1
|
Bisschop PIH, Strous EEC, Waldeck HWF, van Duijn L, Mars MH, Santman-Berends IMGA, Wever P, van Schaik G. Risk factors for introduction of BVDV in the context of a mandatory control program in Dutch dairy herds. J Dairy Sci 2024:S0022-0302(24)01189-5. [PMID: 39369901 DOI: 10.3168/jds.2024-25006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Bovine Viral Diarrhea Virus (BVDV) is a common viral disease in cattle, causing economic losses in naive herds where the virus is introduced. In the Netherlands, a BVDV control program has been in place since 1998, evolving from voluntary to mandatory participation for dairy herds since April 2018. Participation in the BVDV control program is not mandatory for non-dairy farms. The aim of this study was to determine risk factors for new introduction of BVDV into certified BVDV-free herds in the context of a national BVDV control program in dairy herds. In this retrospective case-control study, survey data were collected from 149 dairy farms that lost their BVDV-free status (case herds) and 148 matched dairy farms that maintained their BVDV-free status (control herds) between 2018 and 2021. The survey captured information about potential risk factors and herd characteristics in the 2 years leading up to the loss of BVDV-free status (case herds, virus detection in at least one animal or when seroconversion was detected) or remaining BVDV-free (control herds). Descriptive statistics and logistic regression with a backward selection and elimination procedure were used to identify potential risk factors associated with losing BVDV-free status. Risk factors were quantified as an Odds Ratio (OR) with the associated 95% confidence interval (CI). The risk factor with the highest OR for losing BVDV-free status was purchasing cattle from herds without BVDV-free status (OR 1.25, CI 1.10-1.41), followed by the farmer having another profession that resulted in contact with other cattle (OR 1.25, CI 1.06-1.47), housing young calves and adult cows in the same barn (OR 1.22, CI 1.08-1.38), having a permanent employee on the farm (OR 1.17, CI 1.04-1.31), having a group calving pen (OR 1.16, CI 1.03-1.32), escaped cattle from other farms that mingled with own cattle (OR 1.16, CI 1.01-1.33), and nearest distance to a non-dairy farm (OR 1.15, CI 1.03-1.28). Although the BVDV status of most dairy herds can be checked in an open register, approximately half of the farmers indicated that they purchased cattle from BVDV-free herds while they were actually purchasing from non-BVDV-free farms. Farmers should be stimulated to actively check the true BVDV status of the herd from which cattle are purchased to further reduce the risk of introduction. In addition, indirect contact with cattle from other farms through either the farmer or other on-farm staff should be avoided. It is strongly advised to work in these situations with proper biosecurity measures such as changing boots and coveralls. The results can be used to improve BVDV control programs to further decrease the prevalence.
Collapse
Affiliation(s)
| | - E E C Strous
- Royal GD, PO Box 9, 7400 AA, Deventer, the Netherlands
| | - H W F Waldeck
- Royal GD, PO Box 9, 7400 AA, Deventer, the Netherlands
| | - L van Duijn
- Royal GD, PO Box 9, 7400 AA, Deventer, the Netherlands
| | - M H Mars
- Royal GD, PO Box 9, 7400 AA, Deventer, the Netherlands
| | | | - P Wever
- Royal GD, PO Box 9, 7400 AA, Deventer, the Netherlands
| | - G van Schaik
- Royal GD, PO Box 9, 7400 AA, Deventer, the Netherlands; Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80151, 3508 TD, Utrecht, the Netherlands
| |
Collapse
|
2
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
3
|
Yue X, Wu J, van der Voort M, Steeneveld W, Hogeveen H. Estimating the Effect of a Bovine Viral Diarrhea Virus Control Program: An Empirical Study on the Performance of Dutch Dairy Herds. Front Vet Sci 2022; 9:892928. [PMID: 35873683 PMCID: PMC9301250 DOI: 10.3389/fvets.2022.892928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
More and more European countries have implemented a bovine viral diarrhea virus (BVDV) control program. The economic effects of such programs have been evaluated in simulations, but empirical studies are lacking, especially in the final stage of the program. We investigated the economic (gross margin) and production effects (milk yield, somatic cell count, and calving interval) of the herds obtaining BVDV-free certification based on longitudinal annual accounting and herd performance data from Dutch dairy herds between 2014 and 2019, the final stages of the Dutch national BVDV-free program. This study was designed as a case-control study: two types of case herds were defined for two analyses. The case herds in the first analysis are herds where the BVDV status changed from “BVDV not free” to “BVDV free” during the study period. The not-free status refers to a herd that participated in the BVDV-free program but had not yet obtained the BVDV-free certification. In the second analysis, the case herds started participating in the Dutch BVDV-free program during the study period and obtained the BVDV-free certification. Control herds in both analyses were BVDV-free during the entire study period. Potential bias between the covariates of the two herd groups was reduced by matching case and control herds using the propensity score matching method. To compare the differences between case and control herds before and after BVDV-free certification, we used the time-varying Difference-in-Differences estimation (DID) methodology. The results indicate that there was no significant change in milk yield, somatic cell count, calving interval, and gross margin upon BVDV-free certification. There are several possible explanations for the non-significant effects observed in our study, such as the final stage of the BVDV control program, not knowing the true BVDV infection situation in case herds and not knowing if control measures were implemented in case herds prior to participating in the BVDV-free program. In our study, the effects of BVDV-free certification might have been underestimated, given that the Dutch BVDV control program became mandatory during the study period, and some of the case herds might have never experienced any BVDV infection. The results of this study suggest that in the final stage of the BVDV control program, the program may no longer have a clear benefit to the herd performance of participating dairy herds. When designing national programs to eradicate BVDV, it is therefore important to include incentives for such farms to motivate them to join the program.
Collapse
Affiliation(s)
- Xiaomei Yue
- Business Economics Group, Department of Social Sciences, Wageningen University, Wageningen, Netherlands
- *Correspondence: Xiaomei Yue
| | - Jingyi Wu
- Business Economics Group, Department of Social Sciences, Wageningen University, Wageningen, Netherlands
| | - Mariska van der Voort
- Business Economics Group, Department of Social Sciences, Wageningen University, Wageningen, Netherlands
| | - Wilma Steeneveld
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk Hogeveen
- Business Economics Group, Department of Social Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
van Roon A, Madouasse A, Toft N, Santman-Berends I, Gethmann J, Eze J, Humphry R, Graham D, Guelbenzu-Gonzalo M, Nielen M, More S, Mercat M, Fourichon C, Sauter-Louis C, Frössling J, Ågren E, Gunn G, Henry M, van Schaik G. Output-based Assessment of Herd-level Freedom From Infection in Endemic Situations: Application of a Bayesian Hidden Markov Model. Prev Vet Med 2022; 204:105662. [DOI: 10.1016/j.prevetmed.2022.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
|
5
|
Van Duijn L, Santman-Berends I, Biesheuvel M, Mars J, Waldeck F, van Schaik G. Why Test Purchased Cattle in BVDV Control Programs? Front Vet Sci 2021; 8:686257. [PMID: 34513967 PMCID: PMC8429825 DOI: 10.3389/fvets.2021.686257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Bovine viral diarrhea (BVD) is controlled in many countries by detection and culling of persistently infected (PI) animals. The most important risk factor for BVDV introduction is purchase. An introduced cow can be PI and transmit the virus to other cattle in the herd. If she is not PI but is pregnant, there is still a risk because the subsequently born calf may be PI, when she encountered the virus in early pregnancy. To control this risk, all cows > 1 year from non-BVDV-free herds that are introduced in herds that participate in the Dutch BVDV control program are tested for virus and antibodies. Depending on the results, subsequent measures such as suspension of the BVDV-free status, removing the animals from the herd, or testing the off-spring of the cow for virus, are undertaken. The aim of this study was to evaluate the results of this risk mitigating measure. Data on cattle movements, calving's, herd-level BVDV status, and animal-level test data were available from all dairy herds that participated in the national BVDV control program (>14,000 dairy herds) for the year 2019. The data were combined and parameters of interest were calculated, i.e., (i) the number of purchased BVD virus positive cattle and (ii) the number of BVD virus positive calves born from purchased cows within 9 months after introduction. In 2019, 217,301 cattle were introduced in Dutch dairy herds that participated in the BVDV control program. Of these, 49,820 were tested for presence of BVD virus and 27 (0.05%) cows introduced in 21 different herds tested BVD virus positive. Out of 46,727 cattle that were tested for antibodies, 20.5% tested positive. The seropositive cows produced 4,341 viable calves, of which 3,062 were tested for virus and subsequently, 40 (1.3%) were found BVD virus positive. These 40 BVD virus positive calves were born in 23 herds. The risk mitigating measure led to detection of 67 BVD virus positive animals in 44 unique herds in 2019. This study makes plausible that the probability and impact of re-introduction of BVDV can be minimized by testing introduced cattle and their subsequently born calves.
Collapse
Affiliation(s)
| | | | - Marit Biesheuvel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Gerdien van Schaik
- Royal GD, Deventer, Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Santman-Berends IMGA, Mars MH, Weber MF, van Duijn L, Waldeck HWF, Biesheuvel MM, van den Brink KMJA, Dijkstra T, Hodnik JJ, Strain SAJ, de Roo A, Veldhuis AMB, van Schaik G. Control and Eradication Programs for Six Cattle Diseases in the Netherlands. Front Vet Sci 2021; 8:670419. [PMID: 34490388 PMCID: PMC8418201 DOI: 10.3389/fvets.2021.670419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Within the European Union, infectious cattle diseases are categorized in the Animal Health Law. No strict EU regulations exist for control, evidence of disease freedom, and surveillance of diseases listed other than categories A and B. Consequently, EU member states follow their own varying strategies for disease control. The aim of this study was to provide an overview of the control and eradication programs (CPs) for six cattle diseases in the Netherlands between 2009 and 2019 and to highlight characteristics specific to the Dutch situation. All of these diseases were listed as C,D or E in the New Animal Health Law. In the Netherlands, CPs are in place for six endemic cattle diseases: bovine viral diarrhea, infectious bovine rhinotracheitis, salmonellosis, paratuberculosis, leptospirosis, and neosporosis. These CPs have been tailored to the specific situation in the Netherlands: a country with a high cattle density, a high rate of animal movements, a strong dependence on export of dairy products, and a high-quality data-infrastructure. The latter specifically applies to the dairy sector, which is the leading cattle sector in the Netherlands. When a herd enters a CP, generally the within-herd prevalence of infection is estimated in an initial assessment. The outcome creates awareness of the infection status of a herd and also provides an indication of the costs and time to achieve the preferred herd status. Subsequently, the herd enrolls in the control phase of the CP to, if present, eliminate the infection from a herd and a surveillance phase to substantiate the free or low prevalence status over time. The high-quality data infrastructure that results in complete and centrally registered census data on cattle movements provides the opportunity to design CPs while minimizing administrative efforts for the farmer. In the CPs, mostly routinely collected samples are used for surveillance. Where possible, requests for proof of the herd status are sent automatically. Automated detection of risk factors for introduction of new animals originating from a herd without the preferred herd status i.e., free or unsuspected, is in place using centrally registered data. The presented overview may inspire countries that want to develop cost-effective CPs for endemic diseases that are not (yet) regulated at EU level.
Collapse
Affiliation(s)
- I. M. G. A. Santman-Berends
- Department of Research and Development, Royal GD, Deventer, Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - M. H. Mars
- Department of Research and Development, Royal GD, Deventer, Netherlands
| | - M. F. Weber
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Cattle Health, Royal GD, Deventer, Netherlands
| | - L. van Duijn
- Department of Cattle Health, Royal GD, Deventer, Netherlands
| | | | - M. M. Biesheuvel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - T. Dijkstra
- Department of Cattle Health, Royal GD, Deventer, Netherlands
| | - J. J. Hodnik
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. A. J. Strain
- Animal Health and Welfare Northern Ireland, Dungannon, United Kingdom
| | - A. de Roo
- Department of Cattle Health, Royal GD, Deventer, Netherlands
| | - A. M. B. Veldhuis
- Department of Research and Development, Royal GD, Deventer, Netherlands
| | - G. van Schaik
- Department of Research and Development, Royal GD, Deventer, Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Yue X, van der Voort M, Steeneveld W, van Schaik G, Vernooij JCM, van Duijn L, Hogeveen H. The effect of new bovine viral diarrhea virus introduction on somatic cell count, calving interval, culling, and calf mortality of dairy herds in the Dutch bovine viral diarrhea virus-free program. J Dairy Sci 2021; 104:10217-10231. [PMID: 34147217 DOI: 10.3168/jds.2021-20216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 11/19/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection has a major effect on the health of cows and consequently on herd performance. Many countries have implemented control or eradication programs to mitigate BVDV infection and its negative effects. These negative effects of BVDV infection on dairy herds are well documented, but there is much less information about the effects of new introduction of BVDV on dairy herds already participating in a BVDV control program. The objective of our study was to investigate the effect of a new BVDV introduction in BVDV-free herds participating in the Dutch BVDV-free program on herd performance. Longitudinal herd-level surveillance data were combined with herd information data to create 4 unique data sets, including a monthly test-day somatic cell count (SCC) data set, annual calving interval (CIV) and culling risk (CR) data sets, and a quarterly calf mortality rate (CMR) data set. Each database contained 2 types of herds: herds that remained BVDV free during the whole study period (defined as free herds), and herds that lost their BVDV-free status during the study period (defined as breakdown herds). The date of losing the BVDV-free status was defined as breakdown date. To compare breakdown herds with free herds, a random breakdown date was artificially generated for free herds by simple random sampling from the distribution of the breakdown month of the breakdown herds. The SCC and CIV before and after a new introduction of BVDV were compared through linear mixed-effects models with a Gaussian distribution, and the CR and CMR were modeled using a negative binomial distribution in generalized linear mixed-effects models. The explanatory variables for all models included herd type, BVDV status, year, and a random herd effect. Herd size was included as an explanatory variable in the SCC, CIV, and CMR model. Season was included as an explanatory variable in the SCC and CMR model. Results showed that free herds have lower SCC, CR, CMR, and shorter CIV than the breakdown herds. Within the breakdown herds, the new BVDV introduction affected the SCC and CMR. In the year after BVDV introduction, the SCC was higher than that in the year before BVDV introduction, with a factor of 1.011 [2.5th to 97.5th percentile (95% PCTL): 1.002, 1.020]. Compared with the year before BVDV breakdown, the CMR in the year of breakdown and the year after breakdown was higher, with factors of 1.170 (95% PCTL: 1.120; 1.218) and 1.096 (95% PCTL: 1.048; 1.153), respectively. This study reveals that a new introduction of BVDV had a negative but on average relatively small effect on herd performance in herds participating in a BVDV control program.
Collapse
Affiliation(s)
- Xiaomei Yue
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands.
| | - Mariska van der Voort
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands
| | - Wilma Steeneveld
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Gerdien van Schaik
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Royal GD, PO Box 9, 7400 AA Deventer, the Netherlands
| | - Johannes C M Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | | | - Henk Hogeveen
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands
| |
Collapse
|
8
|
Graham D, More SJ, O'Sullivan P, Lane E, Barrett D, Lozano JM, Thulke HH, Verner S, Guelbenzu M. The Irish Programme to Eradicate Bovine Viral Diarrhoea Virus-Organization, Challenges, and Progress. Front Vet Sci 2021; 8:674557. [PMID: 34141734 PMCID: PMC8204052 DOI: 10.3389/fvets.2021.674557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
A mandatory national Irish bovine viral diarrhoea (BVD) eradication programme, coordinated by Animal Health Ireland, commenced in 2013. Key decisions and programme review are undertaken by a cross-industry Implementation Group (BVDIG) supported by a Technical Working Group. Ear notch tissue is collected from all new-born calves using modified official identity tags, supplemented by additional blood sampling, including for confirmatory testing of calves with initial positive results and testing of their dams. Testing is delivered by private laboratories in conjunction with the National Reference Laboratory, with all results reported to a central database. This database manages key elements of the programme, issuing results to herdowners by short message service messaging supplemented by letters; assigning and exchanging animal-level statuses with government databases of the Department of Agriculture, Food and the Marine to enable legislated restrictions on animal movements; assigning negative herd status based on test results; generating regular reports for programme management and evaluation and providing herd-specific dashboards for a range of users. Legislation supporting the programme has been in place throughout but has not thus far mandated the slaughter of persistently infected (PI) calves. A key challenge in the early years, highlighted by modeling, was the retention of PI animals by some herd owners. This has largely been resolved by measures including graduated financial supports to encourage their early removal, herd-level movement restrictions, ongoing programme communications and the input of private veterinary practitioners (PVPs). A framework for funded investigations by PVPs in positive herds was developed to identify plausible sources of infection, to resolve the status of all animals in the herd and to agree up to three measures to prevent re-introduction of the virus. The prevalence of PI calves in 2013 was 0.66%, within 11.3% of herds, reducing in each subsequent year, to 0.03 and 0.55%, respectively, at the end of 2020. Recent regulatory changes within the European Union for the first time make provision for official approval of national eradication programmes, or recognition of BVD freedom, and planning is underway to seek approval and, in due course, recognition of freedom within this framework by 2023.
Collapse
Affiliation(s)
- David Graham
- Animal Health Ireland, Carrick on Shannon, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Elizabeth Lane
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Animal Health Division, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Damien Barrett
- Surveillance, Animal By-products and TSEs (SAT) Division Department of Agriculture, Food and the Marine, Celbridge, Ireland
| | - Jose-Maria Lozano
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Celbridge, Ireland
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Sharon Verner
- Animal Health and Welfare NI, Unit 49, Dungannon Enterprise Centre, Dungannon, United Kingdom
| | | |
Collapse
|
9
|
Yue X, Steeneveld W, van der Voort M, van Schaik G, Vernooij JCM, van Duijn L, Veldhuis AMB, Hogeveen H. The effect of bovine viral diarrhea virus introduction on milk production of Dutch dairy herds. J Dairy Sci 2020; 104:2074-2086. [PMID: 33309379 DOI: 10.3168/jds.2020-18866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Dairy cows are negatively affected by the introduction of bovine viral diarrhea virus (BVDV), and consequently, produce less milk. Existing literature on potential milk production losses is based on relatively outdated data and hardly evaluates milk production loss in relation to a new BVDV infection in a surveillance system. This study determined the annual and quarterly loss in milk production of BVDV introduction in 3,126 dairy herds participating in the Dutch BVDV-free program between 2007 and 2017. Among these herds, 640 were "breakdown-herds" that obtained and subsequently lost their BVDV-free status during the study period, and 2,486 herds obtained and retained their BVDV-free status during the study period. Milk yields before and after BVDV introduction were compared through annual and quarterly linear mixed models. The fixed variables for both models included herd type (breakdown-herd or free-herd), bovine viral diarrhea status (on an annual and quarterly basis), year, season, and a random herd effect. The dependent variable was the average daily milk yield on the test day. To define the possible BVDV-introduction dates, 4 scenarios were developed. In the default scenario, the date of breakdown (i.e., loss of the BVDV-free status) was assumed as the BVDV-introduction date. For the other 3 scenarios, the BVDV-introduction dates were set at 4, 6, and 9 mo before the date of breakdown, based on the estimated birth date of a persistently infected calf. In the default scenario, the loss in milk yield due to BVDV introduction occurred mainly in the first year after breakdown, with a reduction in yield of 0.08 kg/cow per day compared with the last year before breakdown. For the other 3 scenarios, the greatest yield reduction occurred in the second year after BVDV introduction, with a loss of 0.09, 0.09, and 0.1 kg/cow per day, respectively. For the first 4 quarters after BVDV introduction in the default scenario, milk yield loss was 0.14, 0.09, 0.02, and 0.08 kg/cow per day, respectively. These quarterly results indicated that milk yield loss was greatest in the first quarter after BVDV introduction. Overall, BVDV introduction had a negative, but on average a relatively small, effect on milk yield for herds participating in the BVDV-free program. This study will enable dairy farmers and policymakers to have a clearer understanding of the quantitative milk production effect of BVDV on dairy farms in a control program.
Collapse
Affiliation(s)
- Xiaomei Yue
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands.
| | - Wilma Steeneveld
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Mariska van der Voort
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands
| | - Gerdien van Schaik
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; GD Animal Health, PO Box 9, 7400 AA Deventer, the Netherlands
| | - Johannes C M Vernooij
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Linda van Duijn
- GD Animal Health, PO Box 9, 7400 AA Deventer, the Netherlands
| | | | - Henk Hogeveen
- Business Economics Group, Department of Social Sciences, Wageningen University, 6706 KN Wageningen, the Netherlands
| |
Collapse
|
10
|
Biesheuvel MM, van Schaik G, Meertens NM, Peperkamp NH, van Engelen E, van Garderen E. Emergence of fatal Mannheimia haemolytica infections in cattle in the Netherlands. Vet J 2020; 268:105576. [PMID: 33468303 DOI: 10.1016/j.tvjl.2020.105576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022]
Abstract
In the Dutch national surveillance system, outbreaks of fatal infections by Mannheimia haemolytica (M. haemolytica) in dairy cows and veal calves have become apparent in recent years. These observations prompted an in-depth analysis of available pathology data over the period 2004-2018 to investigate changes in the occurrence and/or expression of M. haemolytica-associated cattle disease. With multilevel logistic regression models, time trends were identified and corrected for farm, season, pathologist and region. Deaths associated with M. haemolytica infection increased over time with dairy cows and veal calves diagnosed with fatal M. haemolytica infections 1.5 and 1.4 times more frequently every following 3-year period between 2004 and 2018, respectively. M. haemolytica-associated disease showed two distinct disease presentations: acute pleuropneumonia in dairy cows and polyserositis in veal calves. The prevalence of both disease presentations with M. haemolytica confirmed increased in each 3-year time period between 2004 and 2018, with an odds ratio (OR) of 1.5 for acute pleuropneumonia in dairy cows and an OR of 1.7 for polyserositis in veal calves. No change was found for M. haemolytica-associated disease in dairy calves. Although M. haemolytica is considered an opportunist bovine pathogen, and the presence of primary pathogens such as BHV-1, BVDV and Mycoplasma species was not completely ruled out in our study, substantial evidence is provided to indicate infections with M. haemolytica were the most likely cause of death. M. haemolytica-associated diseases occurred more often in October-June than July-September, and were detected more often in necropsied animals from the North, South and East Netherlands than the West Netherlands.
Collapse
Affiliation(s)
- M M Biesheuvel
- Research and Development, Epidemiology Group, Royal GD, Deventer, The Netherlands
| | - G van Schaik
- Research and Development, Epidemiology Group, Royal GD, Deventer, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - N M Meertens
- Laboratory for Pathology and Histology, Royal GD, Deventer, The Netherlands
| | - N H Peperkamp
- Laboratory for Pathology and Histology, Royal GD, Deventer, The Netherlands
| | - E van Engelen
- Research and Development, Bacteriology Department, Royal GD, Deventer, The Netherlands
| | - E van Garderen
- Laboratory for Pathology and Histology, Royal GD, Deventer, The Netherlands
| |
Collapse
|
11
|
Ibba R, Piras S, Delogu I, Loddo R, Carta A. Anti-BVDV Activity Evaluation of Naphthoimidazole Derivatives Compared with Parental Imidazoquinoline Compounds. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pestivirus genus includes animal pathogens which are involved in economic impact for the livestock industry. Among others, Bovine Viral Diarrhoea Virus (BVDV) establish a persistent infection in cattle causing a long list of symptoms and a high mortality rate. In the last decades, we synthesised and reported a certain number of anti-BVDV compounds.
Methods:
In them, imidazoquinoline derivatives turned out as the most active. Their mechanism of actions has been deeply investigated, BVDV RNA-dependent RNA polymerase (RpRd) resulted as target and the way of binding was predicted in silico through three main H-bond interaction with the target.
The prediction could be confirmed by target or ligand mutation. The first approach has already been performed and published confirming the in silico prediction.
Results:
Here, we present how the ligand chemical modification affects the anti-BVDV activity. The designed compounds were synthesised and tested against BVDV as in silico assay negative control.
Conclusion:
The antiviral results confirmed the predicted mechanism of action, as the newly synthesised compounds resulted not active in the in vitro BVDV infection inhibition.
Collapse
|
12
|
Benavides B, Casal J, Diéguez JF, Yus E, Moya SJ, Armengol R, Allepuz A. Development of a quantitative risk assessment of bovine viral diarrhea virus and bovine herpesvirus-1 introduction in dairy cattle herds to improve biosecurity. J Dairy Sci 2020; 103:6454-6472. [PMID: 32359990 DOI: 10.3168/jds.2019-17827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/29/2020] [Indexed: 01/16/2023]
Abstract
A quantitative risk assessment model was developed to estimate the annual probability of introducing bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) at the farm level through animal movements. Data from 2017 official animal movements, biosecurity questionnaires, scientific literature, and expert opinion from field veterinarians were taken into consideration for model input parameters. Purchasing or introducing cattle, rearing replacement heifers offsite, showing cattle at competitions, sharing transport vehicles with other herds, and transporting cattle in vehicles that have not been cleaned and disinfected were considered in the model. The annual probability of introducing BVDV or BoHV-1 through infected animals was very heterogeneous between farms. The median likelihoods of BVDV and BoHV-1introduction were 12 and 9%, respectively. Farms that purchased cattle from within their region (i.e., local movements) and shared transport with other farms had a higher probability for BVDV and BoHV-1 introduction. This model can be a useful tool to support decision-making on biosecurity measures that should be prioritized to reduce the probability of introduction of these 2 diseases in dairy herds.
Collapse
Affiliation(s)
- B Benavides
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Cerdanyola del Vallès, 08193, Spain; Department of Animal Health, Universidad de Nariño, Pasto, 520002, Colombia.
| | - J Casal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Cerdanyola del Vallès, 08193, Spain; Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès, 08193, Spain
| | - J F Diéguez
- Department of Anatomy and Animal Production, Universidad de Santiago de Compostela, Lugo, 15703, Spain
| | - E Yus
- Department of Animal Pathology, Universidad de Santiago de Compostela, Lugo, 15703, Spain
| | - S J Moya
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Cerdanyola del Vallès, 08193, Spain
| | - R Armengol
- Department of Animal Science, Universitat de Lleida, Lleida, 25002, Spain
| | - A Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Cerdanyola del Vallès, 08193, Spain; Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
13
|
van Roon AM, Santman-Berends IMGA, Graham D, More SJ, Nielen M, van Duijn L, Mercat M, Fourichon C, Madouasse A, Gethmann J, Sauter-Louis C, Frössling J, Lindberg A, Correia-Gomes C, Gunn GJ, Henry MK, van Schaik G. A description and qualitative comparison of the elements of heterogeneous bovine viral diarrhea control programs that influence confidence of freedom. J Dairy Sci 2020; 103:4654-4671. [PMID: 32147269 DOI: 10.3168/jds.2019-16915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022]
Abstract
For endemic infections in cattle that are not regulated at the European Union level, such as bovine viral diarrhea virus (BVDV), European Member States have implemented control or eradication programs (CEP) tailored to their specific situations. Different methods are used to assign infection-free status in CEP; therefore, the confidence of freedom associated with the "free" status generated by different CEP are difficult to compare, creating problems for the safe trade of cattle between territories. Safe trade would be facilitated with an output-based framework that enables a transparent and standardized comparison of confidence of freedom for CEP across herds, regions, or countries. The current paper represents the first step toward development of such a framework by seeking to describe and qualitatively compare elements of CEP that contribute to confidence of freedom. For this work, BVDV was used as a case study. We qualitatively compared heterogeneous BVDV CEP in 6 European countries: Germany, France, Ireland, the Netherlands, Sweden, and Scotland. Information about BVDV CEP that were in place in 2017 and factors influencing the risk of introduction and transmission of BVDV (the context) were collected using an existing tool, with modifications to collect information about aspects of control and context. For the 6 participating countries, we ranked all individual elements of the CEP and their contexts that could influence the probability that cattle from a herd categorized as BVDV-free are truly free from infection. Many differences in the context and design of BVDV CEP were found. As examples, CEP were either mandatory or voluntary, resulting in variation in risks from neighboring herds, and risk factors such as cattle density and the number of imported cattle varied greatly between territories. Differences were also found in both testing protocols and definitions of freedom from disease. The observed heterogeneity in both the context and CEP design will create difficulties when comparing different CEP in terms of confidence of freedom from infection. These results highlight the need for a standardized practical methodology to objectively and quantitatively determine confidence of freedom resulting from different CEP around the world.
Collapse
Affiliation(s)
- A M van Roon
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, PO Box 80151, 3508, TD Utrecht, the Netherlands.
| | - I M G A Santman-Berends
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, PO Box 80151, 3508, TD Utrecht, the Netherlands; GD Animal Health, PO Box 9, 7400 AA, Deventer, the Netherlands
| | - D Graham
- Animal Health Ireland, Unit 4/5, The Archways, Bridge St., Carrick-on-Shannon, Co. Leitrim N41 WN27, Ireland
| | - S J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 W6F6, Ireland
| | - M Nielen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, PO Box 80151, 3508, TD Utrecht, the Netherlands
| | - L van Duijn
- GD Animal Health, PO Box 9, 7400 AA, Deventer, the Netherlands
| | - M Mercat
- BIOEPAR, INRA, Oniris, La Chantrerie, Nantes 44307, France
| | - C Fourichon
- BIOEPAR, INRA, Oniris, La Chantrerie, Nantes 44307, France
| | - A Madouasse
- BIOEPAR, INRA, Oniris, La Chantrerie, Nantes 44307, France
| | - J Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Südufer 10, 17493 Greifswald, Germany
| | - C Sauter-Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Südufer 10, 17493 Greifswald, Germany
| | - J Frössling
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - A Lindberg
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - C Correia-Gomes
- Scotland's Rural College, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - G J Gunn
- Scotland's Rural College, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - M K Henry
- Scotland's Rural College, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - G van Schaik
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, PO Box 80151, 3508, TD Utrecht, the Netherlands; GD Animal Health, PO Box 9, 7400 AA, Deventer, the Netherlands
| |
Collapse
|