1
|
Paietta EN, Kraberger S, Regney M, Custer JM, Ehmke E, Yoder AD, Varsani A. Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs ( Varecia rubra). Viruses 2023; 16:37. [PMID: 38257737 PMCID: PMC10818365 DOI: 10.3390/v16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The Papillomaviridae are a family of vertebrate-infecting viruses of oncogenic potential generally thought to be host species- and tissue-specific. Despite their phylogenetic relatedness to humans, there is a scarcity of data on papillomaviruses (PVs) in speciose non-human primate lineages, particularly the lemuriform primates. Varecia variegata (black-and-white ruffed lemurs) and Varecia rubra (red ruffed lemurs), two closely related species comprising the Varecia genus, are critically endangered with large global captive populations. Varecia variegata papillomavirus (VavPV) types -1 and -2, the first PVs in lemurs with a fully identified genome, were previously characterized from captive V. variegata saliva. To build upon this discovery, saliva samples were collected from captive V. rubra with the following aims: (1) to identify PVs shared between V. variegata and V. rubra and (2) to characterize novel PVs in V. rubra to better understand PV diversity in the lemuriform primates. Three complete PV genomes were determined from V. rubra samples. Two of these PV genomes share 98% L1 nucleotide identity with VavPV2, denoting interspecies infection of V. rubra by VavPV2. This work represents the first reported case of interspecies PV infection amongst the strepsirrhine primates. The third PV genome shares <68% L1 nucleotide identity with that of all PVs. Thus, it represents a new PV species and has been named Varecia rubra papillomavirus 1 (VarPV1). VavPV1, VavPV2, and VarPV1 form a new clade within the Papillomaviridae family, likely representing a novel genus. Future work diversifying sample collection (i.e., lemur host species from multiple genera, sample type, geographic location, and wild populations) is likely to uncover a world of diverse lemur PVs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
| | - Melanie Regney
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
| | - Erin Ehmke
- Duke Lemur Center, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (M.R.); (J.M.C.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Monod A, Koch C, Jindra C, Haspeslagh M, Howald D, Wenker C, Gerber V, Rottenberg S, Hahn K. CRISPR/Cas9-Mediated Targeting of BPV-1-Transformed Primary Equine Sarcoid Fibroblasts. Viruses 2023; 15:1942. [PMID: 37766348 PMCID: PMC10536948 DOI: 10.3390/v15091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Equine sarcoids (EqS) are fibroblast-derived skin tumors associated with bovine papillomavirus 1 and 2 (BPV-1 and -2). Based on Southern blotting, the BPV-1 genome was not found to be integrated in the host cell genome, suggesting that EqS pathogenesis does not result from insertional mutagenesis. Hence, CRISPR/Cas9 implies an interesting tool for selectively targeting BPV-1 episomes or genetically anchored suspected host factors. To address this in a proof-of-concept study, we confirmed the exclusive episomal persistence of BPV-1 in EqS using targeted locus amplification (TLA). To investigate the CRISPR/Cas9-mediated editing of BPV-1 episomes, primary equine fibroblast cultures were established and characterized. In the EqS fibroblast cultures, CRISPR-mediated targeting of the episomal E5 and E6 oncogenes as well as the BPV-1 long control region was successful and resulted in a pronounced reduction of the BPV-1 load. Moreover, the deletion of the equine Vimentin (VIM), which is highly expressed in EqS, considerably decreased the number of BPV-1 episomes. Our results suggest CRISPR/Cas9-based gene targeting may serve as a tool to help further unravel the biology of EqS pathogenesis.
Collapse
Affiliation(s)
- Anne Monod
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.M.)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| | - Christoph Koch
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.M.)
| | - Christoph Jindra
- Research Group Oncology, University Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Maarten Haspeslagh
- Department of Large Animal Surgery, Anesthesiology and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| | | | - Vinzenz Gerber
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.M.)
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| | - Kerstin Hahn
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| |
Collapse
|