1
|
Chacón RD, Sánchez-Llatas CJ, L Pajuelo S, Diaz Forero AJ, Jimenez-Vasquez V, Médico JA, Soto-Ugaldi LF, Astolfi-Ferreira CS, Piantino Ferreira AJ. Molecular characterization of the meq oncogene of Marek's disease virus in vaccinated Brazilian poultry farms reveals selective pressure on prevalent strains. Vet Q 2024; 44:1-13. [PMID: 38465827 DOI: 10.1080/01652176.2024.2318198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - Andrea J Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jack A Médico
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | | | | |
Collapse
|
2
|
Chacón RD, Sánchez-Llatas CJ, Astolfi-Ferreira CS, Raso TF, Piantino Ferreira AJ. Diversity of Marek's Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals (Basel) 2024; 14:2867. [PMID: 39409816 PMCID: PMC11482489 DOI: 10.3390/ani14192867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Marek's disease is caused by Mardivirus gallidalpha2, commonly known as Marek's disease virus (MDV). This pathogen infects various bird species resulting in a range of clinical manifestations. The meq gene, which is crucial for oncogenesis, has been extensively studied, but molecular investigations of MDV in noncommercial South American birds are limited. This study detected MDV in backyard and ornamental birds from Brazil and Peru and characterized the meq gene. MDV was confirmed in all seven outbreaks examined. Three isoforms of meq (S-meq, meq, and L-meq) and two to seven proline repeat regions (PRRs) were detected among the sequenced strains. At the amino acid level, genetic profiles with low and high virulence potential were identified. Phylogenetic analysis grouped the sequences into three distinct clusters. Selection pressure analysis revealed 18 and 15 codons under positive and negative selection, respectively. The results demonstrate significant MDV diversity in the studied birds, with both high and low virulence potentials. This study highlights the importance of monitoring and characterizing circulating MDV in backyard and ornamental birds, as they can act as reservoirs for future epidemiological outbreaks.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Tânia Freitas Raso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| |
Collapse
|
3
|
Cheng MC, Lai GH, Tsai YL, Lien YY. Circulating hypervirulent Marek's disease viruses in vaccinated chicken flocks in Taiwan by genetic analysis of meq oncogene. PLoS One 2024; 19:e0303371. [PMID: 38728352 PMCID: PMC11086920 DOI: 10.1371/journal.pone.0303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.
Collapse
Affiliation(s)
- Ming-Chu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Guan-Hua Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Yang Lien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
4
|
Li W, Meng H, Liang X, Peng J, Irwin DM, Shen X, Shen Y. The genome evolution of Marek's disease viruses in chickens and turkeys in China. Virus Genes 2023; 59:845-851. [PMID: 37851282 DOI: 10.1007/s11262-023-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
The virus that causes Marek's disease (MD) is globally ubiquitous in chickens, continuously evolving, and poses a significant threat to the poultry industry. Although vaccines are extensively used, MD still occurs frequently and the virus has evolved increased virulence in China. Here, we report an outbreak of MD in vaccinated chickens and unvaccinated turkeys in a backyard farm in Guangdong province, China, in 2018. Phylogenetic analysis revealed two lineages of MDVs at this farm, with one lineage, containing isolates from two turkeys and five chickens, clustering with virulent Chinese strains and displays a relatively high genetic divergence from the vaccine strains. These new isolates appear to have broken through vaccine immunity, yielding this outbreak of MD in chickens and turkeys. The second lineage included four chicken isolates that clustered with the CVI988 and 814 vaccine strains. The large diversity of MDVs in this single outbreak reveals a complex circulation of MDVs in China. Poor breeding conditions and the weak application of disease prevention and control measures make backyard farms a hotbed for the evolution of viruses that cause infectious diseases. This is especially important in MDV as the MD vaccines do not provide sterilizing immunity, which allows the replication and shedding of virulent field viruses by vaccinated individuals and supporting the continuous evolution of MDVs. Hence, constant monitoring of the evolution of MDVs is necessary to understand the evolution of these field viruses and potential expansions of their host range.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huifang Meng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xianghui Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jinyu Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
5
|
Investigation of a herpesvirus outbreak in mixed breeds of adult domestic ducks using next generation sequencing. PLoS One 2023; 18:e0280923. [PMID: 36706167 PMCID: PMC9882916 DOI: 10.1371/journal.pone.0280923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/25/2022] [Indexed: 01/28/2023] Open
Abstract
This report characterizes the first lethal outbreak of Marek's disease on a large farm of mixed-breed adult ducks (>18,000) and identifies the pathogen that resulted in high mortality (35%). Clinical signs included inappetence, respiratory distress, depression, muscle weakness, and ataxia. Post mortem revealed enlarged fragile liver mottled with miliary whitish spots and an enlarged spleen. Histopathology revealed hepatocellular necrosis with eosinophilic intra-nuclear inclusion bodies, necrosis of splenic follicles and degeneration/necrosis of renal tubules. The disease was tentatively diagnosed as a herpesvirus infection, confirmed by virus isolation from the liver. DNA was isolated from 15-year-old archival formalin-fixed tissues from infected ducks and subjected to next generation sequencing (NGS). Despite highly degraded DNA, short stretches of G- and C-rich repeats (TTAGGG and TAACCC) were identified as telomeric repeats frequently found in herpesviruses. Megablast and further investigative bioinformatics identified presence of Marek's disease virus (MDV), a Gallid alphaherpesvirus type 2 (GAHV-2), as the cause of the acute fatal infection. The source of infection may be attributed to a dead migratory flamingo found close to the duck enclosures three days prior to the outbreak; hence, GAHV-2 may also be responsible for the fatal infection of the flamingo accentuated by heat stress. Considering the possible spread of this highly contagious and lethal virus from a flamingo to the ducks, and the increasing zoonosis of animal viruses into humans, such as monkey B alphaherpesvirus transmission from macaques to humans with ~80% fatality, this observation has important ramifications for human health and safety of the poultry industry.
Collapse
|
6
|
Ozmen O, Albayrak T. Pathological and Immunohistochemical Examinations in Chukar Partridge (Alectoris chukar) of Wild and Captive Populations. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2021-1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- O Ozmen
- Burdur Mehmet Akif Ersoy University, Turkey
| | - T Albayrak
- Burdur Mehmet Akif Ersoy University, Turkey
| |
Collapse
|
7
|
Wilson LA, Lewis M, Baigent SJ, Abate V, Dolega BA, Morrison LR, Poulos C, Walker D. Marek's Disease in an Indian Peafowl (Pavo cristatus) with Clinical Ocular Disease and Paraparesis. J Comp Pathol 2022; 195:7-11. [DOI: 10.1016/j.jcpa.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/14/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
8
|
Phylogenetic analyses on Marek's disease virus circulating in Iranian backyard and commercial poultry indicate viruses of different origin. Braz J Microbiol 2022; 53:1683-1689. [PMID: 35484378 PMCID: PMC9433632 DOI: 10.1007/s42770-022-00738-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/19/2022] [Indexed: 11/02/2022] Open
Abstract
As neoplastic viruses have been affecting Iranian chicken farms more frequently in recent years, the first step in prevention may therefore be to genetically characterize and systematically identify their source and origin. Recently, we published a phylogenetic analysis based on the meq gene of Gallid alphaherpesvirus 2, commonly known as serotype 1 Marek's disease virus (MDV-1), that circulated in Iranian backyard and commercial chickens. In the current study, we are reporting for the first time the identification of a 298 aa meq protein containing only two PPPP motifs from an MDV-1-infected unvaccinated backyard turkey. This protein length has never been reported from any turkey species before. According to phylogenetic analysis, a close genetic relationship (0.68%) to several chicken-origin isolates such as the American vv + 648A strain was found. In addition, we identified a standard meq protein from a MDV-1-infected commercial chicken farm. In corroboration with our previous finding from other Iranian provinces, it is likely that the highly identical MDV-1 viruses currently circulating in Iranian chicken farms, which may be indicative of human role in the spread of the virus, have similar Eurasian origin. Our data suggest that regardless of the meq size, MDV-1 circulating in Iran are from different origins. On the other hand, meq sequences from bird species other than chicken have been reported but are very few. Our investigation suggests MDV-1 circulating in turkey do not have species-specific sequences.
Collapse
|
9
|
Molouki A, Ghalyanchilangeroudi A, Abdoshah M, Shoushtari A, Abtin A, Eshtartabadi F, Mahmoudzadeh Akhijahani M, Ziafatikafi Z, Babaeimarzango SS, Allahyari E, Ahmadzadeh L, Fallah Mehrabadi MH, Lim SHE, Rouhani K, Hosseini H, Nair V. Report of a new meq gene size: The first study on genetic characterisation of Marek's disease viruses circulating in Iranian commercial layer and backyard chicken. Br Poult Sci 2021; 63:142-149. [PMID: 34423692 DOI: 10.1080/00071668.2021.1963677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. In recent months, several outbreaks with clinical signs of MDV-1 were reported in Iranian parent and laying hen farms, in addition to backyard chickens. Several meq gene sequences from these outbreaks were amplified and molecularly characterised.2. The meq protein sequences revealed three different sizes, namely the standard 339 aa, a shorter form of 338 aa lacking a proline residue at position 191, and a very short (vs) size of 265 aa. Based on sequence and size, the 265 aa meq has never been reported from international research groups before. The protein has only one PPPP repeat motif suggesting it belongs to a highly virulent strain.3. The standard meq sequences showed 100% BLAST identity to the vv+ isolate Polen5. However, the 338 aa form clustered to the clade usually reported from North America.4. This is the first report on genetic analysis of MDV-1 from Iran, but further study is required to obtain a better picture of the diversity and prevalence of different MDV-1 strains circulating in the country's farms, backyard poultry and other bird species.
Collapse
Affiliation(s)
- A Molouki
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Abdoshah
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Shoushtari
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Abtin
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - F Eshtartabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M Mahmoudzadeh Akhijahani
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Z Ziafatikafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - E Allahyari
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - L Ahmadzadeh
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - M H Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S H E Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - K Rouhani
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - V Nair
- Viral Oncogenesis Group & OIE Marek's Disease Virus Reference Laboratory, Pirbright Institute, Surrey, UK
| |
Collapse
|
10
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
11
|
Ayala AJ, Yabsley MJ, Hernandez SM. A Review of Pathogen Transmission at the Backyard Chicken-Wild Bird Interface. Front Vet Sci 2020; 7:539925. [PMID: 33195512 PMCID: PMC7541960 DOI: 10.3389/fvets.2020.539925] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023] Open
Abstract
Habitat conversion and the expansion of domesticated, invasive species into native habitats are increasingly recognized as drivers of pathogen emergence at the agricultural-wildlife interface. Poultry agriculture is one of the largest subsets of this interface, and pathogen spillover events between backyard chickens and wild birds are becoming more commonly reported. Native wild bird species are under numerous anthropogenic pressures, but the risks of pathogen spillover from domestic chickens have been historically underappreciated as a threat to wild birds. Now that the backyard chicken industry is one of the fastest growing industries in the world, it is imperative that the principles of biosecurity, specifically bioexclusion and biocontainment, are legislated and implemented. We reviewed the literature on spillover events of pathogens historically associated with poultry into wild birds. We also reviewed the reasons for biosecurity failures in backyard flocks that lead to those spillover events and provide recommendations for current and future backyard flock owners.
Collapse
Affiliation(s)
- Andrea J. Ayala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| | - Sonia M. Hernandez
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| |
Collapse
|
12
|
Mescolini G, Lupini C, Felice V, Guerrini A, Silveira F, Cecchinato M, Catelli E. Molecular characterization of the meq gene of Marek's disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains. Poult Sci 2019; 98:3130-3137. [PMID: 30850833 DOI: 10.3382/ps/pez095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is an important lymphoproliferative disease of chickens, caused by Gallid alphaherpesvirus 2 (GaHV-2). Outbreaks are commonly reported in commercial flocks, but also in backyard chickens. Whereas the molecular characteristics of GaHV-2 strains from the commercial poultry sector have been reported, no recent data are available for the rural sector. To fill this gap, 19 GaHV-2 strains detected in 19 Italian backyard chicken flocks during suspected MD outbreaks were molecularly characterized through an analysis of the meq gene, the major GaHV-2 oncogene. The number of four consecutive prolines (PPPP) within the proline-rich repeats of the Meq transactivation domain, the proline content, and the presence of amino acid (aa) substitutions were determined. Phylogenetic analysis was performed using the Maximum Likelihood method. Sequence analysis revealed a heterogeneous population of GaHV-2 strains circulating in Italian backyard flocks. Seven strains, detected from birds affected by classical MD, showed a unique meq isoform of 418 aa with a very high number of PPPP motifs. Molecular and clinical features are suggestive of a low oncogenic potential of these strains. The remaining 12 strains, detected from flocks experiencing acute MD, transient paralysis, or sudden death, had shorter Meq protein isoforms (298 or 339 aa) with a lower number of PPPP motifs and point mutations interrupting PPPP. These features allow us to assert the high virulence of these strains. These findings reveal the circulation of low- and high-virulence GaHV-2 strains in the Italian rural sector.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Viviana Felice
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Flavio Silveira
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro (PD), Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
13
|
Li H, Wang P, Lin L, Shi M, Gu Z, Huang T, Mo M, Wei T, Zhang H, Wei P. The emergence of the infection of subgroup J avian leucosis virus escalated the tumour incidence in commercial Yellow chickens in Southern China in recent years. Transbound Emerg Dis 2018; 66:312-316. [DOI: 10.1111/tbed.13023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Haijuan Li
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Peikun Wang
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
- College of Life Science Linyi University Linyi City Shandong China
| | - Lulu Lin
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Mengya Shi
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Zhanming Gu
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Teng Huang
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Mei‐lan Mo
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Tianchao Wei
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| | - Huanmin Zhang
- United States, Department of Agriculture (USDA) Agricultural Research Service Avian Disease and Oncology Laboratory East Lansing Michigan
| | - Ping Wei
- Institute for Poultry Science and Health Guangxi University Nanning Guangxi China
| |
Collapse
|
14
|
Lian X, Ming X, Xu J, Cheng W, Zhang X, Chen H, Ding C, Jung YS, Qian Y. First molecular detection and characterization of Marek's disease virus in red-crowned cranes (Grus japonensis): a case report. BMC Vet Res 2018; 14:122. [PMID: 29615025 PMCID: PMC5883596 DOI: 10.1186/s12917-018-1437-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 03/19/2018] [Indexed: 01/22/2023] Open
Abstract
Background Marek’s disease virus (MDV) resides in the genus Mardivirus in the family Herpesviridae. MDV is a highly contagious virus that can cause neurological lesions, lymphocytic proliferation, immune suppression, and death in avian species, including Galliformes (chickens, quails, partridges, and pheasants), Strigiformes (owls), Anseriformes (ducks, geese, and swans), and Falconiformes (kestrels). Case presentation In 2015, two red-crowned cranes died in Nanjing (Jiangsu, China). It was determined that the birds were infected with Marek’s disease virus by histopathological examination, polymerase chain reaction (PCR), gene sequencing and sequence analysis of tissue samples from two cranes. Gross lesions included diffuse nodules in the skin, muscle, liver, spleen, kidney, gizzard and heart, along with liver enlargement and gizzard mucosa hemorrhage. Histopathological assay showed that infiltrative lymphocytes and mitotic figures existed in liver and heart. The presence of MDV was confirmed by PCR. The sequence analysis of the Meq gene showed 100% identity with Md5, while the VP22 gene showed the highest homology with CVI988. Furthermore, the phylogenetic analysis of the VP22 and Meq genes suggested that the MDV (from cranes) belongs to MDV serotype 1. Conclusion We describe the first molecular detection of Marek’s disease in red-crowned cranes based on the findings previously described. To our knowledge, this is also the first molecular identification of Marek’s disease virus in the order Gruiformes and represents detection of a novel MDV strain.
Collapse
Affiliation(s)
- Xue Lian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiarong Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Xunhai Zhang
- Anhui Provincial Key Laboratory for Control and Monitoring of Poultry Diseases, Anhui Science and Technology University, Fengyang, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
15
|
Haesendonck R, Garmyn A, Dorrestein GM, Hellebuyck T, Antonissen G, Pasmans F, Ducatelle R, Martel A. Marek's disease virus associated ocular lymphoma in Roulroul partridges (Rollulus rouloul). Avian Pathol 2016; 44:347-51. [PMID: 26021782 DOI: 10.1080/03079457.2015.1056088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two 1-year old Roulroul partridges (Rollulus rouloul), one male and one female, were presented because of eye problems and anorexia. Twenty of the 30 Roulroul partridges in the owner's collection had already died. The affected birds stopped eating, became thinner, and eventually died. Antibiotic treatment, which started because of the suspicion of a septicaemic process, was unsuccessful. At clinical examination of the two partridges it was found that in both birds, one eye ball was filled with a whitish yellow amorphous material and the other eye ball of the female showed a distinct corneal opacity. Both presented birds were euthanized. Necropsy revealed no significant abnormalities in addition to the eye lesions. Histology and immunohistochemistry of the female's eye revealed an infiltrate of T-lymphocytes corresponding to ocular lymphoma. Herpesvirus genus-specific PCR, followed by Sanger sequencing confirmed the presumptive diagnosis of Marek's disease in both birds. To our knowledge, this is the first confirmed case of infection with Gallid Herpesvirus 2 (Marek's disease virus) in partridges and the first case in this specific species.
Collapse
Affiliation(s)
- Roel Haesendonck
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - An Garmyn
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Gerry M Dorrestein
- b Dutch Research Institute for Birds and Exotic Animals , Veldhoven , Netherlands
| | - Tom Hellebuyck
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Gunther Antonissen
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Frank Pasmans
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - Richard Ducatelle
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | - An Martel
- a Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| |
Collapse
|
16
|
Blume G, Cardoso S, Oliveira M, Matiolli M, Gómez S, Reis Júnior J, Sant'Ana F, Martins N. Visceral Marek's disease in white-peafowl (Pavo cristatus). ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Marek's disease (MD) is a lymphoproliferative disorder caused by Gallid herpesvirus 2 (MDV) that infects mainly domestic gallinaceous birds although wild birds may occasionally be affected. The current report describes the anatomopathological and molecular findings of a case of MD in a white-peafowl (Pavo cristatus). The signs included apathy, hyporexia, and diarrhea. Grossly, 0.5 to 1.5cm in diameter, yellow, soft nodules were observed in the skeletal muscle, lung, kidney, air sacs, small intestine, heart, ovary, ventriculus, and proventriculus. Microscopically, numerous atypical round neoplastic cells were noted. The molecular detection of MDV DNA was implemented to amplify part of the meq gene and products were sequenced for the phylogenetic analysis. Template DNA was obtained from tissues of the affected bird and from blood of all the gallinaceous birds of the Zoo. The expected amplicon for the partial amplification of MDV meq gene was obtained and the amplicons were sequenced. Sequences obtained enabled grouping the strain (accession no. KT768121) with MDV serotype 1 strains from the GenBank. Based on the anatomopathological and molecular findings, the diagnosis of MD in a white-peafowl was reached, and to the authors' knowledge, no previous report regarding MD was published in Pavo cristatus.
Collapse
|
17
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
18
|
Positive Selection Drives Rapid Evolution of the meq Oncogene of Marek's Disease Virus. PLoS One 2016; 11:e0162180. [PMID: 27662574 PMCID: PMC5035050 DOI: 10.1371/journal.pone.0162180] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022] Open
Abstract
Marek’s disease (MD), caused by Marek’s disease virus (MDV), a poultry-borne alphaherpesvirus, is a devastating disease of poultry causing an estimated annual loss of one billion dollars to poultry producers, worldwide. Despite decades of control through vaccination, MDV field strains continue to emerge having increased virulence. The evolutionary mechanism driving the emergence of this continuum of strains to increased MDV virulence, however, remains largely enigmatic. Increase in MDV virulence has been associated with specific amino acid changes within the C-terminus domain of Mareks’s EcoRI-Q (meq)-encoded oncoprotein. In this study, we sought to determine whether the meq gene has evolved adaptively and whether past vaccination efforts have had any significant effect on the reduction or increase of MDV diversity over time. Our analysis suggests that meq is estimated to be evolving at a much faster rate than most dsDNA viruses, and is comparable with the evolutionary rate of RNA viruses. Interestingly, most of the polymorphisms in meq gene appear to have evolved under positive selection and the time of divergence at the meq locus coincides with the period during which the poultry industry had undergone transitions in management practices including the introduction and widespread use of live attenuated vaccines. Our study has revealed that the decades-long use of vaccines did not reduce MDV diversity, but rather had a stimulating effect on the emergence of field strains with increased genetic diversity until the early 2000s. During the years 2004–2005, there was an abrupt decline in the genetic diversity of field isolates followed by a recovery from this bottleneck in the year 2010. Collectively, these data suggest that vaccination seems to not have had any effect on MDV eradication, but rather had a stimulating effect on MDV emergence through adaptation.
Collapse
|
19
|
Devlin JM, Vaz PK, Coppo MJ, Browning GF. Impacts of poultry vaccination on viruses of wild bird. Curr Opin Virol 2016; 19:23-9. [PMID: 27359320 DOI: 10.1016/j.coviro.2016.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Spillover of viruses from farmed poultry into wild birds is a relatively new area of study at the livestock-wildlife interface. These transmission events can threaten the health of wild birds. There is growing evidence of transmission of vaccine viruses from poultry to wild birds, including attenuated vaccine strains of Newcastle disease virus and infectious bronchitis virus, and also spread of virulent viruses that may have evolved under the pressure of vaccine use, such as Marek's disease virus. Viral contaminants of poultry vaccines, including reticuloendotheliosis virus, may also be transmitted to wild birds and result in disease. New, vectored vaccines are less likely to directly spread to wild birds but this risk may rise as a result of recombination.
Collapse
Affiliation(s)
- Joanne M Devlin
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Paola K Vaz
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mauricio Jc Coppo
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia Pacific Centre for Animal Health, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Mohamed MHA, El-Sabagh IM, Al-Habeeb MA, Al-Hammady YM. Diversity of Meq gene from clinical Marek's disease virus infection in Saudi Arabia. Vet World 2016; 9:572-8. [PMID: 27397979 PMCID: PMC4937047 DOI: 10.14202/vetworld.2016.572-578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
Aim: The aim of this study was to demonstrate the genomic features of Meq gene of Marek’s disease virus (MDV) recently circulating in Saudi Arabia (SA). Materials and Methods: Two poultry flocks suffering from mortalities and visceral tumors were presented to the Veterinary Teaching Hospital, King Faisal University, SA. Subjected to different diagnostic procedures: Case history, clinical signs, and necropsy as well as polymerase chain reaction followed by Meq gene sequence analysis. Results: Case history, clinical signs, and necropsy were suggestive of MDV infection. The Meq gene was successfully detected in liver and spleen of infected chickens. A 1062 bp band including the native Meq ORF in addition to a 939 bp of S-Meq (short isoform of Meq) were amplified from Saudi 01-13 and Saudi 02-13, respectively. The nucleotide and deduced amino acids sequences of the amplified Meq genes of both Saudi isolates showed distinct polymorphism when compared with the standard USA virulent isolates Md5 and GA. The sequence analysis of the S-Meq gene showed a 123 bp deletion representing 41 amino acids between two proline-rich areas without any frameshift. The Meq gene encoded four repeats of proline-rich repeats (PRRs sequences), whereas the S-Meq contains only two PRRs. Interestingly, the phylogenetic analysis revealed that both of SA MDV isolates are closely related to the MDV strains from Poland. Conclusion: The two MDV isolates contain several nucleotide polymorphisms resulting in distinct amino acid substitutions. It is suggested that migratory and wild birds, as well as world trading of poultry and its by-products, have a great contribution in the transmission of MDVs overseas.
Collapse
Affiliation(s)
- Mahmoud H A Mohamed
- Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Hufof, 31982, Saudi Arabia; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Ibrahim M El-Sabagh
- Central Biotechnology Laboratory, College of Veterinary Medicine, King Faisal University, Al-Hufof, 31982, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Malik A Al-Habeeb
- Excutive Department of Risk Assessment, Saudi Food and Drug Authority, Saudi Arabia
| | | |
Collapse
|
21
|
Lu L, Chen Y, Wang Z, Li X, Chen W, Tao Z, Shen J, Tian Y, Wang D, Li G, Chen L, Chen F, Fang D, Yu L, Sun Y, Ma Y, Li J, Wang J. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biol 2015; 16:89. [PMID: 25943208 PMCID: PMC4419397 DOI: 10.1186/s13059-015-0652-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Background Geese were domesticated over 6,000 years ago, making them one of the first domesticated poultry. Geese are capable of rapid growth, disease resistance, and high liver lipid storage capacity, and can be easily fed coarse fodder. Here, we sequence and analyze the whole-genome sequence of an economically important goose breed in China and compare it with that of terrestrial bird species. Results A draft sequence of the whole-goose genome was obtained by shotgun sequencing, and 16,150 protein-coding genes were predicted. Comparative genomics indicate that significant differences occur between the goose genome and that of other terrestrial bird species, particularly regarding major histocompatibility complex, Myxovirus resistance, Retinoic acid-inducible gene I, and other genes related to disease resistance in geese. In addition, analysis of transcriptome data further reveals a potential molecular mechanism involved in the susceptibility of geese to fatty liver disease and its associated symptoms, including high levels of unsaturated fatty acids and low levels of cholesterol. The results of this study show that deletion of the goose lep gene might be the result of positive selection, thus allowing the liver to adopt energy storage mechanisms for long-distance migration. Conclusions This is the first report describing the complete goose genome sequence and contributes to genomic resources available for studying aquatic birds. The findings in this study are useful not only for genetic breeding programs, but also for studying lipid metabolism disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0652-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yan Chen
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Zhuo Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
| | | | - Weihu Chen
- Institute of Zhedong White Goose, Xianshan, China.
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Yong Tian
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Guoqin Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Fang Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | | | - Lili Yu
- BGI-Tech, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yudong Sun
- BGI-Tech, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yong Ma
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jinjun Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
22
|
Molecular characteristics and evolutionary analysis of field Marek's disease virus prevalent in vaccinated chicken flocks in recent years in China. Virus Genes 2013; 47:282-91. [PMID: 23813248 DOI: 10.1007/s11262-013-0942-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Marek's disease is a highly contagious, oncogenic, and immunosuppressive avian viral disease. Surveillance of newly registered Marek's disease virus (MDV) isolates is meaningful for revealing the potential factors involved in increased virulence. Presently, we have focused on the molecular characteristics of all available MDVs from China, including 17 new Henan isolates. Based on Meq, gE, and gI genes, we found that most Chinese isolates contain conserved amino acid point mutations in Meq, such as E(77), A(115), A(139), R(176), and A(217), compared to USA virulent MDVs. However, the 59-aa or 60-aa insertions are only found in a few mild MDVs rather than virulent MDVs in China. Further phylogenetic analysis has demonstrated that a different genotype of MDV has been prevalent in China, and for virulent MDVs, their recent evolution has possibly been geographically restricted. Our study has provided more detailed information regarding the field MDVs circulating in China.
Collapse
|