine-booster administration compared to the T0 (P<0.01). Monocytes showed higher values at T14II than T0 (P<0.01). Higher serum values of total proteins, α1-, α-2-, β1-, β2- and γ-globulins were found in horses after first vaccine-dose and vaccine-booster administration (P<0.01). Gathered results suggest that horses vaccinated against EHV1 and EHV-4 exhibited a dynamic change of WBC, lymphocytes, neutrophils and monocytes. Moreover, the analysis of serum electrophoresis pattern suggested that EHV vaccination induced the development of inflammation and antibody response in vaccinated horses as highlighted by the increase of α-, β- and γ-globulin fractions. These changes probably reflect the systemic immunological adaptation of animals to EHV vaccine.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy.
| | - Calogero Castronovo
- Experimental Zooprophylactic Institute of Sicily, "A. Mirri", Palermo, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| |
Collapse
|
7
|
Mahmoud HYAH, Fouad SS, Amin YA. Review of two viral agents of economic importance to the equine industry (equine herpesvirus‐1, and equine arteritis virus). EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hassan Y. A. H. Mahmoud
- Division of Infectious Diseases Animal Medicine Department Faculty of Veterinary Medicine South Valley University Qena Egypt
| | - Samer S. Fouad
- PhD of Clinical Pathology of Veterinary Medicine Qena University Hospital South Valley University Qena Egypt
| | - Yahia A. Amin
- Department of Theriogenology Faculty of Veterinary Medicine Aswan University Aswan Egypt
| |
Collapse
|
8
|
Saleh AG, El-Habashi N, Abd-Ellatieff HA, Abas OM, Anwar S, Fukushi H, Yanai T. Comparative Study of the Pathogenesis of Rhinopneumonitis Induced by Intranasal Inoculation of Hamsters with Equine Herpesvirus-9, Equine Herpesvirus-1 strain Ab4p and Zebra-borne Equine Herpesvirus-1. J Comp Pathol 2020; 180:35-45. [PMID: 33222872 DOI: 10.1016/j.jcpa.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Equine herpesvirus-9 (EHV-9), equine herpesvirus-1 (EHV-1) and zebra-borne EHV-1 are members of the family Herpesviridae and cause encephalitis and rhinopneumonitis in a range of animal species. The aim of this study was to characterize and compare the rhinopneumonitis induced by experimental intranasal inoculation of groups of hamsters with EHV-9, EHV-1 strain Ab4p or zebra-borne EHV-1 viruses. Animals inoculated with EHV-9 had earlier and more severe neurological and respiratory signs than those inoculated with EHV-1 strain Ab4p or zebra-borne EHV-1. At 4-5 days post inoculation (dpi), hamsters inoculated with EHV-9 had significantly increased expression of open reading fame (ORF) 30, the viral gene encoding the DNA polymerase, in lung tissue. ORF 30 expression at these time points was higher in the hamsters infected with EHV-9 than in those inoculated with the other two viruses. Severe, mild or very mild rhinitis was seen in animals inoculated with EHV-1 strain Ab4p, EHV-9 and zebra-borne EHV-1, respectively. Viral antigen was detected in olfactory receptor neurons, inflammatory cells and desquamated epithelial cells in animals in all groups until 5 dpi. Tracheitis was also seen in all three virus-infected groups with viral antigen detected in tracheal epithelium. Inoculated hamsters developed interstitial pneumonia of increasing severity over the course of the experiment. Bronchopneumonia and vasculitis were also seen in all three infected groups. These results confirm that, in addition to their neurotropism, EHV-9 and zebra-borne EHV-1 are pneumotropic viruses. EHV-1 strain Ab4p caused more severe upper respiratory tract disease, but no significant differences were detected in the severity of pneumonia induced by each virus.
Collapse
Affiliation(s)
- Asmaa G Saleh
- Laboratory of Veterinary Pathology and Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhur University, El-Beheira
| | - Nagwan El-Habashi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hoda A Abd-Ellatieff
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, El-Beheira, Egypt
| | - Osama M Abas
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, Alexandria University, Alexandria Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Shehata Anwar
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada
| | - Hideto Fukushi
- Laboratory of Veterinary Pathology and Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tokuma Yanai
- Laboratory of Veterinary Pathology and Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Laboratory of Wildlife and Forensic Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| |
Collapse
|
9
|
Kutasi O, Fehér O, Sárdi S, Balogh N, Nagy A, Moravszki L, Bódai E, Szenci O. Characterisation of the cerebrospinal fluid of horses with West Nile virus neuroinvasive disease. Acta Vet Hung 2020; 68:177-185. [PMID: 32894729 DOI: 10.1556/004.2020.00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023]
Abstract
West Nile virus (WNV) is a zoonotic arbovirus transmitted by mosquitoes between wild birds (natural hosts) and other vertebrates. Horses and humans are incidental, dead-end hosts, but can develop severe neurological disorders. Owing to the close contact of cerebrospinal fluid (CSF) with the extracellular fluid of the brain, the analysis of CSF composition can reflect central nervous system (CNS) impairments enabling the diagnosis and understanding of various neurodegenerative CNS disorders. Our objective was to compare the findings from the CSF samples of horses with neuroinvasive WNV infection with those of healthy controls. We compared findings from fifteen CSF samples of 13 horses with acute WNV encephalomyelitis with those of 20 healthy controls. Protein, particular enzymes and ions, glucose and lactate showed abnormal levels in a significant number of WNV cases. None of the six horses with elevated glucose concentrations survived. Rather neutrophilic than mononuclear pleocytosis was identified with WNV infection. Neutrophils probably play a role in the development of inflammatory response and brain damage. Although elevated glucose levels reliably predicted the outcome, they might be the consequence of increased plasma levels and reflect general stress rather than CNS pathophysiology. The CSF findings of WNV encephalomyelitis patients are non-specific and variable but facilitate the differential diagnosis.
Collapse
Affiliation(s)
- Orsolya Kutasi
- 1University of Veterinary Medicine Budapest, István Utca 2, Budapest, 1078, Hungary
| | - Orsolya Fehér
- 1University of Veterinary Medicine Budapest, István Utca 2, Budapest, 1078, Hungary
| | - Sára Sárdi
- 1University of Veterinary Medicine Budapest, István Utca 2, Budapest, 1078, Hungary
| | | | - Anna Nagy
- 3Department of Virology, National Public Health Institute (NPHI), Budapest, Hungary
| | - Leticia Moravszki
- 1University of Veterinary Medicine Budapest, István Utca 2, Budapest, 1078, Hungary
| | - Emese Bódai
- 1University of Veterinary Medicine Budapest, István Utca 2, Budapest, 1078, Hungary
| | - Ottó Szenci
- 1University of Veterinary Medicine Budapest, István Utca 2, Budapest, 1078, Hungary
| |
Collapse
|
10
|
Attili AR, Colognato R, Preziuso S, Moriconi M, Valentini S, Petrini S, De Mia GM, Cuteri V. Evaluation of Three Different Vaccination Protocols against EHV1/EHV4 Infection in Mares: Double Blind, Randomized Clinical Trial. Vaccines (Basel) 2020; 8:vaccines8020268. [PMID: 32492841 PMCID: PMC7350013 DOI: 10.3390/vaccines8020268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
EHV1 and EHV4 are the most important herpesviruses in horses. Repeated cases of abortion in mares regularly vaccinated, prompted us to investigate the immune response after vaccination with the same inactivated vaccine, but with three different protocols. Eighteen mares were chosen and randomly divided in three study groups (G1-G2-G3) and a control group (Ctrl). For serologic and PCR investigations nasal swabs, sera and blood were collected. The protocol used in G3 (4 doses) increased the titer recorded by ELISA and seroneutralization (SN). Poor agreement and no correlation were observed in titer values between ELISA and SN and between SN and PCR. A very weak positive correlation between ELISA and PCR was obtained. Seven out of 18 nasal swabs were positive by PCR; none showed viremia and no abortion occurred, regardless of vaccination status and despite active circulation of EHV-1 in the farm at the time of the study. The study was conducted in field conditions, in a susceptible population with a known history of infection and abortion, and among the three protocols, the one proposed in the G1 was the least efficient while the one proposed for the G3, seems to have induced a higher antibody titer in both SN and ELISA.
Collapse
Affiliation(s)
- Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.-R.A.); (S.P.); (M.M.)
| | | | - Silvia Preziuso
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.-R.A.); (S.P.); (M.M.)
| | - Martina Moriconi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.-R.A.); (S.P.); (M.M.)
- Veterinary Practitioner, 60010 Ostra, Italy
| | - Silvia Valentini
- Veterinary Practitioner, 30028 San Michele al Tagliamento, Italy;
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale Umbria e Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (G.M.D.M.)
| | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale Umbria e Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (G.M.D.M.)
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.-R.A.); (S.P.); (M.M.)
- Correspondence:
| |
Collapse
|
11
|
Lechmann J, Schoster A, Ernstberger M, Fouché N, Fraefel C, Bachofen C. A novel PCR protocol for detection and differentiation of neuropathogenic and non-neuropathogenic equid alphaherpesvirus 1. J Vet Diagn Invest 2019; 31:696-703. [PMID: 31477001 DOI: 10.1177/1040638719871975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) infections can have a major impact on the horse industry and equine welfare by causing abortion or respiratory or neurologic disease. A single nucleotide polymorphism (A2254→G2254) in open reading frame (ORF) 30, encoding the catalytic subunit of the DNA polymerase, has been shown to be a strong predictive marker for neuropathogenicity. Given that a previously established real-time PCR (rtPCR) protocol yielded unsatisfactory results concerning determination of the EHV-1 genotype, we developed and evaluated a new conventional PCR protocol enabling identification of the genotype by sequencing and restriction enzyme analysis (REA). Thirty samples from horses with signs typical for EHV-1 infection were tested by rtPCR and our new conventional PCR. The results showed that compared to rtPCR, the conventional PCR protocol combined with sequencing and REA was more reliable concerning unambiguous determination of the EHV-1 genotype. Results of our new assay confirmed previous findings, according to which the non-neuropathogenic genotype A2254 is predominantly found in animals with fever, respiratory signs, and abortions or perinatal mortality, whereas the neuropathogenic genotype G2254 is primarily detected in animals suffering from neurologic disease. In some samples, results pointed towards coinfection with both genotypes. Further studies are required in order to elucidate the significance of infections with genotype A2254 and G2254 in neurologic and non-neurologic cases, respectively.
Collapse
Affiliation(s)
- Julia Lechmann
- Institute of Virology (Lechmann, Fraefel, Bachofen), Equine Department, Clinic for Equine Internal Medicine (Schoster), Department of Farm Animals, Division of Herd Medicine and Outpatient Clinic (Ernstberger), Vetsuisse Faculty, University of Zurich, Zurich Switzerland.,Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland (Fouché)
| | - Angelika Schoster
- Institute of Virology (Lechmann, Fraefel, Bachofen), Equine Department, Clinic for Equine Internal Medicine (Schoster), Department of Farm Animals, Division of Herd Medicine and Outpatient Clinic (Ernstberger), Vetsuisse Faculty, University of Zurich, Zurich Switzerland.,Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland (Fouché)
| | - Martina Ernstberger
- Institute of Virology (Lechmann, Fraefel, Bachofen), Equine Department, Clinic for Equine Internal Medicine (Schoster), Department of Farm Animals, Division of Herd Medicine and Outpatient Clinic (Ernstberger), Vetsuisse Faculty, University of Zurich, Zurich Switzerland.,Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland (Fouché)
| | - Nathalie Fouché
- Institute of Virology (Lechmann, Fraefel, Bachofen), Equine Department, Clinic for Equine Internal Medicine (Schoster), Department of Farm Animals, Division of Herd Medicine and Outpatient Clinic (Ernstberger), Vetsuisse Faculty, University of Zurich, Zurich Switzerland.,Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland (Fouché)
| | - Cornel Fraefel
- Institute of Virology (Lechmann, Fraefel, Bachofen), Equine Department, Clinic for Equine Internal Medicine (Schoster), Department of Farm Animals, Division of Herd Medicine and Outpatient Clinic (Ernstberger), Vetsuisse Faculty, University of Zurich, Zurich Switzerland.,Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland (Fouché)
| | - Claudia Bachofen
- Institute of Virology (Lechmann, Fraefel, Bachofen), Equine Department, Clinic for Equine Internal Medicine (Schoster), Department of Farm Animals, Division of Herd Medicine and Outpatient Clinic (Ernstberger), Vetsuisse Faculty, University of Zurich, Zurich Switzerland.,Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland (Fouché)
| |
Collapse
|
12
|
Oladunni FS, Horohov DW, Chambers TM. EHV-1: A Constant Threat to the Horse Industry. Front Microbiol 2019; 10:2668. [PMID: 31849857 PMCID: PMC6901505 DOI: 10.3389/fmicb.2019.02668] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.
Collapse
Affiliation(s)
- Fatai S. Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Thomas M. Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
An Equine Herpesvirus Type 1 (EHV-1) Ab4 Open Reading Frame 2 Deletion Mutant Provides Immunity and Protection from EHV-1 Infection and Disease. J Virol 2019; 93:JVI.01011-19. [PMID: 31462575 DOI: 10.1128/jvi.01011-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) outbreaks continue to occur despite widely used vaccination. Therefore, development of EHV-1 vaccines providing improved immunity and protection is ongoing. Here, an open reading frame 2 deletion mutant of the neuropathogenic EHV-1 strain Ab4 (Ab4ΔORF2) was tested as a vaccine candidate. Three groups of horses (n = 8 each) were infected intranasally with Ab4ΔORF2 or the parent Ab4 virus or were kept as noninfected controls. Horses infected with Ab4ΔORF2 had reduced fever and nasal virus shedding compared to those infected with Ab4 but mounted similar adaptive immunity dominated by antibody responses. Nine months after the initial infection, all horses were challenged intranasally with Ab4. Previously noninfected horses (control/Ab4) displayed clinical signs, shed large amounts of virus, and developed cell-associated viremia. In contrast, 5/8 or 3/8 horses previously infected with Ab4ΔORF2 or Ab4, respectively, were fully protected from challenge infection as indicated by the absence of fever, clinical disease, nasal virus shedding, and viremia. All of these outcomes were significantly reduced in the remaining, partially protected 3/8 (Ab4ΔORF2/Ab4) and 5/8 (Ab4/Ab4) horses. Protected horses had EHV-1-specific IgG4/7 antibodies prior to challenge infection, and intranasal antibodies increased rapidly postchallenge. Intranasal inflammatory markers were not detectable in protected horses but quickly increased in control/Ab4 horses during the first week after infection. Overall, our data suggest that preexisting nasal IgG4/7 antibodies neutralize EHV-1, prevent viral entry, and thereby protect from disease, viral shedding, and cell-associated viremia. In conclusion, improved protection from challenge infection emphasizes further evaluation of Ab4ΔORF2 as a vaccine candidate.IMPORTANCE Nasal equine herpesvirus type 1 (EHV-1) shedding is essential for virus transmission during outbreaks. Cell-associated viremia is a prerequisite for the most severe disease outcomes, abortion and equine herpesvirus myeloencephalopathy (EHM). Thus, protection from viremia is considered essential for preventing EHM. Ab4ΔORF2 vaccination prevented EHV-1 challenge virus replication in the upper respiratory tract in fully protected horses. Consequently, these neither shed virus nor developed cell-associated viremia. Protection from virus shedding and viremia during challenge infection in combination with reduced virulence at the time of vaccination emphasizes ORF2 deletion as a promising modification for generating an improved EHV-1 vaccine. During this challenge infection, full protection was linked to preexisting local and systemic EHV-1-specific antibodies combined with rapidly increasing intranasal IgG4/7 antibodies and lack of nasal type I interferon and chemokine induction. These host immune parameters may constitute markers of protection against EHV-1 and be utilized as indicators for improved vaccine development and informed vaccination strategies.
Collapse
|
14
|
Brown LJ, Brown G, Kydd J, Stout TAE, Schulman ML. Failure to detect equid herpesvirus types 1 and 4 DNA in placentae and healthy new-born Thoroughbred foals. J S Afr Vet Assoc 2019; 90:e1-e5. [PMID: 31170779 PMCID: PMC6556910 DOI: 10.4102/jsava.v90i0.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 03/27/2019] [Indexed: 11/01/2022] Open
Abstract
Equid herpesvirus type 1 is primarily a respiratory tract virus associated with poor athletic performance that can also cause late gestation abortion, neonatal foal death and encephalomyelopathy. Horizontal transmission is well described, whereas evidence of vertical transmission of equid herpesvirus type 1 associated with the birth of a healthy foal has not been demonstrated. This study sampled a population of Thoroughbred mares (n = 71), and their healthy neonatal foals and foetal membranes, to test for the presence of both equid herpesvirus types 1 and 4 using a quantitative polymerase chain reaction assay. Foetal membrane swabs and tissue samples were taken immediately post-partum, and venous blood samples and nasal swabs were obtained from both mare and foal 8 h after birth. Neither equid herpesvirus type 1 nor equid herpesvirus type 4 nucleic acid was detected in any sample, and it was concluded that there was no active shedding of equid herpesvirus types 1 and 4 at the time of sampling. Consequently, no evidence of vertical transmission of these viruses could be found on this stud farm during the sampling period.
Collapse
Affiliation(s)
- Lara J Brown
- Department of Production Animal Studies, University of Pretoria, Pretoria.
| | | | | | | | | |
Collapse
|
15
|
Ferreira CGT, Campos MG, Felix DM, Santos MR, Carvalho OVD, Diaz MAN, Fietto JLR, Bressan GC, Silva-Júnior A, Almeida MRD. Evaluation of the antiviral activities of Bacharis dracunculifolia and quercetin on Equid herpesvirus 1 in a murine model. Res Vet Sci 2018; 120:70-77. [PMID: 30267998 DOI: 10.1016/j.rvsc.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/26/2018] [Accepted: 09/17/2018] [Indexed: 01/31/2023]
Abstract
Equid herpesvirus 1 (EHV-1) is a pathogen of high economic importance in equine breeding operations around the world. EHV-1 infection causes respiratory, neurologic and reproductive disease. The absence of an efficient therapy has caught the attention of the scientific community and the therapeutic activities of natural products with its antivirals effects might be effective for the disease's treatment. Herein it was evaluated the prophylactic and therapeutic potential of quercetin and ethanolic extracts of Bacharis dracunculifolia formulations compared to Penciclovir® in an in vivo EHV-1 infection model. Six to seven-week-old female C57BL/6 mice were randomly organized into fifteen groups with six animals each. Ex-1 represents the treatment post-challenge groups to assess morbidity, mortality and weight variation. Ex-2 represents the animals that received treatment for 5 days post-challenge for lesion evaluation. In Ex-3 animals were treated prior to viral challenge to assess morbidity, mortality and weight variation. All mice in the treatment groups were challenged by intranasal inoculation of 3.0 × 105 TCID50 EHV-1. The quercetin and B. dracunculifolia treatment decreased morbimortality in post-challenge treatment (Ex-1) and EHV-1 related lesions (Ex-2). Treatment prior to viral challenge (Ex-3) did not show any significant results. Based on the results of the present study, both tested formulations are promising antiviral agents for the treatment of EHV-1 infection.
Collapse
Affiliation(s)
| | - Mateus Gandra Campos
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil
| | - Daniele Mendes Felix
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil
| | | | | | - Marisa Alves Nogueira Diaz
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil
| | - Juliana Lopes Rangel Fietto
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil
| | - Gustavo Costa Bressan
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil
| | - Abelardo Silva-Júnior
- Departament of Veterinary, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil.
| | - Márcia Rogéria de Almeida
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-700, Brazil.
| |
Collapse
|
16
|
Poelaert KCK, Van Cleemput J, Laval K, Favoreel HW, Soboll Hussey G, Maes RK, Nauwynck HJ. Abortigenic but Not Neurotropic Equine Herpes Virus 1 Modulates the Interferon Antiviral Defense. Front Cell Infect Microbiol 2018; 8:312. [PMID: 30258819 PMCID: PMC6144955 DOI: 10.3389/fcimb.2018.00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV1) is considered as a major pathogen of Equidae, causing symptoms from mild respiratory disease to late-term abortion and neurological disorders. Different EHV1 strains circulating in the field have been characterized to be of abortigenic or neurovirulent phenotype. Both variants replicate in a plaque-wise manner in the epithelium of the upper respiratory tract (URT), where the abortigenic strains induce more prominent viral plaques, compared to the neurovirulent strains. Considering the differences in replication at the URT, we hypothesized that abortigenic strains may show an increased ability to modulate the type I IFN secretion/signaling pathway, compared to strains that display the neurovirulent phenotype. Here, we analyze IFN levels induced by abortigenic and neurovirulent EHV1 using primary respiratory epithelial cells (EREC) and respiratory mucosa ex vivo explants. Similar levels of IFNα (~70 U/ml) were detected in explants inoculated with both types of EHV1 strains from 48 to 72 hpi. Second, EREC and mucosa explants were treated with recombinant equine IFNα (rEqIFNα) or Ruxolitinib (Rux), an IFN signaling inhibitor, prior to and during inoculation with abortigenic or neurovirulent EHV1. Replication of both EHV1 variants was suppressed by rEqIFNα. Further, addition of Rux increased replication in a concentration-dependent manner, indicating an IFN-susceptibility for both variants. However, in two out of three horses, at a physiological concentration of 100 U/ml of rEqIFNα, an increase in abortigenic EHV1 replication was observed compared to 10 U/ml of rEqIFNα, which was not observed for the neurovirulent strains. Moreover, in the presence of Rux, the plaque size of the abortigenic variants remained unaltered, whereas the typically smaller viral plaques induced by the neurovirulent variants became larger. Overall, our results demonstrate the importance of IFNα in the control of EHV1 replication in the URT for both abortigenic and neurovirulent variants. In addition, our findings support the speculation that abortigenic variants of EHV1 may have developed anti-IFN mechanisms that appear to be absent or less pronounced in neurovirulent EHV1 strains.
Collapse
Affiliation(s)
- Katrien C K Poelaert
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jolien Van Cleemput
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathlyn Laval
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Herman W Favoreel
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Roger K Maes
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Hans J Nauwynck
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
17
|
Schnabel CL, Wimer CL, Perkins G, Babasyan S, Freer H, Watts C, Rollins A, Osterrieder N, Wagner B. Deletion of the ORF2 gene of the neuropathogenic equine herpesvirus type 1 strain Ab4 reduces virulence while maintaining strong immunogenicity. BMC Vet Res 2018; 14:245. [PMID: 30134896 PMCID: PMC6106926 DOI: 10.1186/s12917-018-1563-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Equine herpesvirus type 1 (EHV-1) induces respiratory infection, abortion, and neurologic disease with significant impact. Virulence factors contributing to infection and immune evasion are of particular interest. A potential virulence factor of the neuropathogenic EHV-1 strain Ab4 is ORF2. This study on 24 Icelandic horses, 2 to 4 years of age, describes the infection with EHV-1 Ab4, or its deletion mutant devoid of ORF2 (Ab4ΔORF2) compared to non-infected controls (each group n = 8). The horses' clinical presentation, virus shedding, viremia, antibody and cellular immune responses were monitored over 260 days after experimental infection. RESULTS Infection with Ab4ΔORF2 reduced fever and minimized nasal virus shedding after infection compared to the parent virus strain Ab4, while Ab4ΔORF2 established viremia similar to Ab4. Concurrently with virus shedding, intranasal cytokine and interferon α (IFN-α) production increased in the Ab4 group, while horses infected with Ab4ΔORF2 expressed less IFN-α. The antibody response to EHV-1 was evaluated by a bead-based multiplex assay and was similar in both infected groups, Ab4 and Ab4ΔORF2. EHV-1 specific immunoglobulin (Ig) G1 was induced 8 days after infection (d8 pi) with a peak on d10-12 pi. EHV-1 specific IgG4/7 increased starting on d10 pi, and remained elevated in serum until the end of the study. The intranasal antibody response to EHV-1 was dominated by the same IgG isotypes and remained elevated in both infected groups until d130 pi. In contrast to the distinct antibody response, no induction of EHV-1 specific T-cells was detectable by flow cytometry after ex vivo re-stimulation of peripheral blood mononuclear cells (PBMC) with EHV-1 in any group. The cellular immune response was characterized by increased secretion of IFN-γ and interleukin10 in response to ex vivo re-stimulation of PBMC with EHV-1. This response was present during the time of viremia (d5-10 pi) and was similar in both infected groups, Ab4 and Ab4ΔORF2. CONCLUSIONS ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa. In contrast, ORF2 does not influence viremia. The immunogenicity of the Ab4ΔORF2 and parent Ab4 viruses are identical. Graphical abstract - Deletion of ORF2 reduces virulence of EHV-1 Ab4. Graphical summary of the main findings of this study: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa.
Collapse
Affiliation(s)
- Christiane L Schnabel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Christine L Wimer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gillian Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Christina Watts
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Yilmaz H, Gurel A, Aktas M, Yildirim F, Bamac OE, Haktanir D, Tekelioglu BK, Gur E, Altan Tarakci E, Helps C, Richt JA, Turan N. Clinical Virological and Pathological Investigations on Horses With Neurologic Disorders in Turkey. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Wilson ME, Holz CL, Kopec AK, Dau JJ, Luyendyk JP, Soboll Hussey G. Coagulation parameters following equine herpesvirus type 1 infection in horses. Equine Vet J 2018; 51:102-107. [PMID: 29658149 DOI: 10.1111/evj.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Equine herpesvirus type 1 (EHV-1) is the cause of respiratory disease, abortion storms, and outbreaks of herpesvirus myeloencephalopathy (EHM). Infection of the spinal cord is characterised by multifocal regions of virally infected vascular endothelium, associated with vasculitis, thrombosis and haemorrhage that result in ischaemia and organ dysfunction. However, the mechanism of thrombosis in affected horses is unknown. OBJECTIVES To evaluate tissue factor (TF) procoagulant activity and thrombin-antithrombin complex (TAT) levels in horses following infection with EHV-1. STUDY DESIGN In vitro and in vivo studies following experimental EHV-1 infection. METHODS Horses were infected with EHV-1 and levels of peripheral blood mononuclear cell (PBMC)-associated TF activity; plasma and cerebrospinal fluid (CSF)-derived microvesicle (MV)-associated TF activity and TAT complexes in plasma were examined. RESULTS EHV-1 infection increased PBMC TF procoagulant activity in vitro and in vivo. In infected horses, this increase was observed during the acute infection and was most marked at the onset and end of viraemia. However, no significant differences were observed between the horses that showed signs of EHM and the horses that did not develop EHM. Significant changes in MV-associated TF procoagulant activity and TAT complexes were not observed in infected horses. MAIN LIMITATIONS A small number of horses typically exhibit clinical EHM following experimental infection. CONCLUSIONS The results indicate that EHV-1 infection increases PBMC-associated TF procoagulant activity in vivo and in vitro. Additional in vivo studies are needed to better understand the role of TF-dependent coagulation during EHM pathogenesis in horses.
Collapse
Affiliation(s)
- M E Wilson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - C L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - A K Kopec
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - J J Dau
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - J P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - G Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
20
|
Tallmadge RL, Žygelytė E, Van de Walle GR, Kristie TM, Felippe MJB. Effect of a Histone Demethylase Inhibitor on Equine Herpesvirus-1 Activity In Vitro. Front Vet Sci 2018; 5:34. [PMID: 29594155 PMCID: PMC5857540 DOI: 10.3389/fvets.2018.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/16/2018] [Indexed: 01/12/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is a ubiquitous and highly contagious pathogen that causes a range of disease severities with outbreaks of notable economic impact. Given the limitations in immune protection of current vaccines and the limited effectiveness of antiviral drugs on EHV-1 infections in vivo, improved treatment measures are needed to control disease. The use of drugs that alter the epigenetic state of herpes simplex virus genome has been shown to limit viral primary infection and reactivation both in vitro and in vivo. Therefore, we tested the hypothesis that maintaining a repressive epigenetic state on the EHV-1 genome in the host equine cell would decrease viral load during lytic infection. Equine fetal kidney cells (EFKCs) or isolated peripheral blood leukocytes were treated in vitro with (a) the nucleoside analog ganciclovir; (b) the histone demethylase inhibitor OG-L002; (c) both ganciclovir and OG-L002; or (d) dimethyl sulfoxide (DMSO, vehicle control); and then infected with a clinical EHV-1 isolate. Treatment of EFKCs with ganciclovir (mean 22.3 DNA copies per cell, p = 0.0005), OG-L002 (mean 25.6, p = 0.005) or both ganciclovir and OG-L002 (mean 7.1, p = 0.0001) resulted in decreased EHV-1 viral load at 24 h post-infection (hpi) in comparison with DMSO (mean 42.0), with greater impact using the combined treatment. Further, EHV-1 gene expression at 3 hpi decreased when EFKCs were infected in the presence of ganciclovir (p = 0.04) and combined treatment of ganciclovir and OG-L002 (p = 0.0003). In contrast, under similar conditions, neither ganciclovir nor OG-L002 suppressed EHV-1 infection in leukocytes. Differences between cell types, drug penetrance, or drug turnover, may have contributed to the distinct effects observed in this study.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Emilija Žygelytė
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | | - Thomas M. Kristie
- Molecular Genetics Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, United States
| | - M. Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
21
|
Stasiak K, Dunowska M, Hills SF, Rola J. Genetic characterization of equid herpesvirus type 1 from cases of abortion in Poland. Arch Virol 2017; 162:2329-2335. [PMID: 28451902 PMCID: PMC5506511 DOI: 10.1007/s00705-017-3376-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 12/29/2022]
Abstract
Equid herpesvirus type 1 (EHV-1) is a common viral infection associated with varied clinical outcomes including respiratory disease, abortion and neurological disease. We have characterized EHV-1 sequences (n = 38) obtained from cases of equine abortion in Poland between 1999 and 2016, based on sequencing of PCR products from open reading frames (ORF) 30 and 68 of the EHV-1 genome. The majority (81.6%) of sequences were not classified into any of the previously described groups based on the ORF68 sequence. The remaining sequences belonged to ORF68 group III (7.9%) or IV (10.5%). A haplotype network analysis did not show any obvious structure within networks of local Polish sequences, nor within a global network of 215 EHV-1 sequences when these networks were coloured based on the geographical origin of viruses or date of detection. Our data suggest that ORF68 does not provide a reliable molecular marker for epidemiological studies of EHV-1, at least in a global sense. Its usefulness to aid local investigations of individual outbreaks remains to be established. All but two Polish EHV-1 sequences belonged to the ORF30 N752 genotype. The two ORF30 D752 viruses were obtained from abortion cases in 2009 and 2010. Hence, abortion cases that occurred in Poland between 1999 and 2016 were caused predominantly by EHV-1 with the ORF30 N752 genotype, with no indication of an increase in the prevalence of the ORF30 D752 variant.
Collapse
Affiliation(s)
- Karol Stasiak
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Magdalena Dunowska
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Simon F Hills
- Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland.
| |
Collapse
|
22
|
El-Husseini DM, Helmy NM, Tammam RH. Application of gold nanoparticle-assisted PCR for equine herpesvirus 1 diagnosis in field samples. Arch Virol 2017; 162:2297-2303. [DOI: 10.1007/s00705-017-3379-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
|
23
|
Zhao J, Poelaert KCK, Van Cleemput J, Nauwynck HJ. CCL2 and CCL5 driven attraction of CD172a + monocytic cells during an equine herpesvirus type 1 (EHV-1) infection in equine nasal mucosa and the impact of two migration inhibitors, rosiglitazone (RSG) and quinacrine (QC). Vet Res 2017; 48:14. [PMID: 28241864 PMCID: PMC5327560 DOI: 10.1186/s13567-017-0419-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Besides epithelial cells, CD172a+ monocytic cells become infected with EHV-1 in the respiratory mucosa and transport the virus from the apical side of the epithelium to the lamina propria en route to the lymph and blood circulation. Whether CD172a+ monocytic cells are specifically recruited to the infection sites in order to pick up virus is unknown. In our study, equine nasal mucosa explants were inoculated with EHV-1 neurological strains 03P37 and 95P105 or the non-neurological strains 97P70 and 94P247 and the migration of monocytic cells was examined by immunofluorescence. Further, the role of monokines CCL2 and CCL5 was determined and the effect of migration inhibitors rosiglitazone (RSG) or quinacrine was analyzed. It was shown that with neurological strains but not with the non-neurological strains, CD172a+ cells specifically migrated towards EHV-1 infected regions and that CCL2 and CCL5 were involved. CCL2 started to be expressed in infected epithelial cells at 24 h post-incubation (hpi) and CCL5 at 48 hpi, which corresponded with the CD172a+ migration. RSG treatment of EHV-1-inoculated equine nasal mucosa had no effect on the virus replication in the epithelium, but decreased the migration of CD172a+ cells in the lamina propria. Overall, these findings bring new insights in the early pathogenesis of EHV-1 infections, illustrate differences between neurological and non-neurological strains and show the way for EHV-1 treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Jolien Van Cleemput
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
24
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Anagha G, Gulati BR, Riyesh T, Virmani N. Genetic characterization of equine herpesvirus 1 isolates from abortion outbreaks in India. Arch Virol 2016; 162:157-163. [PMID: 27699511 DOI: 10.1007/s00705-016-3097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022]
Abstract
Equine herpesvirus 1 (EHV1) is a common pathogen of horses that causes upper respiratory tract disease, abortion, neonatal death and neurological disease. The neurological form of disease is called equine herpesvirus myeloencephalopathy (EHM). During the past decade, the incidence of EHM has been on the rise in Europe, North America, Australia and Asia. Some EHV1 isolates causing EHM exhibit a single-nucleotide polymorphism (SNP) in the DNA polymerase gene (ORF30) at position 2254 (A2254 to G2254). Further, based on polymorphism in the ORF68, EHV1 isolates have been classified into different groups. The aim of the present study was to estimate the genetic diversity of EHV1 and to determine the prevalence of the neuropathogenic genotype of EHV1 in India. Out of 133 clinical specimens from abortion cases in northern India, 56 were positive for EHV1 infection. Analysis of the A/G SNP by real-time PCR and sequence analysis revealed that 54 of 56 samples (96.43 %) were of the non-neuropathogenic genotype (A2254), while two (3.57 %) had the neuropathogenic marker (G2254). Sequence analysis of the polymorphic region of ORF68 of EHV1 isolates (n = 9) from India indicated that the Delhi/1998, Tohana-2/2013, Hisar-2/2014 and Hisar-15/1990 isolates belonged to group 4, while the Jind/1996, Rajasthan/1998, Delhi-3/2007 and Tohana-5/1996 isolates clustered within group 5. One isolate (Hisar-7/1990) exhibited SNPs at positions C710 and C713, forming a separate group. Here, we report for the first time the detection of neuropathogenic genotypes of EHV1 in India and show that Indian EHV1 isolates cluster within groups 4 and 5.
Collapse
Affiliation(s)
- Gayathri Anagha
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Baldev Raj Gulati
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India.
| | | | - Nitin Virmani
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| |
Collapse
|
26
|
Zhao J, Negussie H, Laval K, Poelaert KC, Nauwynck HJ. Dual infections of equine herpesvirus 1 and equine arteritis virus in equine respiratory mucosa explants. Virus Res 2016; 220:104-11. [DOI: 10.1016/j.virusres.2016.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
|
27
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells. Vet Immunol Immunopathol 2016; 173:1-9. [PMID: 27090619 DOI: 10.1016/j.vetimm.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
28
|
Spiesschaert B, Stephanowitz H, Krause E, Osterrieder N, Azab W. Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin. J Gen Virol 2016; 97:1218-1228. [PMID: 26843465 DOI: 10.1099/jgv.0.000418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glycoprotein B (gB) of equine herpesvirus type 1 (EHV-1) is predicted to be cleaved by furin in a fashion similar to that of related herpesviruses. To investigate the contribution of furin-mediated gB cleavage to EHV-1 growth, canonical furin cleavage sites were mutated. Western blot analysis of mutated EHV-1 gB showed that it was cleaved at two positions, 518RRRR521 and 544RLHK547, and that the 28 aa between the two sites were removed after cleavage. Treating infected cells with either convertase or furin inhibitors reduced gB cleavage efficiency. Further, removal of the first furin recognition motif did not affect in vitro growth of EHV-1, while mutation of the second motif greatly affected virus growth. In addition, a second possible signal peptide cleavage site was identified for EHV-1 gB between residues 98 and 99, which was 13 aa downstream of that previously identified.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| | - Heike Stephanowitz
- Leibniz-Institut für Molekulare Pharmakologie,Robert-Rössle-Strasse 10, D-13125 Berlin,Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie,Robert-Rössle-Strasse 10, D-13125 Berlin,Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| | - Walid Azab
- Department of Virology, Faculty of Veterinary Medicine,Zagazig University,Egypt.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| |
Collapse
|
29
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. The neuropathogenic T953 strain of equine herpesvirus-1 inhibits type-I IFN mediated antiviral activity in equine endothelial cells. Vet Microbiol 2015; 183:110-8. [PMID: 26790943 DOI: 10.1016/j.vetmic.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/24/2022]
Abstract
Equine herpesvirus-1 (EHV-1) infects equine endothelial cells (EECs) lining the small blood vessels in the central nervous system. However, the effect of type I IFN on EHV-1 replication in the EECs is not well studied. Thus, the primary objective of this study was to investigate the effect of type-I IFN on the replication of the neuropathogenic T953 strain of EHV-1 in vitro in EECs. The initial data showed that the EHV-1 was partly resistant to the biological effect of exogenously supplied recombinant equine IFN-α. Subsequent investigation into the mechanism of resistance showed that EHV-1 infection of EECs interfered with the STAT-1 phosphorylation through which type-I IFN exerts its antiviral effect. Immunofluorescence staining showed interference with the translocation of STAT-1 molecules from cytoplasm to nucleus confirming the virus mediated suppression of STAT-1 activation. Downstream of the JAK-STAT signaling, EHV-1 infection inhibited expression of cellular antiviral proteins including IFN-stimulated gene 56 (ISG56) and viperin. Taken together these findings suggest that the neuropathogenic T953 strain of EHV-1 evades the host innate immune response by inhibiting IFN and this may provide some insight into the pathogenesis of EHV-1 infection.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| |
Collapse
|
30
|
McFadden AMJ, Hanlon D, McKenzie RK, Gibson I, Bueno IM, Pulford DJ, Orr D, Dunowska M, Stanislawek WL, Spence RP, McDonald WL, Munro G, Mayhew IG. The first reported outbreak of equine herpesvirus myeloencephalopathy in New Zealand. N Z Vet J 2015; 64:125-34. [DOI: 10.1080/00480169.2015.1096853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Sarkar S, Balasuriya UBR, Horohov DW, Chambers TM. Equine herpesvirus-1 suppresses type-I interferon induction in equine endothelial cells. Vet Immunol Immunopathol 2015; 167:122-9. [PMID: 26275803 DOI: 10.1016/j.vetimm.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most common and important respiratory viral pathogens of horses. EHV-1 in horses replicates initially in the respiratory epithelium and then spreads systematically to endothelial cells lining the small blood vessels in the uterus and spinal cord, and highly pathogenic virus strains can produce aborted fetuses or myeloencephalopathy. Like other herpes viruses, EHV-1 employs a variety of mechanisms for immune evasion. Some herpes viruses down-regulate the type-I interferon (IFN) response to infection, but such activity has not been described for EHV-1. Here, in an in vitro system utilizing an established equine endothelial cell line, we studied the temporal effect on IFN-β responses following infection with the neuropathogenic T953 strain of EHV-1. Results show that after an early induction of IFN-β, the virus actively shut down further production of IFN-β and this was correlated with expression of the viral late genes. Expression of the IFN response factor viperin, a marker of host cell type-I IFN responses, was also suppressed by T953 virus infection. EHV-1-mediated suppression of host type-I IFN responses may play an important role in EHV-1 pathogenesis and the mechanism of this, presumably involving a viral late gene product, warrants investigation.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
32
|
Kanitz FA, Cargnelutti JF, Anziliero D, Gonçalves KV, Masuda EK, Weiblen R, Flores EF. Respiratory and neurological disease in rabbits experimentally infected with equid herpesvirus 1. Microb Pathog 2015; 87:45-50. [PMID: 26187161 DOI: 10.1016/j.micpath.2015.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/28/2015] [Accepted: 07/11/2015] [Indexed: 11/24/2022]
Abstract
Equid herpesvirus type 1 (EHV-1) is an important pathogen of horses worldwide, associated with respiratory, reproductive and/or neurological disease. A mouse model for EHV-1 infection has been established but fails to reproduce some important aspects of the viral pathogenesis. Then, we investigated the susceptibility of rabbits to EHV-1 aiming at proposing this species as an alternative model for EHV-1 infection. Weanling rabbits inoculated intranasal with EHV-1 Kentucky D (10(7) TCID50/animal) shed virus in nasal secretions up to day 8-10 post-inoculation (pi), presented viremia up to day 14 pi and seroconverted to EHV-1 (virus neutralizing titers 4 to 64). Most rabbits (75%) developed respiratory disease, characterized by serous to hemorrhagic nasal discharge and mild to severe dyspnea. Some animals (20%) presented neurological signs as circling, bruxism and opisthotonus. Six animals died during acute disease (days 3-6); infectious virus and/or viral DNA were detected in the lungs, trigeminal ganglia (TG), olfactory bulbs (OBs) and cerebral cortex/brain (CC). Histological examination showed necrohemorrhagic, multifocal to coalescent bronchointerstitial pneumonia and diffuse alveolar edema. In two rabbits euthanized at day 50 pi, latent EHV-1 DNA was detected in the OBs. Dexamethasone administration at day 50 pi resulted in virus reactivation, demonstrated by virus shedding, viremia, clinical signs, and increase in VN titers and/or by detection of virus DNA in lungs, OBs, TGs and/or CC. These results demonstrate that rabbits are susceptible to EHV-1 infection and develop respiratory and neurological signs upon experimental inoculation. Thus, rabbits may be used to study selected aspects of EHV-1 biology and pathogenesis, extending and complementing the mouse model.
Collapse
Affiliation(s)
- Fábio A Kanitz
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, sala 4200, Santa Maria, RS, CEP 97105-900, Brazil; 9(a) Supervisão Regional da Secretaria da Agricultura e Pecuária do Rio Grande do Sul, Rua Mário Santo Dani, 100, Osório, RS, CEP 95520-000, Brazil
| | - Juliana F Cargnelutti
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, sala 4200, Santa Maria, RS, CEP 97105-900, Brazil
| | - Deniz Anziliero
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, sala 4200, Santa Maria, RS, CEP 97105-900, Brazil; Escola de Medicina, Faculdade Meridional - IMED, Senador Pinheiro, 304, Passo Fundo, RS, CEP 99070-220, Brazil
| | - Kelley V Gonçalves
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, sala 4200, Santa Maria, RS, CEP 97105-900, Brazil
| | - Eduardo K Masuda
- Axys Análises Laboratório Veterinário e Consultoria Diagnóstica, Rua Pedro Chaves Barcelos, 475, Bairro Montserrat, Porto Alegre, RS, CEP 90450-010, Brazil
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, sala 4200, Santa Maria, RS, CEP 97105-900, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, sala 4200, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
33
|
van Galen G, Leblond A, Tritz P, Martinelle L, Pronost S, Saegerman C. A retrospective study on equine herpesvirus type-1 associated myeloencephalopathy in France (2008-2011). Vet Microbiol 2015; 179:304-9. [PMID: 26228835 DOI: 10.1016/j.vetmic.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/26/2015] [Accepted: 07/04/2015] [Indexed: 11/28/2022]
Abstract
Diagnosis of equine herpesvirus-1 associated myeloencephalopathy (EHM) can be troublesome, but early recognition and knowledge of risk factors are essential for prevention and control. The objectives for this study are to (1) describe EHM in France, (2) improve clinical recognition, (3) identify risk factors. Through epidemiosurveillance of acute neurological cases (all considered to be potentially infectious cases) in France (2008-2011), 26 EHM cases were identified and 29 EHM negative control cases. EHM cases were described and compared to controls with univariate, multivariate and classification and regression tree analysis. EHM cases had a 46% fatality rate and were frequently isolated cases. Most showed ataxia, paresis and a cauda equina syndrome, yet presence of other neurological signs was variable. Statistical analysis identified the following variables to be significantly associated to EHM compared to controls: introduction of a new horse to the herd, cauda equina syndrome, larger herd size, saddle horses and month of occurrence. The presence of many isolated cases, and less typical and variable clinical presentations emphasize the difficulty in diagnosing EHM. Nevertheless, history and clinical examination of acute neurological cases can be valuable in recognizing EHM early as well in order to select those cases that need further laboratory testing and infection control measures. Moreover, with a different study format and geographic location, risk factors were found to be similar to previous studies, therefore strengthening their significance to the spread of EHM.
Collapse
Affiliation(s)
- Gaby van Galen
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Science (UREAR-ULg), Department of Infectious and Parasitic diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium.
| | - Agnes Leblond
- UR 346 Animal Epidemiology INRA Theix, Vetagrosup, Equine Department, University of Lyon, Lyon, France; Réseau d'Epidémio-Surveillance en Pathologie Equine (RESPE), Mondeville, France
| | - Pierre Tritz
- Réseau d'Epidémio-Surveillance en Pathologie Equine (RESPE), Mondeville, France; Veterinary Clinic of Faulquemont, Faulquemont, France; Committee of Infectious Diseases of the French Equine Veterinary Association (Association Vétérinaire Equine Francaise-AVEF), France
| | - Ludovic Martinelle
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Science (UREAR-ULg), Department of Infectious and Parasitic diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Stéphane Pronost
- Réseau d'Epidémio-Surveillance en Pathologie Equine (RESPE), Mondeville, France; Frank Duncombe Laboratory-LABEO, Caen, France; Normandie Université, Unité Risques Microbiens (U2RM), 14000 Caen, France
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Science (UREAR-ULg), Department of Infectious and Parasitic diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium; Réseau d'Epidémio-Surveillance en Pathologie Equine (RESPE), Mondeville, France
| |
Collapse
|
34
|
Negussie H, Gizaw D, Tessema TS, Nauwynck HJ. Equine Herpesvirus-1 Myeloencephalopathy, an Emerging Threat of Working Equids in Ethiopia. Transbound Emerg Dis 2015; 64:389-397. [PMID: 26010868 DOI: 10.1111/tbed.12377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/29/2022]
Abstract
Although equine herpesvirus myeloencephalopathy (EHM) is a sporadic and relatively uncommon manifestation of equine herpesvirus-1 (EHV-1), it has the potential for causing devastating outbreaks in horses. Up till now, there were no reported EHM outbreaks in donkeys and mules. This study describes the isolation and molecular characterization of EHV-1 from clinically EHM-affected horses (n = 6), mules (n = 3) and donkeys (n = 82) in Ethiopia during outbreaks from May 2011 to December 2013. The incidence of EHM cases was higher from April to mid-June. EHM in donkeys was more severe and death without clinical signs of paralysis, and recumbency was frequently observed. The main age of affected equines ranged from 7 to 10 years (n = 51; 56.0%), and females (n = 58; 63.7%) were more affected than males. The incidence of neuropathogenic (D752 ) and non-neuropathogenic (N752 ) variants of EHV-1 from EHM-affected equines in Ethiopia was assessed by sequencing the DNA polymerase gene (ORF30) of the EHV-1 isolates. The results indicated that from the total of 91 clinically affected equines, 90 (98.9%) of them had an ORF30 D752 genotype. An ORF30 N752 variant was only found in one donkey. Analysis of ORF68 as grouping marker for geographical differences showed that the Ethiopian EHV-1 isolates belong to geographical group 4. Due to the fatal nature of EHV-1 in donkeys, it would be interesting to examine the pathogenesis of EHM in this species. At present, there is no vaccine available in Ethiopia, and therefore, outbreaks of EHV-1 should be controlled by proper management adaptations. In addition, it is important to test the efficacy of the commercial vaccines not only in horses, but also in donkeys and mules.
Collapse
Affiliation(s)
- H Negussie
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Ziet, Ethiopia
| | - D Gizaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - T S Tessema
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - H J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
35
|
Comparative analysis of glycoprotein B (gB) of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in cellular tropism and cell-to-cell transmission. Viruses 2015; 7:522-42. [PMID: 25654240 PMCID: PMC4353902 DOI: 10.3390/v7020522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/04/2015] [Accepted: 01/27/2015] [Indexed: 12/05/2022] Open
Abstract
Glycoprotein B (gB) plays an important role in alphaherpesvirus cellular entry and acts in concert with gD and the gH/gL complex. To evaluate whether functional differences exist between gB1 and gB4, the corresponding genes were exchanged between the two viruses. The gB4-containing-EHV-1 (EHV-1_gB4) recombinant virus was analyzed for growth in culture, cell tropism, and cell entry rivaling no significant differences when compared to parental virus. We also disrupted a potential integrin-binding motif, which did not affect the function of gB in culture. In contrast, a significant reduction of plaque sizes and growth kinetics of gB1-containing-EHV-4 (EHV-4_gB1) was evident when compared to parental EHV-4 and revertant viruses. The reduction in virus growth may be attributable to the loss of functional interaction between gB and the other envelope proteins involved in virus entry, including gD and gH/gL. Alternatively, gB4 might have an additional function, required for EHV-4 replication, which is not fulfilled by gB1. In conclusion, our results show that the exchange of gB between EHV-1 and EHV-4 is possible, but results in a significant attenuation of virus growth in the case of EHV-4_gB1. The generation of stable recombinant viruses is a valuable tool to address viral entry in a comparative fashion and investigate this aspect of virus replication further.
Collapse
|
36
|
Gonzalez-Medina S, Newton JR. Equine herpesvirus-1: Dealing practically but effectively with an ever present threat. Equine Vet J 2015; 47:142-4. [DOI: 10.1111/evj.12416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. Gonzalez-Medina
- Epidemiology and Disease Surveillance, Animal Health Trust; Lanwades Park, Kentford Newmarket Suffolk CB8 7UU UK
| | - J. R. Newton
- Epidemiology and Disease Surveillance, Animal Health Trust; Lanwades Park, Kentford Newmarket Suffolk CB8 7UU UK
| |
Collapse
|
37
|
Estell KE, Dawson DR, Magdesian KG, Swain E, Laing ST, Siso S, Mapes S, Pusterla N. Quantitative molecular viral loads in 7 horses with naturally occurring equine herpesvirus-1 infection. Equine Vet J 2014; 47:689-93. [PMID: 25212737 DOI: 10.1111/evj.12351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 08/10/2014] [Indexed: 11/28/2022]
Abstract
REASONS FOR PERFORMING STUDY Data associating quantitative viral load with severity, clinical signs and survival in equine herpesvirus-1 myeloencephalopathy (EHM) have not been reported. OBJECTIVES To report the clinical signs, treatment, and temporal progression of viral loads in 7 horses with naturally occurring EHM and to examine the association of these factors with survival. STUDY DESIGN Retrospective case series. METHODS The population included 7 horses with EHM presented to the University of California, Davis William R. Pritchard Veterinary Medical Teaching Hospital from May to September 2011. Horses were graded using a neurological grading scale. Daily quantitative PCR was performed on nasal secretions and whole blood. Treatment, survival, outcome and histopathology were reported. RESULTS At presentation, one horse was neurological grade 5/5, 3 were grade 4/5 and 3 were grade 3/5. All were treated with anti-inflammatory drugs, valacyclovir and management in a sling if necessary. All were infected with equine herpesvirus-1 of DNA polymerase D752 genotype. Peak viral load in nasal secretions and blood of 5 survivors ranged from 6.9 × 10(3) to 2.81 × 10(5) (median 5.11 × 10(4) ) and from 143 to 4340 gB gene copies/million eukaryotic cells (median 3146), respectively. The 2 nonsurvivors presented with grade 3/5 neurological signs and progressed to encephalopathy. Peak viral load was higher in nonsurvivors, with levels in nasal secretions of 1.9 × 10(9) and 2.2 × 10(9) and in blood of 2.05 × 10(4) and 1.02 × 10(5) gB gene copies/million eukaryotic cells. Case fatality was 2/7. CONCLUSIONS Nonsurvivors had viral loads 1000-fold higher in nasal secretions and 10-fold higher in blood than survivors. There was no relationship between severity of clinical signs at presentation and survival. Thus, encephalopathy and high viral load were negatively associated with survival in this population. Further research should be performed to determine whether high viral loads are associated with encephalopathy and poor prognosis. The Summary is available in Chinese - see Supporting information.
Collapse
Affiliation(s)
- K E Estell
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - D R Dawson
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - K G Magdesian
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - E Swain
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - S T Laing
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - S Siso
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - S Mapes
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| | - N Pusterla
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, USA
| |
Collapse
|
38
|
The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2014; 66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases. Based on this information, we can begin to identify specific situations where the horse may provide a unique immunological model for certain human diseases.
Collapse
|
39
|
Dunowska M. A review of equid herpesvirus 1 for the veterinary practitioner. Part A: clinical presentation, diagnosis and treatment. N Z Vet J 2014; 62:171-8. [PMID: 24597778 DOI: 10.1080/00480169.2014.899945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Equid herpesvirus (EHV) type 1 is a common pathogen of horses with worldwide distribution. Although severe tracheobronchitis has been described in some field outbreaks of EHV-1 respiratory disease, many EHV-1 infections occur asymptomatically or are accompanied only by signs of mild respiratory disease. However, EHV-1 infection can also result in outcomes other than respiratory disease such as abortion, neonatal death or neurological disease. This review provides an overview of the diagnosis, treatment and prognosis for EHV-1-associated diseases, with an emphasis on neurological presentations of EHV-1 infection.
Collapse
Affiliation(s)
- M Dunowska
- a Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Palmerston North , New Zealand
| |
Collapse
|
40
|
Sloet van Oldruitenborgh-Oosterbaan MM. Admittance of a neurological case in an equine hospital? EQUINE VET EDUC 2014. [DOI: 10.1111/eve.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Ma G, Azab W, Osterrieder N. Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)—Masters of co-evolution and a constant threat to equids and beyond. Vet Microbiol 2013; 167:123-34. [DOI: 10.1016/j.vetmic.2013.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 12/28/2022]
|
42
|
Role of equine herpesviruses as co-infecting agents in cases of abortion, placental disease and neonatal foal mortality. Vet Res Commun 2013; 37:311-7. [DOI: 10.1007/s11259-013-9578-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
43
|
Walter J, Seeh C, Fey K, Bleul U, Osterrieder N. Clinical observations and management of a severe equine herpesvirus type 1 outbreak with abortion and encephalomyelitis. Acta Vet Scand 2013; 55:19. [PMID: 23497661 PMCID: PMC3630004 DOI: 10.1186/1751-0147-55-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/25/2013] [Indexed: 11/10/2022] Open
Abstract
Latent equine herpesvirus type 1 (EHV-1) infection is common in horse populations worldwide and estimated to reach a prevalence nearing 90% in some areas. The virus causes acute outbreaks of disease that are characterized by abortion and sporadic cases of myeloencephalopathy (EHM), both severe threats to equine facilities. Different strains vary in their abortigenic and neuropathogenic potential and the simultaneous occurrence of EHM and abortion is rare. In this report, we present clinical observations collected during an EHV-1 outbreak caused by a so-called “neuropathogenic” EHV-1 G2254/D752 polymerase (Pol) variant, which has become more prevalent in recent years and is less frequently associated with abortions. In this outbreak with 61 clinically affected horses, 6/7 pregnant mares aborted and 8 horses developed EHM. Three abortions occurred after development of EHM symptoms. Virus detection was performed by nested PCR targeting gB from nasal swabs (11 positive), blood serum (6 positive) and peripheral blood mononuclear cells (9 positive) of a total of 42 horses sampled. All 6 fetuses tested positive for EHV-1 by PCR and 4 by virus isolation. Paired serum neutralization test (SNT) on day 12 and 28 after the index case showed a significant (≥ 4-fold) increase in twelve horses (n = 42; 28.6%). This outbreak with abortions and EHM cases on a single equine facility provided a unique opportunity for the documentation of clinical disease progression as well as diagnostic procedures.
Collapse
|
44
|
First Report on the Frequency and Molecular Detection of Neuropathogenic EHV-1 in Turkey. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2011.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Kydd JH, Slater J, Osterrieder N, Lunn DP, Antczak DF, Azab W, Balasuriya U, Barnett C, Brosnahan M, Cook C, Damiani A, Elton D, Frampton A, Gilkerson J, Goehring L, Horohov D, Maxwell L, Minke J, Morley P, Nauwynck H, Newton R, Perkins G, Pusterla N, Soboll-Hussey G, Traub-Dargatz J, Townsend H, Van de walle GR, Wagner B. Third International Havemeyer Workshop on Equine Herpesvirus type 1. Equine Vet J 2012; 44:513-7. [DOI: 10.1111/j.2042-3306.2012.00604.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Res 2012; 169:203-11. [PMID: 22902480 DOI: 10.1016/j.virusres.2012.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) are important pathogens of horses worldwide. Infection with EHV-4 usually remains restricted to the upper respiratory tract, whereas infection with EHV-1 can generalize after leukocyte-associated viremia. Here we examined whether differences in the immunomodulatory glycoprotein G (gG) between the two viruses determine EHV-1's ability to cause systemic infection. To this end, mutant viruses were constructed based on the neurovirulent EHV-1 strain OH-03, in which the entire gG gene or parts thereof were exchanged with EHV-4 gG sequences. In vitro chemotaxis assays showed that supernatants of cells infected with the various gG mutant viruses interfered to variable degrees with neutrophil migration. More specifically, supernatants of cells infected with the gG deletion virus (vOH-ΔgG1) or OH-03 expressing EHV-4 gG (vOH-gG4) were unable to interfere with chemotaxis. Re-insertion of the predicted chemokine-binding region of EHV-1 gG in the vOH-gG4 mutant (vOH-gG4hyp1) did not completely restore the ability to inhibit neutrophil migration, whereas insertion of the hypervariable region of EHV-4 gG into vOH-03 (vOH-gG1hyp4) did not lead to a complete loss of chemokine-binding function. Very similar results were obtained in an in vivo study where the amount of neutrophils present in bronchioalveolar lavages (BALs) of mice infected with the different mutants was analyzed by flow cytometry. Taken together, our results show that, in a virus background, the hypervariable region is not solely responsible for the immunomodulatory potential of EHV-1 gG.
Collapse
|
47
|
Malik P, Bálint Á, Dán Á, Pálfi V. Molecular characterisation of the ORF68 region of equine herpesvirus-1 strains isolated from aborted fetuses in Hungary between 1977 and 2008. Acta Vet Hung 2012; 60:175-87. [PMID: 22366142 DOI: 10.1556/avet.2012.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Equine herpesvirus-1 (EHV-1) can be classified into distinct groups by single nucleotide polymorphisms (SNPs) in their genomes. Only a few of these can be associated with a special attribute of the virus. Differences in the ORF30 region can determine the neuropathogenic potential, while by substitutions in the ORF68 region several strain groups can be made. In previous studies no connection was found between the neuropathogenic potential and the SNPs in ORF68, but the occurrence of members of distinct groups in different outbreaks can facilitate epidemiological investigations because the geographical distribution of a particular group is very often specific. The present study aimed at the molecular examination and grouping of 35 EHV-1 strains isolated from aborted equine fetuses in Hungary between 1977 and 2008. Genotyping was based on the comparison of nucleotide sequences of a polymorphic segment located in the ORF68 region, which had previously been found to be a useful tool for classification. After sequencing this region, the Hungarian EHV-1 isolates could be classified into seven groups. Only 23 of the 35 isolates belonged to the formerly described groups, while the SNPs of 12 isolates diverged, and four new groups could be set up. In addition, phylogenetic analysis was performed to compare the ORF68 sequences of the Hungarian strains with the sequences of isolates from Europe, America and Australia. The number of newly formed groups suggests that the further analysis of unknown EHV-1 isolates would involve the emergence of extended numbers of new groups, which can impair the usability of this grouping method.
Collapse
Affiliation(s)
- Péter Malik
- 1 Veterinary Diagnostic Directorate Department of Mammal Virology, Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| | - Ádám Bálint
- 1 Veterinary Diagnostic Directorate Department of Mammal Virology, Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| | - Ádám Dán
- 1 Veterinary Diagnostic Directorate Department of Mammal Virology, Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| | - Vilmos Pálfi
- 1 Veterinary Diagnostic Directorate Department of Mammal Virology, Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| |
Collapse
|
48
|
Barbić L, Lojkić I, Stevanović V, Bedeković T, Starešina V, Lemo N, Lojkić M, Madić J. Two outbreaks of neuropathogenic equine herpesvirus type 1 with breed-dependent clinical signs. Vet Rec 2012; 170:227. [PMID: 22262701 DOI: 10.1136/vr.100150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) is a worldwide spread pathogen of horses. It can cause abortion, respiratory and neurological disease and consequentially significant economic losses in equine industries. During 2009, two outbreaks of EHV-1 were confirmed in two stud farms in Eastern Croatia. The first outbreak occurred in February following the import of 12 horses from USA, serologically negative to EHV-1 before transport. Four mares aborted in the late stage of pregnancy and one perinatal death was recorded. Other six mares showed clinical signs of myeloencephalopathy with fatal end in four. One month later, the second EHV-1 outbreak was confirmed in stud farm about 100 km further with 17 abortions, three perinatal deaths and one mild neurological case. Epidemiological data showed that the disease was probably introduced in the first stud farm during international transport. The second outbreak started with the introduction of clinically healthy stallion from the first stud farm. Molecular characterisation and phylogenetic analysis confirmed that, despite different clinical signs, the identical virus caused both outbreaks. Both horse populations were free from EHV-1 infection before the outbreak and had not been vaccinated. Significant difference in clinical signs could be explained by different breed-related risk factors.
Collapse
Affiliation(s)
- L Barbić
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Glorieux S, Favoreel HW, Steukers L, Vandekerckhove AP, Nauwynck HJ. A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa. Vet Res 2011; 42:58. [PMID: 21492440 PMCID: PMC3089791 DOI: 10.1186/1297-9716-42-58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 04/14/2011] [Indexed: 11/10/2022] Open
Abstract
Several alphaherpesviruses breach the basement membrane during mucosal invasion. In the present study, the role of proteases in this process was examined. The serine protease-specific inhibitor AEBSF inhibited penetration of the basement membrane by the porcine alphaherpesvirus pseudorabies virus (PRV) by 88.1% without affecting lateral spread. Inhibitors of aspartic-, cysteine-, and metalloproteases did not inhibit viral penetration of the basement membrane. Further analysis using the Soybean Type I-S trypsin inhibitor for the serine protease subcategory of trypsin-like serine proteases resulted in a 96.9% reduction in plaque depth underneath the basement membrane. These data reveal a role of a trypsin-like serine protease in PRV penetration of the basement membrane.
Collapse
Affiliation(s)
- Sarah Glorieux
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Vandekerckhove AP, Glorieux S, Gryspeerdt AC, Steukers L, Van Doorsselaere J, Osterrieder N, Van de Walle GR, Nauwynck HJ. Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants. Vet Microbiol 2011; 152:21-8. [PMID: 21536394 DOI: 10.1016/j.vetmic.2011.03.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) replicates extensively in the epithelium of the upper respiratory tract, after which it can spread throughout the body via a cell-associated viremia in mononuclear leukocytes reaching the pregnant uterus and central nervous system. In a previous study, we were able to mimic the in vivo situation in an in vitro respiratory mucosal explant system. A plaquewise spread of EHV-1 was observed in the epithelial cells, whereas in the connective tissue below the basement membrane (BM), EHV-1-infected mononuclear leukocytes were noticed. Equine herpesvirus type 4 (EHV-4), a close relative of EHV-1, can also cause mild respiratory disease, but a cell-associated viremia in leukocytes is scarce and secondary symptoms are rarely observed. Based on this striking difference in pathogenicity, we aimed to evaluate how EHV-4 behaves in equine mucosal explants. Upon inoculation of equine mucosal explants with the EHV-4 strains VLS 829, EQ(1) 012 and V01-3-13, replication of EHV-4 in epithelial cells was evidenced by the presence of viral plaques in the epithelium. Interestingly, EHV-4-infected mononuclear leukocytes in the connective tissue below the BM were extremely rare and were only present for one of the three strains. The inefficient capacity of EHV-4 to infect mononuclear cells explains in part the rarity of EHV-4-induced viremia, and subsequently, the rarity of EHV-4-induced abortion or EHM.
Collapse
Affiliation(s)
- Annelies P Vandekerckhove
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|