1
|
Alférez MD, Corda A, de Blas I, Gago L, Fernandes T, Rodríguez-Piza I, Balañá B, Pentcheva P, Caruncho J, Barbero-Fernández A, Llinás J, Rivas D, Escudero A, Gómez-Ochoa P. Computed Tomography-Guided Radiofrequency Ablation of Nasal Carcinomas in Dogs. Animals (Basel) 2024; 14:3682. [PMID: 39765586 PMCID: PMC11672759 DOI: 10.3390/ani14243682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Nasal carcinomas in dogs are locally invasive neoplasms with a low metastatic rate that pose significant treatment challenges due to their location and aggressiveness. This study evaluates the safety, feasibility, and therapeutic outcomes of computed tomography-guided radiofrequency ablation (CT-guided RFA) in 15 dogs diagnosed with nasal adenocarcinoma. All patients underwent staging and histopathological diagnosis before treatment. CT-guided RFA achieved a significant tumor volume reduction (82.8%) and improvement in clinical signs such as nasal discharge, epistaxis, and respiratory distress, without complications. Post-RFA CT examinations demonstrated a significant decrease in Hounsfield units and tumor volume. This study has shown that CT-guided RFA is an effective cytoreductive option for minimally invasive management of nasal adenocarcinomas in dogs, particularly when traditional therapies like radiation therapy or surgery are not feasible.
Collapse
Affiliation(s)
| | - Andrea Corda
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Ignacio de Blas
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Lucas Gago
- Department of Mathematics and Computer Science, University of Barcelona, 08007 Barcelona, Spain;
| | - Telmo Fernandes
- Imaginologia Veterinaria do Porto, 4490-479 Porto, Portugal;
| | | | - Beatriz Balañá
- Hospital Anicura Aralar Veterinarios, 50410 Zaragoza, Spain; (B.B.); (D.R.); (A.E.)
| | - Plamena Pentcheva
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | | | | | - Jorge Llinás
- Hospital Anicura Valencia Sur, 46460 Valencia, Spain;
| | - David Rivas
- Hospital Anicura Aralar Veterinarios, 50410 Zaragoza, Spain; (B.B.); (D.R.); (A.E.)
| | - Amaia Escudero
- Hospital Anicura Aralar Veterinarios, 50410 Zaragoza, Spain; (B.B.); (D.R.); (A.E.)
| | - Pablo Gómez-Ochoa
- VetCorner Unavets, 50012 Zaragoza, Spain; (M.D.A.); (P.G.-O.)
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain;
| |
Collapse
|
2
|
Didamson OC, Chandran R, Abrahamse H. Synthesis, characterisation, and anti-tumour activity of nano-immuno-conjugates for enhanced photodynamic therapy of oesophageal cancer stem cells. Biomed Pharmacother 2024; 181:117693. [PMID: 39550831 DOI: 10.1016/j.biopha.2024.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
In recent times, oesophageal cancer has been listed as the eleventh most prevalent type of cancer. It is a lethal disease attributed to a high mortality rate, tumour metastasis and poor treatment outcome. A subset of oesophageal cancer referred to as stem cells (CSCs) has been revealed to drive carcinogenesis, metastasis, and treatment failure. Therefore, it is essential to target these CSCs to improve the efficacy of treatment for oesophageal cancer. In this present study, we employed a strategy to target oesophageal CSCs with a nano-immuno-conjugate (NIC) consisting of AlPcS4Cl, gold nanoparticle (AuNPs) and anti-CD271 antibody synthesised using a chemical reaction. The synthesised NIC was characterised using ultraviolet-visible spectroscopy, transmission electron microscope (TEM), Fourier transform infra-red (FTIR) spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP). The in vitro anti-tumour action of NIC-mediated photodynamic therapy (PDT) was performed on oesophageal CSCs using cell viability/cytotoxicity assays and morphological examination via light microscopy. The characterisation analysis confirmed the successful synthesis of the NIC. The synthesised nano-immuno-conjugates showed significant cytotoxicity and reduction in cell viability in the HKESC-1 oesophageal CSCs. Fluorescence microscopy confirmed the rapid internalisation of the targeted NIC in key cellular organelles of the CSCs, resulting in enhanced effects. Interestingly, NIC exhibited cytocompatibility with non-tumour WS1 cells, thus supporting its clinical application as a safe anti-tumour agent for enhanced PDT. The study demonstrates the improved effects of NIC-mediated PDT as targeted therapeutics against oesophageal CSCs.
Collapse
Affiliation(s)
- Onyisi Christiana Didamson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
3
|
Dąbrowska A, Mastalerz J, Wilczyński B, Osiecka B, Choromańska A. Determinants of Photodynamic Therapy Resistance in Cancer Cells. Int J Mol Sci 2024; 25:12069. [PMID: 39596137 PMCID: PMC11594179 DOI: 10.3390/ijms252212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising therapeutic approach owing to its non-invasive nature and minimal toxicity. PDT involves the administration of a photosensitizing agent (PS), which, upon light activation, induces a photodynamic reaction (PDR), leading to targeted cell destruction. However, developing resistance to PDT poses a significant challenge to its effectiveness. Various factors, including properties and administration of PSs, mediate this resistance. Despite the widespread use of substances like 5-aminolevulinic acid (5-ALA) and protoporphyrin, their efficacy is limited due to restricted tumor penetration and a lack of tumor targeting. To address these limitations, nano-delivery techniques and newer PSs like Aza-BODIPY and its derivatives, which offer enhanced tissue penetration, are being explored. In this paper, we provide an overview of resistance mechanisms in PDT and discuss novel methods, substances, and technologies to overcome resistance to improve clinical outcomes in tumor treatment.
Collapse
Affiliation(s)
- Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Jakub Mastalerz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Beata Osiecka
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, T. Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Nkune NW, Abrahamse H. Possible integration of artificial intelligence with photodynamic therapy and diagnosis: A review. J Drug Deliv Sci Technol 2024; 101:106210. [DOI: 10.1016/j.jddst.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Li Z, Song Y, Luo Q, Liu Z, Man Y, Liu J, Lu Y, Zheng L. Carrier cascade target delivery of 5-aminolevulinic acid nanoplatform to enhance antitumor efficiency of photodynamic therapy against lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112999. [PMID: 39126752 DOI: 10.1016/j.jphotobiol.2024.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.
Collapse
Affiliation(s)
- Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuxuan Song
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Qiang Luo
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuze Lu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
6
|
Krishnamoorthi R, Ganapathy A A, Hari Priya VM, Kumaran A. Future aspects of plant derived bioactive metabolites as therapeutics to combat benign prostatic hyperplasia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118207. [PMID: 38636573 DOI: 10.1016/j.jep.2024.118207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH), characterized by prostate enlargement due to cell proliferation, is a common urinary disorder in men over 50, manifesting as lower urinary tract symptoms (LUTS). Currently, several therapeutic options are accessible for treating BPH, including medication therapy, surgery and watchful waiting. Conventional drugs such as finasteride and dutasteride are used as 5α-reductase inhibitors for the treatment of BPH. However long-term use of these drugs is restricted due to their unpleasant side effects. Despite the range of available medical therapies, the effective treatment against BPH is still inadequate. Certain therapeutic plants and their phytochemicals have the aforementioned goals and work by regulating this enzyme. AIM OF THE STUDY This review aims to provide a comprehensive insight to advancements in diagnosis of BPH, modern treatment methods and the significance of ethnobotanically relevant medicinal plants as alternative therapeutics for managing BPH. MATERIAL AND METHODS A thorough and systematic literature search was performed using electronic databases and search engines such as PubMed, Web of Science, NCBI and SciFinder till October 2023. Specific keywords such as "benign prostatic hyperplasia", "medicinal plants", "phytochemicals", "pharmacology", "synergy", "ethnobotany", "5-alpha reductase", "alpha blocker" and "toxicology". By include these keywords, a thorough investigation of pertinent papers was assured, and important data about the many facets of BPH could be retrieved. RESULTS After conducting the above investigation, 104 herbal remedies were found to inhibit Phosphodiesterase-5 (PDE-5) inhibition, alpha-blockers, or 5α -reductase inhibition effects which are supported by in vitro, in vivo and clinical trial studies evidence. Of these, 89 plants have ethnobotanical significance as alpha-blockers, alpha-reductase inhibition, or PDE-5 inhibition, and the other fifteen plants were chosen based on their ability to reduce BPH risk factors. Several phytocompounds, including, rutaecarpine, vaccarin, rutin, kaempferol, β-sitosterol, quercetin, dicaffeoylquinic acid, rutaevin, and phytosterol-F have been reported to be useful for the management of BPH. The use of combination therapy offers a strong approach to treating long-term conditions compare to single plant extract drugs. Furthermore, several botanical combinations such as lycopene and curcumin, pumpkin seed oil and saw palmetto oil, combinations of extracts from Funtumia africana (Benth.) Stapf and Abutilon mauritianum (Jacq.) Medik., and Hypselodelphys poggeana (K.Schum.) Milne-Redh. and Spermacoce radiata (DC.) Sieber ex Hiern are also supported through in vitro and in vivo studies for managing BPH through recuperation in patients with chronic long-term illnesses, as measured by the International Prostate Symptom Score. CONCLUSION The review proposes and endorses careful utilization of conventional medications that may be investigated further to discover possible PDE-5, 5 alpha-reductase, an alpha-blocker inhibitor for managing BPH. Even though most conventional formulations, such as 5 alpha-reductase, are readily available, systemic assessment of the effectiveness and mechanism of action of the herbal constituents is still necessary to identify novel chemical moieties that can be further developed for maximum efficacy. However, there exist abundant botanicals and medicinal plants across several regions of Africa, Asia, and the Americas, which can be further studied and developed for utilization as a potential phytotherapeutic for the management of BPH.
Collapse
Affiliation(s)
- Raman Krishnamoorthi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Anand Ganapathy A
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V M Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Chai N, Stachon T, Nastaranpour M, Li Z, Seitz B, Ulrich M, Langenbucher A, Szentmáry N. Assessment of Rose Bengal Photodynamic Therapy on Viability and Proliferation of Human Keratolimbal Epithelial and Stromal Cells In Vitro. Klin Monbl Augenheilkd 2024; 241:972-981. [PMID: 36808578 DOI: 10.1055/a-2038-8899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PURPOSE To investigate the effect of Rose Bengal photodynamic therapy (RB-PDT) on viability and proliferation of human limbal epithelial stem cells (T-LSCs), human corneal epithelial cells (HCE-T), human limbal fibroblasts (LFCs), and human normal and keratoconus fibroblasts (HCFs and KC-HCFs) in vitro. METHODS T-LSCs and HCE-T cell lines were used in this research. LFCs were isolated from healthy donor corneal limbi (n = 5), HCFs from healthy human donor corneas (n = 5), and KC-HCFs from penetrating keratoplasties of keratoconus patients (n = 5). After cell culture, RB-PDT was performed using 0.001% RB concentration and 565 nm wavelength illumination with 0.14 to 0.7 J/cm2 fluence. The XTT and the BrdU assays were used to assess cell viability and proliferation 24 h after RB-PDT. RESULTS RB or illumination alone did not change cell viability or proliferation in any of the cell types (p ≥ 0.1). However, following RB-PDT, viability decreased significantly from 0.17 J/cm2 fluence in HCFs (p < 0.001) and KC-HCFs (p < 0.0001), and from 0.35 J/cm2 fluence in T-LSCs (p < 0.001), HCE-T (p < 0.05), and LFCs ((p < 0.0001). Cell proliferation decreased significantly from 0.14 J/cm2 fluence in T-LSCs (p < 0.0001), HCE-T (p < 0.05), and KC-HCFs (p < 0.001) and from 0.17 J/cm2 fluence in HCFs (p < 0.05). Regarding LFCs proliferation, no values could be determined by the BrdU assay. CONCLUSIONS Though RB-PDT seems to be a safe and effective treatment method in vivo, its dose-dependent phototoxicity on corneal epithelial and stromal cells has to be respected. The data and experimental parameters applied in this study may provide a reliable reference for future investigations.
Collapse
Affiliation(s)
- Ning Chai
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Mahsa Nastaranpour
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Hospital and Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Myriam Ulrich
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Achim Langenbucher
- Institute of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Almalki WH, Almujri SS. Circular RNAs and the JAK/STAT pathway: New frontiers in cancer therapeutics. Pathol Res Pract 2024; 260:155408. [PMID: 38909403 DOI: 10.1016/j.prp.2024.155408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Circular RNAs, known as circRNAs, have drawn more attention to cancer biology in the last few years. Novel functions of circRNAs in cancer therapy open promising prospects for personalized medicine. This review focuses on the molecular properties and potential of circRNAs as biomarkers or therapeutic targets in cancer treatment. Unique properties of circular RNAs associated with a circular form provide stability and resilience to RNA exonuclease degradation. Circular RNAs' most important characteristic is that they are involved in the JAK/STAT pathway associated with oncogenesis. Notably, their deregulation has been reported in multiple carcinomas due to involvement in JAK/STAT signaling cascade modulation. Increased knowledge about circRNAs' interaction with the JAK/STAT pathway leads to the emergence of new possibilities for targeted cancer therapy. In addition, since circRNAs demonstrate tissue-relatedness of expression, they may be a reliable biomarker for predicting and diagnosing cancer. With the development of new technologies for targeting circRNAs, novel therapeutics can be produced that offer more personalized cancer treatment options based on the nature of the patient. The present review explores the exciting prospects of circRNAs for transforming cancer treatment into personalized medicine. It describes the current understanding of circRNA biology, its relationship to tumorigenesis, and possible targeting methods.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
9
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
10
|
Yan X, Li Z, Chen H, Yang F, Tian Q, Zhang Y. Photodynamic therapy inhibits cancer progression and induces ferroptosis and apoptosis by targeting P53/GPX4/SLC7A11 signaling pathways in cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 47:104104. [PMID: 38679154 DOI: 10.1016/j.pdpdt.2024.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with a poor prognosis. The specific mechanism of photodynamic therapy (PDT) in treating CCA remains unclear. This study aims to investigate the mechanisms of PDT in the treatment of CCA and try to improve the therapeutic effect of PDT by intervening associated signaling pathways. METHODS The Cell Counting Kit-8 (CCK-8) was used to examine the cytotoxicity of CCA cell lines following PDT. Apoptosis and reactive oxygen species (ROS) levels were measured by flow cytometry. A transmission electron microscope was used to study the changes in cell mitochondria after PDT. The levels of glutathione (GSH), malondialdehyde (MDA), ferrous iron (Fe2+), lactate dehydrogenase (LDH), and lipid peroxide (LPO) were determined. Changes in the expression of apoptosis and ferroptosis-related proteins were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Xenograft tumor models were developed to investigate the effects of PDT on tumor proliferation, apoptosis, and ferroptosis in vivo. RESULTS PDT inhibited tumor proliferation and induced apoptosis both in vivo and in vitro. This treatment led to swelling and damage of the mitochondria in affected cells. Furthermore, ROS levels rose, accompanied by an increase in the proportion of apoptotic-positive cells. The expressions of Bax and Caspase-3 were upregulated, while the Bcl-2 was downregulated. Meanwhile, PDT triggered ferroptosis, marked by decreased expressions of GPX4 and SLC7A11, and reduced GSH levels. This was accompanied by upregulation of P53 expression and heightened levels of Fe2+, LPO, MDA, and LDH. After inducing the ferroptosis pathway, the therapeutic effect of PDT was enhanced, the tumor tissue was further reduced, and the degree of malignancy was reduced. CONCLUSION PDT promotes apoptosis and ferroptosis of cholangiocarcinoma cells by activating the P53/SLC7A11/GPX4 signaling pathway and inhibits the growth of cholangiocarcinoma. Inducing ferroptosis can enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Xiaodong Yan
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Zhongmin Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyu Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Fu Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Tian
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China.
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
11
|
Li L, Li Y, Dong H, Yan J, Zhang Y, Zhang C, Xu X. Therapeutic and fluorescence evaluation of 20% 5-aminolevulinic acid-mediated photodynamic therapy in actinic keratosis. Photodiagnosis Photodyn Ther 2024; 47:104100. [PMID: 38663488 DOI: 10.1016/j.pdpdt.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Actinic keratosis (AK) is a precancerous lesion that occurs in areas that are chronically exposed to sunlight and has the potential to develop into invasive cutaneous squamous cell carcinoma (cSCC). We investigated the efficacy of 20 % 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) with LED red light for the treatment of AK in Chinese patients by examining changes in dermoscopic features, histopathology and fluorescence after treatment. METHODS Twenty-eight patients with fourty-six AK lesions from March 2022 to September 2023 were treated with 20 % ALA, and 3 h later, they were irradiated with LED red light (80-100 mW/cm2) for 20 min. A session of 20 % ALA-PDT was performed once a week for three consecutive weeks, and the dermoscopic, histopathological, fluorescent and photoaging outcomes were measured one week after the treatment. RESULTS One week after ALA-PDT, complete remission (CR) was reached in 53.6 % of patients. The CR of Grade I AK lesions was 100 %, that of Grade II lesions was 71.4 %, and that of Grade III lesions was 38.1 %. There was a significant improvement in the dermoscopic features, epidermal thickness and fluorescence of the AK lesions. The presence of red fluorescence decreased, and there was an association between CR and post-PDT fluorescence intensity. ALA-PDT also exhibited efficacy in treating photoaging, including fine lines, sallowness, mottled pigmentation, erythema, and telangiectasias, and improved the global score for photoaging. There were no serious adverse effects during or after ALA-PDT, and 82.1 % of the patients were satisfied with the treatment. CONCLUSION AK lesions can be safely and effectively treated with 20 % ALA-PDT with LED red light, which also alleviates photoaging in Chinese patients, including those with multiple AKs. This study highlights the possibility that fluorescence could be used to diagnose AK with peripheral field cancerization and evaluate the efficacy of ALA-PDT.
Collapse
Affiliation(s)
- Ling Li
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yinuo Li
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Hongjun Dong
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jiayu Yan
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China.
| | - Xuezhu Xu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
12
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
13
|
Yang Z, Li D, Shi D. Photodynamic application in diagnostic procedures and treatment of non-melanoma skin cancers. Curr Treat Options Oncol 2024; 25:619-627. [PMID: 38581550 DOI: 10.1007/s11864-024-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/08/2024]
Abstract
OPINION STATEMENT Skin tumors commonly seen in dermatology are involved in all layers of the skin and appendages. While biopsy of affected skin remains an essential method to confirm diagnosis and to predicate tumor prognosis, it has its limitations. Recently, photodynamic diagnosis (PDD) has demonstrated high sensitivity in detecting affected skin and mucosal tissues, providing valuable guidance for precision surgery to resect skin and mucosal tumors. In this review, we summarized the literatures concerning the applications of PDD in diagnostic process and treatment of skin and mucosal conditions such as actinic keratoses (AK), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), Bowen's disease (BD) and extramammary Paget's disease (EMPD). The findings suggest that PDD holds substantial promise for expanding clinical applications and deserves further research exploration.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China.
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, 272001, Shandong, China.
| |
Collapse
|
14
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
15
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
16
|
Zheng L, Li Z, Wang R, Wang J, Liu B, Wang Y, Qin S, Yang J, Liu J. A novel photosensitizer DTPP-mediated photodynamic therapy induces oxidative stress and apoptosis through mitochondrial pathways in LA795 cells. Photodiagnosis Photodyn Ther 2024; 45:103894. [PMID: 37984526 DOI: 10.1016/j.pdpdt.2023.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE Investigation of the effects of 5-5- (4-N, N-diacetoxylphenyl)-10,15,20- tetraphenylporphyrin (DTPP)-mediated photodynamic therapy (PDT) on oxidative stress and mitochondrial apoptosis in LA795 lung cancer cells. METHODS Proteomics was used to identify differentially expressed proteins after PDT treatment. The apoptosis rate was determined by flow cytometry. Morphologic observation of apoptosis, reactive oxygen species (ROS) levels, antioxidant indices, nitric oxide (NO) content, mitochondrial membrane potential (MMP), and Caspase- 9 and Caspase-3 were determined by assays; apoptosis-related protein levels of Cytochrome (Cyto) c, Bcl- 2, Bax were determined by Western blot. RESULTS Typical apoptosis morphology of LA795 cells was observed after PDT. The cells were mainly in the apoptosis death pathway with high cell apoptosis rates. The proteomics study observed the apoptosis-associated proteins, oxidative stress proteins, antioxidant proteins, the cytoskeletal protein and mitochondrial dysfunction in LA 795 cells. Additional results indicated that PDT could increase levels of ROS, NO; decrease glutathione (GSH) content and MMP; upregulated Bax, Cyto c, and Caspase-3 protein expression, inhibited Bcl-2 protein expression, and further induced cell apoptosis. The effect of DTPP-PDT on lung cancer was: first, mitochondrial Cyto c is released into the cytoplasm, then Caspase- 9 / Caspase-3 was activated, Bcl-2 decreased/Bax increased, initiating cell apoptosis. CONCLUSION DTPP-PDT could induce oxidative stress and apoptosis via mitochondrial pathways in LA795 cells.
Collapse
Affiliation(s)
- Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Ruibo Wang
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Jing Wang
- Hebei North University Library Zhangjiakou 075000, China
| | - Bochao Liu
- Tianjin Shuangling Middle School, Tianjin 300041 China
| | - Yiying Wang
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Shihao Qin
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Junying Yang
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
17
|
Wei X, Ni J, Yuan L, Li X. Hematoporphyrin derivative photodynamic therapy induces apoptosis and suppresses the migration of human esophageal squamous cell carcinoma cells by regulating the PI3K/AKT/mTOR signaling pathway. Oncol Lett 2024; 27:17. [PMID: 38034489 PMCID: PMC10688503 DOI: 10.3892/ol.2023.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Esophageal cancer is one of the most common cancer types in humans worldwide. Photodynamic therapy (PDT) is a promising therapeutic strategy for the treatment of cancer. However, its underlying mechanism needs to be studied thoroughly. The present study focused on the antitumor effect and underlying mechanism of the use of hematoporphyrin derivative (HpD)-PDT against human esophageal squamous cell carcinoma cells via regulation of the PI3K/AKT/mTOR signaling pathway. A Cell Counting Kit-8 assay was used to measure cell viability. Migration was evaluated using a wound healing assay. An annexin V-FITC/PI kit was used to determine cell apoptosis rates. Protein expression levels were analyzed via western blotting. Reverse transcription-quantitative PCR was used to detect gene expression levels. A 2',7'-dichlorodihydrofluorescein diacetate kit was chosen to evaluate intracellular reactive oxygen species levels via flow cytometry. Cell viability and migration were decreased in KYSE-150 cells after HpD-PDT treatment. Cellular apoptosis was induced after HpD-PDT treatment, and the same trend was observed for autophagy. Furthermore, the PI3K/AKT/mTOR signaling pathway was inhibited. The viability and migration of KYSE-150 cells were significantly inhibited, and apoptosis was induced more effectively following treatment with a combination of HpD-PDT and the PI3K inhibitor, a final concentration of 20 µM LY294002. In conclusion, HpD-PDT could suppress esophageal cancer cell viability, induce apoptosis and inhibit migration by downregulating the PI3K/AKT/mTOR signaling pathway. Combination of HpD-PDT with PI3K inhibitor (LY294002) could enhance the therapeutic efficacy compared with that demonstrated by HpD-PDT alone. Further studies on combination therapy are required to achieve improved clinical outcomes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jinliang Ni
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Yuan
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xueliang Li
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
18
|
Sun H, Yang W, Ong Y, Busch TM, Zhu TC. Fractionated Photofrin-Mediated Photodynamic Therapy Significantly Improves Long-Term Survival. Cancers (Basel) 2023; 15:5682. [PMID: 38067385 PMCID: PMC10705090 DOI: 10.3390/cancers15235682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024] Open
Abstract
This study investigates the effect of fractionated (two-part) PDT on the long-term local control rate (LCR) using the concentration of reactive oxygen species ([ROS]rx) as a dosimetry quantity. Groups with different fractionation schemes are examined, including a 2 h interval between light delivery sessions to cumulative fluences of 135, 180, and 225 J/cm2. While the total treatment time remains constant within each group, the division of treatment time between the first and second fractionations are explored to assess the impact on long-term survival at 90 days. In all preclinical studies, Photofrin is intravenously administered to mice at a concentration of 5 mg/kg, with an incubation period between 18 and 24 h before the first light delivery session. Fluence rate is fixed at 75 mW/cm2. Treatment ensues via a collimated laser beam, 1 cm in diameter, emitting light at 630 nm. Dosimetric quantities are assessed for all groups along with long-term (90 days) treatment outcomes. This study demonstrated a significant improvement in long-term survival after fractionated treatment schemes compared to single-fraction treatment, with the optimal 90-day survival increasing to 63%, 86%, and 100% vs. 20%, 25%, and 50%, respectively, for the three cumulative fluences. The threshold [ROS]rx for the optimal scheme of fractionated Photofrin-mediated PDT, set at 0.78 mM, is significantly lower than that for the single-fraction PDT, at 1.08 mM.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weibing Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| | - Yihong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (W.Y.); (T.M.B.)
| |
Collapse
|
19
|
Meschi M, Khorsandi K, Kianmehr Z. The Effect of Berberine Follow by Blue Light Irradiation and Valproic Acid on the Growth Inhibition of MDA-MB-231 Breast Cancer Cells. Appl Biochem Biotechnol 2023; 195:6752-6767. [PMID: 36920717 DOI: 10.1007/s12010-023-04395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Breast cancer is the second most common cancer after lung cancer in the world. Due to the anti-cancer properties of Berberine (Ber), in this study, the effect of combination therapy of Ber in the presence of blue LED irradiation and Valproic acid (Val) on the MDA-MB-231 breast cancer cell line was investigated. For this reason, after culturing the cells using different concentrations of Ber and Val, breast cancer cells were treated in both mono-treatment and combination therapy. In combination therapy, two modes were considered: (1) treatment with Val and then treatment with Ber in the dark or in presence of blue light irradiation (PDT)at a wavelength of 465 nm and energy of 30 J/cm2 for 15 min, and (2) treatment with Ber in the dark or PDT and then treated with Val. In all cases, cell viability, morphological changes, and colonization were assessed. Evaluation of apoptosis was performed by fluorescence microscope and flow cytometry. According to the results, combination therapy has a higher mortality rate compared to mono-treatment, and in combination therapy, treatment of cells first with Ber (10 µg/mL)-PDT and then treatment with Val (250 µg/mL) caused a significant reduction (P < 0/05) in the survival rate of cancer cells. According to the findings, it can be said that the use of Ber-PDT in combination with Val, in addition to reducing the dose of the drug, has shown a synergistic effect which can suggest the potential of this strategy as a new treatment.
Collapse
Affiliation(s)
- Mahdieh Meschi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACER, Tehran, Iran.
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Osaki T, Hibino S, Murahata Y, Amaha T, Yokoe I, Yamashita M, Nomoto A, Yano S, Tanaka M, Kataoka H, Okamoto Y. Vascular-targeted photodynamic therapy with glucose-conjugated chlorin e6 for dogs with spontaneously occurring tumours. Vet Med Sci 2023; 9:2534-2541. [PMID: 37715623 PMCID: PMC10650375 DOI: 10.1002/vms3.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) using photosensitisers is a minimally invasive treatment for malignant tumours. However, ideal photosensitisers are not yet established. Recently, we developed a new photosensitiser, glucose-conjugated chlorin e6 (G-Ce6). OBJECTIVES To evaluate the clinical efficacy of vascular-targeted PDT (VTP), a type of PDT utilising a short drug-light interval, using G-Ce6 to treat spontaneously occurring tumours in dogs. METHODS Five dogs with spontaneously occurring tumours (malignant melanoma: three; haemangiopericytoma: two; and squamous cell carcinoma: one) were subjected to VTP. These dogs were intravenously injected with G-Ce6 at doses of 1-3 mg/kg 5 min before laser irradiation. Tumours were superficially or interstitially irradiated using a 677-nm diode laser. RESULTS Repeated VTP decreased tumour size, yielding complete remission in three dogs. Complications such as oedema surrounding normal tissues and fistulae were observed, and the oedema was self-limiting. The fistula was cured by debriding the necrotic tissues formed after VTP. CONCLUSIONS Our findings demonstrate that VTP using G-Ce6 had antitumour effects in dogs with spontaneously occurring tumours.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| | - Shota Hibino
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| | - Yusuke Murahata
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| | - Takao Amaha
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| | - Inoru Yokoe
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| | - Masamichi Yamashita
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of EngineeringOsaka Metropolitan UniversityOsakaJapan
| | - Shigenobu Yano
- KYOUSEI Science Center for Life and NatureInstitute of Yamato Area and Kii PeninsulaNara Women's UniversityNaraJapan
| | - Mamoru Tanaka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiromi Kataoka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoshiharu Okamoto
- Faculty of AgricultureJoint Department of Veterinary Clinical Medicine, Tottori UniversityTottoriJapan
| |
Collapse
|
21
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
22
|
Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155035. [PMID: 37603973 DOI: 10.1016/j.phymed.2023.155035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Experimental studies emphasize the therapeutic potential of plant-derived photosensitizers used in photodynamic therapy. Moreover, several in vitro and in vivo research present the promising roles of less-known anthraquinones that can selectively target cancer cells and eliminate them after light irradiation. This literature review summarizes the current knowledge of chosen plant-based-photosensitizers in PDT to show the results of emodin, aloe-emodin, parietin, rubiadin, hypericin, and soranjidiol in photodynamic therapy of cancer treatment and describe the comprehensive perspective of their role as natural photosensitizers. METHODS Literature searches of chosen anthraquinones were conducted on PubMed.gov with keywords: "emodin", "aloe-emodin", "hypericin", "parietin", "rubiadin", "soranjidiol" with "cancer" and "photodynamic therapy". RESULTS According to literature data, this review concentrated on all existing in vitro and in vivo studies of emodin, aloe-emodin, parietin, rubiadin, soranjidiol used as natural photosensitizers emphasizing their effectiveness and detailed mechanism of action in anticancer therapy. Moreover, comprehensive preclinical and clinical studies on hypericin reveal that the above-described substances may be included in the phototoxic treatment of different cancers. CONCLUSIONS Overall, this review presented less-known anthraquinones with their promising molecular mechanisms of action. It is expected that in the future they may be used as natural PSs in cancer treatment as well as hypericin.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland.
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| |
Collapse
|
23
|
Sekaran B, Guragain M, Misra R, D'Souza F. β-Pyrrole Functionalized Push or Pull Porphyrins: Excited Charge Transfer Promoted Singlet Oxygen Generation. J Phys Chem A 2023; 127:7964-7975. [PMID: 37707534 DOI: 10.1021/acs.jpca.3c05292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Singlet oxygen (1O2) producing photosensitizers are highly sought for developing new photodynamic therapy agents and facilitating 1O2-involved chemical reactions. Often singlet oxygen is produced by the reaction of triplet-excited photosensitizers with dioxygen via an energy transfer mechanism. In the present study, we demonstrate a charge transfer mechanism to produce singlet oxygen involving push or pull functionalized porphyrins. For this, 20 β-pyrrole functionalized porphyrins carrying either an electron-rich push or electron-deficient pull group have been newly synthesized. Photoexcitation of these push-pull porphyrins has been shown to produce high-energy MPδ+-Aδ- or MPδ--Dδ+ charge transfer states. Subsequent charge recombination results in populating the triplet excited states of extended lifetimes in the case of the push group containing porphyrins that eventually react with dioxygen to produce the reactive singlet oxygen of relatively higher quantum yields. The effect of the push and pull groups on the porphyrin periphery in governing initial charge transfer, the population of triplet excited states and their lifetimes, and resulting in improved singlet oxygen quantum yields are systematically probed. The improved performance of 1O2 generation by porphyrins carrying push groups is borne out from this study.
Collapse
Affiliation(s)
- Bijesh Sekaran
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Manan Guragain
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
24
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Tian Z, Li H, Liu Z, Yang L, Zhang C, He J, Ai W, Liu Y. Enhanced Photodynamic Therapy by Improved Light Energy Capture Efficiency of Porphyrin Photosensitizers. Curr Treat Options Oncol 2023; 24:1274-1292. [PMID: 37407889 DOI: 10.1007/s11864-023-01120-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
OPINION STATEMENT Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment because of its advantages such as minimal invasiveness and selective destruction. With the development of PDT, impressive progress has been made in the preparation of photosensitizers, particularly porphyrin photosensitizers. However, the limited tissue penetration of the activating light wavelengths and relatively low light energy capture efficiency of porphyrin photosensitizers are two major disadvantages in conventional photosensitizers. Therefore, tissue penetration needs to be enhanced and the light energy capture efficiency of porphyrin photosensitizers improved through structural modifications. The indirect excitation of porphyrin photosensitizers using fluorescent donors (fluorescence resonance energy transfer) has been successfully used to address these issues. In this review, the enhancement of the light energy capture efficiency of porphyrins is discussed.
Collapse
Affiliation(s)
- Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Lingyan Yang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Chaoyang Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Wenbin Ai
- The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China.
| |
Collapse
|
26
|
Lv H, Lou S, Zhang L, Cui D, Li Y, Yang Y, Chen M, Chen P. Evaluation of the impacts of photodynamic therapy on the prognosis of patients with hrHPV infection based on BTNL8 expression. Front Oncol 2023; 13:1218808. [PMID: 37456250 PMCID: PMC10342195 DOI: 10.3389/fonc.2023.1218808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Objective The aim of this study was to evaluate the prognostic value of Butyrophilin-like protein 8 (BTNL8) expression in high-risk HPV (hrHPV) infection treated with photodynamic therapy. Methods A total of 93 patients with hrHPV infection were enrolled as research study subjects, along with 69 healthy women who served as controls. Serum samples were obtained from each participant, and BTNL8 levels were quantified. The patients were divided into high- and low-expression groups (n = 45 and n = 48, respectively), and both groups underwent photodynamic therapy. We recorded the following data: BTNL8 expression pre-treatment and at 3/6 months post-treatment, HPV negative conversion ratio, regression rate of low-grade squamous intraepithelial lesions (LSIL), incidence of adverse reactions, complication rate, serum inflammatory factors, persistence of HPV positivity, LSIL residue or recurrence, and incidence of high-grade cervical intraepithelial lesions (HCIL). Results Patients with HPV infection exhibited higher BTNL8 expression than healthy individuals. Compared to the low-expression group, the high-expression group showed increased HPV negative conversion ratios, LSIL regression rates, and levels of IL-17 and IL-23. This group also demonstrated decreased total complication rate, HPV positivity persistence, LSIL residue or recurrence, and IL-10 levels. Additionally, there was no significant difference between the two groups in terms of the number of adverse reactions and cases with LSIL residue/recurrence. Conclusion Serum BTNL8 expression may serve as a valuable tool for early screening and prognosis monitoring of patients with hrHPV infection.
Collapse
Affiliation(s)
- Hongqing Lv
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Shuai Lou
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Lin Zhang
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Dawei Cui
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Yao Li
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Ying Yang
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Meilan Chen
- Department of Gynecology, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang, China
| | - Pan Chen
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
27
|
Olszowy M, Nowak-Perlak M, Woźniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023; 15:1712. [PMID: 37376160 DOI: 10.3390/pharmaceutics15061712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic diagnostics (PDD) and photodynamic therapy (PDT) are well-established medical technologies used for the diagnosis and treatment of malignant neoplasms. They rely on the use of photosensitizers, light and oxygen to visualize or eliminate cancer cells. This review demonstrates the recent advancements in these modalities with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors, liposomes and micelles. Additionally, this literature review explores the combination of PDT with radiotherapy, chemotherapy, immunotherapy, and surgery for treating various neoplasms. The article also focuses on the latest achievements in PDD and PDT enhancements, which seem to be very promising in the field of oncology.
Collapse
Affiliation(s)
- Marta Olszowy
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
28
|
Hu C, Luo X, Jiang C, Lei S, Sun Y. Efficacy and Safety of Photodynamic Therapy for the Treatment of Actinic Keratoses: A Meta-Analysis Update of Randomized Controlled Trials. Dermatol Surg 2023; 49:544-551. [PMID: 37134239 DOI: 10.1097/dss.0000000000003784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Actinic keratoses (AKs) are common and some may evolve into squamous cell carcinoma. Photodynamic therapy (PDT), imiquimod, cryotherapy, and other methods have been reported to have good effects. However, which treatment is the most effective with the best cosmetic results and fewest complications is uncertain. OBJECTIVE To evaluate which method has the best efficacy and cosmetic results with less adverse events and recurrence rate. MATERIALS AND METHODS All relevant articles up to July 31, 2022 were searched from Cochrane, Embase, and PubMed databases. Extract and analyze the data of efficacy, cosmetic results, local reactions, and adverse effects. RESULTS Twenty-nine articles with 3,,850 participants and 24,747 lesions were included. Quality of evidence was generally high. The efficacy of PDT was better in complete response (CR) (lesions CR; risk ratio (RR) 1.87; 95% confidence interval (CI) 1.55-1.87/patient CR; RR 3.07; 95% CI 2.07-4.56), overall preference, and cosmetic results. The time cumulative meta-analysis showed that the curative effect was gradually increasing before 2004, and then gradually stabilizing. Two groups showed no statistically significant differences in recurrence. CONCLUSION Compared with other methods, PDT is significantly more effective for AK with excellent cosmetic results and reversible adverse effects.
Collapse
Affiliation(s)
- Chengjun Hu
- All authors are affiliated with the Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | | | | | | |
Collapse
|
29
|
Holanda AGA, Cesário BC, Silva VM, Francelino LEC, Nascimento BHM, Damasceno KFA, Ishikawa U, Farias NBS, Junior RFA, Barboza CAG, Junior CA, Antunes JMAP, Moura CEB, Queiroz GF. Use of Cold Atmospheric Plasma in the Treatment of Squamous Cell Carcinoma: in vitro Effects and Clinical Application in Feline Tumors: A Pilot Study. Top Companion Anim Med 2023; 53-54:100773. [PMID: 36990177 DOI: 10.1016/j.tcam.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.
Collapse
Affiliation(s)
- André G A Holanda
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil.
| | - Bruna C Cesário
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Victória M Silva
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Luiz E C Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Bruno H M Nascimento
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Kássia F A Damasceno
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Naisandra B S Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo F A Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos A G Barboza
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clodomiro A Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, RN, Brazil
| | - João M A P Antunes
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Carlos E B Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Genilson F Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
30
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
31
|
Zhang MZ, Dong XH, Zhang WC, Pan DL, Ding L, Li HR, Zhao PX, Liu MY, Si LB, Wang XJ, Long X, Liu YF. A new photodynamic therapy photosensitizer (p1) promotes apoptosis of keloid fibroblasts by targeting caspase-8. J Plast Surg Hand Surg 2023; 57:324-329. [PMID: 35522455 DOI: 10.1080/2000656x.2022.2070181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Photodynamic therapy (PDT) is a new therapy for treating cancer with less toxicity, high selectivity, good cooperativity, and repetitive usability. However, keloid treatment by PDT is mainly focused on clinical appearance, and few studies have been conducted on the mechanisms of PDT. In this study, key factors of the classical mitochondrial apoptosis signaling pathway were measured to assess the effect of a new PDT photosensitizer (p1). A specific inhibitor of caspase-8 (Z-IETD-FMK) was also used to verify the possible mechanisms. Twelve samples were obtained from 12 patients (six with keloids and six without) selected randomly from the Department of Plastic Surgery at Peking Union Medical College Hospital from January to December 2020. After cell culture, fibroblasts were divided into 13 groups. The morphology of fibroblasts in each group was observed by microscopy. Cell activity was measured by cell counting kit-8, and cell apoptotic morphology was observed by TUNEL staining. The reactive oxygen species (ROS) relative value was measured by a ROS test kit. The expression levels of key mitochondrial factors (caspase-3, caspase-8, cytochrome-c, Bax, and Bcl-2) were assessed by western blot, and mRNA expression of caspase-3 and caspase-8 was measured by RT-qPCR. We showed that p1 had a satisfactory proapoptotic effect on keloid fibroblasts by increasing the expression of ROS, caspase-3, caspase-8, and cytochrome-c, and decreasing the Bcl-2/Bax ratio; however, this effect was partially inhibited by Z-IETD-FMK, indicating that caspase-8 may be one of the p1's targets to achieve the proapoptotic effect.
Collapse
Affiliation(s)
- Ming-Zi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Hang Dong
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - De-Li Pan
- Department of Radiology, Traditional Chinese Medicine Hospital of Huangdao district of Qingdao, Shandong, China
| | - Li Ding
- Department of Planned Immunity, Changjianglu Community Health Center of the West Coast New Area, Qingdao, China
| | - Hao-Ran Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng-Xiang Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Meng-Yu Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Lou-Bin Si
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiao Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Liu
- International Education College, Beijing Vocational College of Agriculture, Beijing, China
| |
Collapse
|
32
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
33
|
Sekar R, Basavegowda N, Thathapudi JJ, Sekhar MR, Joshi P, Somu P, Baek KH. Recent Progress of Gold-Based Nanostructures towards Future Emblem of Photo-Triggered Cancer Theranostics: A Special Focus on Combinatorial Phototherapies. Pharmaceutics 2023; 15:pharmaceutics15020433. [PMID: 36839754 PMCID: PMC9963714 DOI: 10.3390/pharmaceutics15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer is one of the most dangerous health problems in the millennium and it is the third foremost human cause of death in the universe. Traditional cancer treatments face several disadvantages and cannot often afford adequate outcomes. It has been exhibited that the outcome of several therapies can be improved when associated with nanostructures. In addition, a modern tendency is being developed in cancer therapy to convert single-modal into multi-modal therapies with the help of existing various nanostructures. Among them, gold is the most successful nanostructure for biomedical applications due to its flexibility in preparation, stabilization, surface modifications, less cytotoxicity, and ease of bio-detection. In the past few decades, gold-based nanomaterials rule cancer treatment applications, currently, gold nanostructures were the leading nanomaterials for synergetic cancer therapies. In this review article, the synthesis, stabilization, and optical properties of gold nanostructures have been discussed. Then, the surface modifications and targeting mechanisms of gold nanomaterials will be described. Recent signs of progress in the application of gold nanomaterials for synergetic cancer therapies such as photodynamic and photo-thermal therapies in combination with other common interventions such as radiotherapy, chemotherapy, and will be reviewed. Also, a summary of the pharmacokinetics of gold nanostructures will be delivered. Finally, the challenges and outlooks of the gold nanostructures in the clinics for applications in cancer treatments are debated.
Collapse
Affiliation(s)
- Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jesse Joel Thathapudi
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641114, India
- Correspondence: (J.J.T.); (K.-H.B.); Tel.: +82-52-810-3029 (K.-H.B.)
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | - Parinita Joshi
- SDM College of Medical Science and Hospital, Manjushree Nagar, Sattur, Dharwad 580009, India
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 600124, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (J.J.T.); (K.-H.B.); Tel.: +82-52-810-3029 (K.-H.B.)
| |
Collapse
|
34
|
Cai W, Lv W, Meng L, Duan Y, Zhang L. The Combined Effect of Nanobubble-IR783-HPPH-Affibody Complex and Laser on HER2-Positive Breast Cancer. Int J Nanomedicine 2023; 18:339-351. [PMID: 36703724 PMCID: PMC9871049 DOI: 10.2147/ijn.s387409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction Nanobubble is an innovative ultrasound contrast agent that triggers the development of targeted imaging of HER2-positive breast cancer by combining with HER2 affibody and IR783. HPPH is a second-generation photosensitiser that is effective in treating tumours. Hence, the nanobubble-IR783-HPPH-affibody (NIHA) complex demonstrates considerable potential in the treatment of HER2-positive breast cancer. Methods We fabricated the NIHA complex via an advanced thin-film hydration method and detected its characteristics such as particle size, morphology, stability, and cytotoxicity. Moreover, the effect of NIHA complex with laser on HER2-positive breast cancer was confirmed via in vitro and in vivo experiments. Results The NIHA complex was spheroid, stable and exhibited no cytotoxicity; moreover, its particle size was 524.8 ± 53.3 nm (n = 5). In combination with laser treatment, NIHA complex reduced the cell viability and tumour volume, induced apoptosis of HER2-positive breast cancer cells, and prolonged survival of nude mice. Conclusion The newly prepared NIHA complex with laser treatment has the potential on treating HER2-positive breast cancer.
Collapse
Affiliation(s)
- Wenbin Cai
- Department of Ultrasound Medical, Tangdu Hospital, the Fourth Military Medical University, Xi’an, People’s Republic of China,Department of Ultrasound Diagnostics, General Hospital of Tibet Military Region, Lhasa, People’s Republic of China
| | - Wei Lv
- Department of Ultrasound Medical, Tangdu Hospital, the Fourth Military Medical University, Xi’an, People’s Republic of China,Department of Radiology, 305 Hospital of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Li Meng
- Department of Ultrasound Diagnostics, General Hospital of Tibet Military Region, Lhasa, People’s Republic of China
| | - Yunyou Duan
- Department of Ultrasound Medical, Tangdu Hospital, the Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Li Zhang
- Department of Ultrasound Medical, Tangdu Hospital, the Fourth Military Medical University, Xi’an, People’s Republic of China,Correspondence: Li Zhang, Department of Ultrasound Medical, Tangdu Hospital, 569# Xinsi Road, Baqiao District, Xi’an, People’s Republic of China, Tel +86-29-84777171, Fax +86-29-83510181, Email
| |
Collapse
|
35
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
36
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
37
|
Gusmão LA, Machado AEH, Perussi JR. Improved Hypericin solubility via β-cyclodextrin complexation: Photochemical and theoretical study for PDT applications. Photodiagnosis Photodyn Ther 2022; 40:103073. [PMID: 35998882 DOI: 10.1016/j.pdpdt.2022.103073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Hypericin (HY) is a lipophilic photosensitizer (PS) extensively employed for photodynamic therapy (PDT), presenting high absorption in the visible region, chemical and photostability, as well as a good triplet quantum yield. Supramolecular complexation of photosensitizers into cyclodextrins (CD) is promising to improve their poor solubility, compromising their bioavailability and upcoming applications in PDT. This research produced an inclusion complex between HY and β-CD through the co-solvent method. HY became soluble after inclusion into β-CD cavities, besides retaining its fluorescent and singlet oxygen quantum yields (ϕf =0.115 and ϕΔ= 0.23, respectively), which are essential parameters for PDT uses and are not reported in the literature. By the theoretical analysis, since ΔG < 0, it was easy to conclude that HY inclusion into β-CD is a spontaneous process. Additionally, the complexes presented no changes in excited states after complexation. β-CDHY was 27% more phototoxic than free HY when tested in MCF7 cells using 3 J cm-2 of irradiation, indicating a better cell uptake of HY. These outcomes suggest that the inclusion complex of HY into β-CD has the potential for use in PDT.
Collapse
Affiliation(s)
- Luiza Araújo Gusmão
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil.
| | - Antonio Eduardo H Machado
- Laboratório de Fotoquímica e Ciência de Materiais, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil; Programa de Pós-Graduação em Ciências Exatas e Tecnológicas, Unidade Acadêmica de Física, Universidade Federal de Catalão, Catalão, GO, Brasil
| | | |
Collapse
|
38
|
Mao W, Chen J, Wang Y, Fang Y, Wu H, He P. Combination of carboplatin and photodynamic therapy with 9-hydroxypheophorbide ɑ enhances mitochondrial and endoplasmic reticulum apoptotic effect in AMC-HN-3 laryngeal cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103135. [PMID: 36272509 DOI: 10.1016/j.pdpdt.2022.103135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previously, we demonstrated that the combined mode of carboplatin (CBDCA) and photodynamic therapy (PDT) based on 9-hydroxypheophorbide (9-HPbD) enhanced cytotoxicity and apoptosis on AMC-HN-3 laryngeal cancer cells. The present study aimed to investigate anti-tumor effect of the combined therapy in vivo and the potential role of reactive oxygen species (ROS) in these enhanced apoptotic pathways initiated by the combined therapy in AMC-HN-3 cells. METHODS Mitochondrial membrane potential (MMP) and intracellular Ca2+were detected under confocal microscopy. Various apoptotic pathways were detected by western blots. In vivo study with the combined regimen was also performed on AMC-HN-3 cells-xenograft nude mice. RESULTS In vitro study showed that the combined treatment could decrease the level of MMP, increase intracellular Ca2+ and AIF translocation, and activate the expression of caspase-12. Mechanismly, the augmented apoptotic effect was mediated by ROS. The synergistic antitumor effect was also observed in vivo. CONCLUSIONS The mechanism of CBDCA and 9-HPbD-PDT combination involves ROS-mediated mitochondrial and endoplasmic reticulum apoptosis pathways. This combination may be a promising treatment strategy for laryngeal cancer.
Collapse
Affiliation(s)
- Wenjing Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jian Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yimiao Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yi Fang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Haitao Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Peijie He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Shestakova LN, Lyubova TS, Lermontova SA, Belotelov AO, Peskova NN, Klapshina LG, Balalaeva IV, Shilyagina NY. Comparative Analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and Its Iron Complex as Photosensitizers for Anticancer Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14122655. [PMID: 36559148 PMCID: PMC9786040 DOI: 10.3390/pharmaceutics14122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) is a rapidly developing modality of primary and adjuvant anticancer treatment. The main trends today are the search for new effective photodynamic agents and the creation of targeted delivery systems with the function of controlling the release of the agent in the tumor. Recently, the new group of cyanoarylporphyrazine dyes was reported, which combine the properties of photosensitizers and sensors of the local microenvironment. Such unique characteristics allow the release of the photosensitizer from the transport carrier to be assessed in real time in vivo. The aim of the present work was to compare the photophysical and photobiological properties of tetra(2-naphthyl)tetracyanoporphyrazine and its newly synthesized Fe(II) complex. We have shown that the chelation of the Fe(II) cation with the porphyrazine macrocycle leads to a decrease in molar extinction and an increase in the quantum yield of fluorescence and photostability. We demonstrate that the iron cation significantly affects the rate of dye accumulation in cells, the dark toxicity and photodynamic activity, and the direction of the changes depends on the particular cell line. However, in all the cases, the photodynamic index of a metal complex was higher than that of a metal-free base. In general, both of the compounds were found to be very promising for PDT, including for the use with transport delivery systems, and can be recommended for further in vivo studies.
Collapse
Affiliation(s)
- Lydia N. Shestakova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Tatyana S. Lyubova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Svetlana A. Lermontova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Artem O. Belotelov
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Nina N. Peskova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Larisa G. Klapshina
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Natalia Y. Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
40
|
Forster AM, Plaza T. Photodynamische Therapie als Therapieoption bei Follikulitis decalvans. AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1888-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ZusammenfassungFollikulitis decalvans ist eine seltene chronisch verlaufende Entzündung der Kopfhaut, die zur
Zerstörung der Haarfollikel und Vernarbung führt. Obwohl die Ätiopathogenese nicht vollständig
geklärt ist, gibt es Grund zur Annahme, dass die Follikulitis decalvans durch eine
fehlgeleitete Immunantwort auf Kopfhaut assoziierte Mikroben begünstigt wird, insbesondere
durch Staphylococcus aureus. Wir berichten von einem 51-jährigen Mann, der sich mit
schmerzhaften follikulär gebundenen papulopustulösen Läsionen am Kapillitum in unserer Klinik
vorstellte. Seit seiner Jugend zeigten systemische Therapien mit Doxycyclin, Clindamycin und
13-cis-Retinsäure nur kurzzeitig Wirkung. Wir leiteten eine photodynamische Therapie mit
Methyl-5-amino-4-oxopentanoat (Metvix) und LED-Rotlicht, 37 J/cm2 ein. Nach 4
Zyklen zeigten sich die papulopustulösen Läsionen fast vollständig abgeheilt und ein diskreter
Nachwuchs der Kopfbehaarung war zu verzeichnen.
Collapse
|
41
|
G JM, P P, Dharmarajan A, Warrier S, Gandhirajan RK. Modulation of Reactive Oxygen Species in Cancers: Recent Advances. Free Radic Res 2022; 56:447-470. [PMID: 36214686 DOI: 10.1080/10715762.2022.2133704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxidation-reduction reactions played a significant role in the chemical evolution of life forms on oxygenated earth. Cellular respiration is dependent on such redox reactions, and any imbalance leads to the accumulation of reactive oxygen species (ROS), resulting in both chronic and acute illnesses. According to the International Agency for Research on Cancer (IARC), by 2040, the global burden of new cancer cases is expected to be around 27.5 million, with 16.3 million cancer deaths due to an increase in risk factors such as unhealthy lifestyle, environmental factors, aberrant gene mutations, and resistance to therapies. ROS play an important role in cellular signalling, but they can cause severe damage to tissues when present at higher levels. Elevated and chronic levels of ROS are pertinent in carcinogenesis, while several therapeutic strategies rely on altering cellular ROS to eliminate tumour cells as they are more susceptible to ROS-induced damage than normal cells. Given this selective targeting potential, therapies that can effectively modulate ROS levels have been the focus of intense research in recent years. The current review describes biologically relevant ROS, its origins in solid and haematological cancers, and the current status of evolving antioxidant and pro-oxidant therapies in cancers.
Collapse
Affiliation(s)
- Jeyasree M G
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Prerana P
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India.,Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| |
Collapse
|
42
|
Codognato D, Pena F, dos Reis E, Ramos A, Borissevitch I. Effects of serum albumin on the photophysical characteristics of synthetic and endogenous protoporphyrin IX. Braz J Med Biol Res 2022; 55:e12272. [PMID: 36197413 PMCID: PMC9529045 DOI: 10.1590/1414-431x2022e12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
The study of the interaction of synthetic protoporphyrin IX (PpIXs) and protoporphyrin IX extracted from Harderian glands of ssp Rattus novergicus albinus rats (PpIXe) with bovine serum albumin (BSA) was conducted in water at pH 7.3 and pH 4.5 by optical absorption and fluorescence spectroscopies. PpIXs is present as H- and J-aggregates in equilibrium with themselves and with monomers. The PpIXs charge is 2- at pH 7.3 and 1- at pH 4.5. This increases its aggregation at pH 4.5 and shifts the equilibrium in favor of J-aggregates. In spite of electrostatic attraction at pH 4.5, where BSA is positive, the binding constant (Kb) of PpIXs to BSA is 20% less than that at pH 7.3, where BSA is negative. This occurs because higher aggregation of PpIXs at pH 4.5 reduces the observed Kb value. At both pHs, water-soluble PpIXe exists in the monomeric form with the charge of 1- and its Kb exceeds that of PpIXs. At pH 4.5, its Kb is 12 times higher than that at pH 7.3 due to electrostatic attraction between the positively charged BSA and the negatively charged PpIXe. The higher probability of PpIXe binding to BSA makes PpIXe more promising as a fluorescence probe for fluorescence diagnostics and as a photosensitizer for photodynamic therapy. The existence of PpIXe in the monomeric form can explain its faster cell internalization. Aggregation reduces quantum yields and lifetimes of the PpIXs excited states, which explains higher phototoxicity of PpIXe toward malignant cells compared with PpIXs.
Collapse
Affiliation(s)
- D.C.K. Codognato
- Departamento de Física, Faculdade de Filosofia, Ciências e
Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP,
Brasil
| | - F.S. Pena
- EcoFarm Alimentando Vidas, Caconde, SP, Brasil
| | - E.R. dos Reis
- Laboratório de Laser, Centro Experimental de Medicina e
Cirurgia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas,
Campinas, SP, Brasil
| | - A.P. Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e
Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP,
Brasil
| | - I.E. Borissevitch
- Departamento de Física, Faculdade de Filosofia, Ciências e
Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP,
Brasil
| |
Collapse
|
43
|
Wu M, Huang X, Gao L, Zhou G, Xie F. The application of photodynamic therapy in plastic and reconstructive surgery. Front Chem 2022; 10:967312. [PMID: 35936104 PMCID: PMC9353173 DOI: 10.3389/fchem.2022.967312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern clinical treatment paradigm with the advantages of high selectivity, non-invasiveness, rare side-effect, no obvious drug resistance and easy combination with other therapies. These features have endowed PDT with high focus and application prospects. Studies of photodynamic therapy have been expanded in a lot of biomedical and clinical fields, especially Plastic and Reconstructive Surgery (PRS) the author major in. In this review, we emphasize the mechanism and advances in PDT related to the PRS applications including benign pigmented lesions, vascular malformations, inflammatory lesions, tumor and others. Besides, combined with clinical data analysis, the limitation of PDT and current issues that need to be addressed in the field of PRS have also been discussed. At last, a comprehensive discussion and outlooking represent future progress of PDT in PRS.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| |
Collapse
|
44
|
Hou L, Zhang Y, Huang Y, Fang Z, Sang G, Chen T, Ma Z, Yang F. Coupling Chlorin-Based Photosensitizers and Histone Deacetylase Inhibitors for Photodynamic Chemotherapy. Mol Pharm 2022; 19:2807-2817. [PMID: 35758904 DOI: 10.1021/acs.molpharmaceut.2c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy combined with chemotherapy is a promising strategy to improve the antitumor efficacy. On the basis of coupling the chlorin-based photosensitizer pyropheophorbide a (Pyro) and histone deacetylase inhibitors (HDACis) to fabricate dual-mode antitumor molecules, a series of dual-mode antitumor prodrug molecules were synthesized and assessed for antitumor activity in vitro and in vivo. The data demonstrated that compound 4, with the most favorable phototoxicity and dark toxicity, could significantly inhibit the cell migration and upregulate the expression of acetyl-H3 protein, functioning as a photosensitizer and HDACi, respectively. Furthermore, compared with talaporfin, Pyro, and SAHA, compound 4 demonstrated the best inhibitory effect on tumor growth and metastasis in tumor-bearing mice; therefore, represented by compound 4, this pharmacophore coupling strategy is much more promising and effective than the pharmacophore fusion strategy for fabricating photodynamic and chemotherapeutical dual-mode molecules.
Collapse
Affiliation(s)
- Lei Hou
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou 075000, P.R. China
| | - Yunchang Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China
| | - Ying Huang
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou 075000, P.R. China
| | - Zhen Fang
- School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China
| | - Guangze Sang
- School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China
| | - Tianheng Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhiqiang Ma
- School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China
| | - Feng Yang
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou 075000, P.R. China.,School of Pharmacy, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
45
|
Lu Y, Wang S, Wang Y, Li M, Liu Y, Xue D. Current Researches on Nanodrug Delivery Systems in Bladder Cancer Intravesical Chemotherapy. Front Oncol 2022; 12:879828. [PMID: 35720013 PMCID: PMC9202556 DOI: 10.3389/fonc.2022.879828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors in urinary system. Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of bladder tumors. However, it has several disadvantages such as low drug penetration rate, short residence time, unsustainable action and inability to release slowly, thus new drug delivery and new modalities in delivery carriers need to be continuously explored. Nano-drug delivery system is a novel way in treatment for bladder cancer that can increase the absorption rate and prolong the duration of drug, as well as sustain the action by controlling drug release. Currently, nano-drug delivery carriers mainly included liposomes, polymers, and inorganic materials. In this paper, we reveal current researches in nano-drug delivery system in bladder cancer intravesical chemotherapy by describing the applications and defects of liposomes, polymers and inorganic material nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs in bladder cancer.
Collapse
Affiliation(s)
- Yilei Lu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yuhang Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Mingshan Li
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Calvo G, Céspedes M, Casas A, Di Venosa G, Sáenz D. Hydrogen sulfide decreases photodynamic therapy outcome through the modulation of the cellular redox state. Nitric Oxide 2022; 125-126:57-68. [PMID: 35728762 DOI: 10.1016/j.niox.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a non-surgical treatment that has been approved for its human medical use in many cancers. PDT involves the interaction of a photosensitizer (PS) with light. The amino acid 5- aminolevulinic acid (ALA) can be used as a pro-PS, leading to the synthesis of Protoporphyrin IX. Hydrogen sulfide (H2S) is an endogenously produced gas that belongs to the gasotransmitter family, which can diffuse through biological membranes and have relevant physiological effects such as cardiovascular functions, vasodilatation, inflammation, cell cycle and neuro-modulation. It was also proposed to have cytoprotective effects. We aimed to study the modulatory effects of H2S on ALAPDT in the mammary adenocarcinoma cell line LM2. Exposure of the cells to NaHS (donor of H2S) in concentrations up to 10 mM impaired the response to ALA-PDT in a dose-dependent manner. The addition of 3 doses of NaHS showed the highest effect. This decreased response to the photodynamic treatment was correlated to an increase in the GSH levels, catalase activity, a dose dependent reduction of PpIX and increased intracellular ALA, decreased levels of oxidized proteins and a decrease of PDT-induced ROS. NaHS also reduced the levels of singlet oxygen in an in vitro assay. H2S also protected other cells of different origins against PDT mediated by ALA and other PSs. These results suggest that H2S has a role in the modulation of the redox state of the cells, and thus impairs the response to ALA-PDT through multifactor pathways. These findings could contribute to developing new strategies to improve the effectiveness of PDT particularly mediated by ALA or other ROS-related treatments.
Collapse
Affiliation(s)
- Gustavo Calvo
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Céspedes
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Casas
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
47
|
Aires-Fernandes M, Amantino CF, do Amaral SR, Primo FL. Tissue Engineering and Photodynamic Therapy: A New Frontier of Science for Clinical Application -An Up-To-Date Review. Front Bioeng Biotechnol 2022; 10:837693. [PMID: 35782498 PMCID: PMC9240431 DOI: 10.3389/fbioe.2022.837693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering (TE) connects principles of life sciences and engineering to develop biomaterials as alternatives to biological systems and substitutes that can improve and restore tissue function. The principle of TE is the incorporation of cells through a 3D matrix support (scaffold) or using scaffold-free organoid cultures to reproduce the 3D structure. In addition, 3D models developed can be used for different purposes, from studies mimicking healthy tissues and organs as well as to simulate and study different pathologies. Photodynamic therapy (PDT) is a non-invasive therapeutic modality when compared to conventional therapies. Therefore, PDT has great acceptance among patients and proves to be quite efficient due to its selectivity, versatility and therapeutic simplicity. The PDT mechanism consists of the use of three components: a molecule with higher molar extinction coefficient at UV-visible spectra denominated photosensitizer (PS), a monochromatic light source (LASER or LED) and molecular oxygen present in the microenvironment. The association of these components leads to a series of photoreactions and production of ultra-reactive singlet oxygen and reactive oxygen species (ROS). These species in contact with the pathogenic cell, leads to its target death based on necrotic and apoptosis ways. The initial objective of PDT is the production of high concentrations of ROS in order to provoke cellular damage by necrosis or apoptosis. However, recent studies have shown that by decreasing the energy density and consequently reducing the production of ROS, it enabled a specific cell response to photostimulation, tissues and/or organs. Thus, in the present review we highlight the main 3D models involved in TE and PS most used in PDT, as well as the applications, future perspectives and limitations that accompany the techniques aimed at clinical use.
Collapse
|
48
|
Solomon SM, Stafie CS, Sufaru IG, Teslaru S, Ghiciuc CM, Petrariu FD, Tanculescu O. Curcumin as a Natural Approach of Periodontal Adjunctive Treatment and Its Immunological Implications: A Narrative Review. Pharmaceutics 2022. [DOI: https:/doi.org/10.3390/pharmaceutics14050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Scaling and root planing represent the gold standard in the treatment of periodontal disease, but these therapeutic methods cannot eliminate the remaining periodontopathogenic bacteria in cement, tubules, and periodontal soft tissue. Thus, a number of additional therapeutic means have been adopted, including local and systemic antibiotic therapy, as well as the use of photodynamic therapy techniques. Recently, special attention has been paid to potential phytotherapeutic means in the treatment of periodontal disease. In this review, we aim to present the effects generated by the extract of Curcuma longa, the various forms of application of turmeric as an additional therapeutic means, as well as the aspects related to its biotolerance.
Collapse
|
49
|
Curcumin as a Natural Approach of Periodontal Adjunctive Treatment and Its Immunological Implications: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14050982. [PMID: 35631567 PMCID: PMC9143680 DOI: 10.3390/pharmaceutics14050982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022] Open
Abstract
Scaling and root planing represent the gold standard in the treatment of periodontal disease, but these therapeutic methods cannot eliminate the remaining periodontopathogenic bacteria in cement, tubules, and periodontal soft tissue. Thus, a number of additional therapeutic means have been adopted, including local and systemic antibiotic therapy, as well as the use of photodynamic therapy techniques. Recently, special attention has been paid to potential phytotherapeutic means in the treatment of periodontal disease. In this review, we aim to present the effects generated by the extract of Curcuma longa, the various forms of application of turmeric as an additional therapeutic means, as well as the aspects related to its biotolerance.
Collapse
|
50
|
Liao XX, Dai YZ, Zhao YZ, Nie K. Gasdermin E: A Prospective Target for Therapy of Diseases. Front Pharmacol 2022; 13:855828. [PMID: 35462927 PMCID: PMC9019550 DOI: 10.3389/fphar.2022.855828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gasdermin E (GSDME) is a member of the gasdermin protein family, which mediates programmed cell death including apoptosis and pyroptosis. Recently, it was suggested that GSDME is activated by chemotherapeutic drugs to stimulate pyroptosis of cancer cells and trigger anti-tumor immunity, which is identified as a tumor suppressor. However, GSDME-mediated pyroptosis contributes to normal tissue damage, leading to pathological inflammations. Inhibiting GSDME-mediated pyroptosis might be a potential target in ameliorating inflammatory diseases. Therefore, targeting GSDME is a promising option for the treatment of diseases in the future. In this review, we introduce the roles of GSDME-driven programmed cell death in different diseases and the potential targeted therapies of GSDME, so as to provide a foundation for future research.
Collapse
|