1
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Non-alkylating agents-induced gonadotoxicity in pre-pubertal males: Insights on the clinical and pre-clinical front. Clin Transl Sci 2024; 17:e70075. [PMID: 39582284 PMCID: PMC11586508 DOI: 10.1111/cts.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Whilst chemotherapy regimens have proven to be more successful for pediatric cancer patients over the years, their influence on long-term side effects is relatively poorly understood. One of the possible targets is the gonads, with gonadotoxic agents representing those that threaten the patient's ability to have children post surviving the primary disease treatment. Many risk stratification guidelines have categorized these agents based on the severity of their effect on the pre-pubertal testis. While the consensus is that those agents factored with a cyclophosphamide equivalent dosage pose the highest threat to fertility (e.g. alkylating agents), other agents might still contribute to a reduced testis function; especially in the case of combination therapies. Besides, it is important to note that studies deciphering the effect of other non-alkylating agents on the pre-pubertal testis lack standardized conclusions for clinically relevant outcomes. This makes it imperative to ensure the knowledge gap is addressed between the clinic and pre-clinic to understand potential gonadotoxic effects, ultimately leading to improved patient care. Therefore, this review will summarize the key findings in understanding the gonadotoxic effects of the most commonly researched non-alkylating agents: vincristine, etoposide, doxorubicin, and imatinib on the pre-pubertal testis.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Milutinović MG, Milivojević NN, Đorđević NM, Nikodijević DD, Radisavljević SR, Đeković Kesić AS, Marković SD. Gold(III) Complexes with Phenanthroline-derivatives Ligands Induce Apoptosis in Human Colorectal and Breast Cancer Cell Lines. J Pharm Sci 2022; 111:3215-3223. [PMID: 36162493 DOI: 10.1016/j.xphs.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023]
Abstract
Due to their promising effects, gold(III) complexes recently drew increasing attention in the design of new metal-based anticancer therapeutics. Two gold(III) complexes, square-planar [Au(DPP)Cl2]+ - Complex 1 and distorted square-pyramidal [Au(DMP)Cl3] - Complex 2 (where DPP=4,7-diphenyl-1,10-phenanthroline and DMP=2,9-dimethyl-1,10-phenanthroline) were previously synthetized, described and approved as complexes with pronounced cytotoxic effects on colorectal HCT-116 and breast MDA-MB-231 cancer cells. This study investigated the type of cell death by AO/EB double staining, and identification of possible targets responsible for their cytotoxicity, monitored by immunofluorescence and qPCR methods. Both complexes induced apoptosis in all applied concentrations. In the HCT-116 cells apoptosis was activated by external apoptotic pathway, via increase of Fas receptor protein expression and Caspase 8 gene expression. Also, the mitochondrial pathway was triggered by affecting the Bcl-2 members of regulatory proteins and increased caspase 9 protein expression. In MDA-MB-231 cells, apoptosis was initiated from the mitochondria, due to disbalance between expressions of pro- and anti-apoptotic Bcl-2 family members and caspase 9 activation. Complex 1 shows better activity compared to Complex 2, which is in accordance with its structural characteristics. The results deal weighty data about proapoptotic activity of gold(III) complexes and highlighted potential targets for cancer therapy.
Collapse
Affiliation(s)
- Milena G Milutinović
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nevena N Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena M Đorđević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana R Radisavljević
- University of Kragujevac, Department of Chemistry, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ana S Đeković Kesić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana D Marković
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
3
|
Marverti G, Gozzi G, Lauriola A, Ponterini G, Belluti S, Imbriano C, Costi MP, D’Arca D. The 1,10-Phenanthroline Ligand Enhances the Antiproliferative Activity of DNA-Intercalating Thiourea-Pd(II) and -Pt(II) Complexes Against Cisplatin-Sensitive and -Resistant Human Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:E6122. [PMID: 31817267 PMCID: PMC6969938 DOI: 10.3390/ijms20246122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, often because of the frequent insurgence of chemoresistance to the drugs currently used. Thus, new therapeutical agents are needed. We tested the toxicity of 16 new DNA-intercalating agents to cisplatin (cDDP)-sensitive human ovarian carcinoma cell lines and their resistant counterparts. The compounds were the complexes of Pt(II) or Pd(II) with bipyridyl (bipy) and phenanthrolyl (phen) and with four different thiourea ancillary ligands. Within each of the four series of complexes characterized by the same thiourea ligand, the Pd(phen) drugs invariably showed the highest anti-proliferative efficacy. This paralleled both a higher intracellular drug accumulation and a more efficient DNA intercalation than all the other metal-bidentate ligand combinations. The consequent inhibition of topoisomerase II activity led to the greatest inhibition of DNA metabolism, evidenced by the inhibition of the expression of the folate cycle enzymes and a marked perturbation of cell-cycle distribution in both cell lines. These findings indicate that the particular interaction of Pd(II) with phenanthroline confers the best pharmacokinetic and pharmacodynamic properties that make this class of DNA intercalators remarkable inhibitors, even of the resistant cell growth.
Collapse
Affiliation(s)
- Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (G.G.); (A.L.)
| | - Gaia Gozzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (G.G.); (A.L.)
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (G.G.); (A.L.)
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (G.P.); (S.B.); (C.I.); (M.P.C.)
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (G.P.); (S.B.); (C.I.); (M.P.C.)
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (G.P.); (S.B.); (C.I.); (M.P.C.)
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (G.P.); (S.B.); (C.I.); (M.P.C.)
| | - Domenico D’Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (G.G.); (A.L.)
| |
Collapse
|
4
|
Arepalli SK, Lee C, Sim S, Lee K, Jo H, Jun KY, Kwon Y, Kang JS, Jung JK, Lee H. Development of 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and their salts as potent cytotoxic agents and topoisomerase I/IIα inhibitors. Bioorg Med Chem 2018; 26:5181-5193. [PMID: 30253887 DOI: 10.1016/j.bmc.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
A novel series of 35 angularly fused pentacyclic 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridin-5-ium chlorides were designed and synthesized. Their cytotoxic activities were investigated against six human cancer cell lines (NCIH23, HCT15, NUGC-3, ACHN, PC-3, and MDA-MB-231). Among all screened compounds; 28, 30, 34, 35, 46, 48, 52, and 53 compounds exhibited potent cytotoxic activities against all tested human cancer cell lines. Further, these potent lead cytotoxic agents were evaluated against human Topoisomerase I and IIα inhibition. Among them, the compound 48 exhibited dual Topoisomerase I and IIα inhibition especially at 20 μM concentrations the compound 48 exhibited 1.25 times more potent Topoisomerase IIα inhibitory activity (38.3%) than the reference drug etoposide (30.6%). The compound 52 also exhibited excellent (88.4%) topoisomerase I inhibition than the reference drug camptothecin (66.7%) at 100 μM concentrations. Molecular docking studies of the compounds 48 and 52 with topo I discovered that they both intercalated into the DNA single-strand cleavage site where the compound 48 have van der Waals interactions with residues Arg364, Pro431, and Asn722 whilst the compound 52 have with Arg364, Thr718, and Asn722 residues. Both the compounds 48 and 52 have π-π stacking interactions with the stacked DNA bases. The docking studies of the compound 48 with topo IIα explored that it was bound to the topo IIα DNA cleavage site where etoposide was situated. The benzo[f]chromeno[4,3-b][1,7]naphthyridine ring of the compound 48 was stacked between the DNA bases of the cleavage site with π-π stacking interactions and there were no hydrogen bond interactions with topo IIα.
Collapse
Affiliation(s)
| | - Chaerim Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Seongrak Sim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Heesoon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
5
|
Bist G, Park S, Song C, Thapa Magar TB, Shrestha A, Kwon Y, Lee ES. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur J Med Chem 2017; 133:69-84. [DOI: 10.1016/j.ejmech.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
6
|
Brandão HN, Medrado HHS, David JP, David JM, Pastore JFB, Meira M. Determination of podophyllotoxin and related aryltetralin lignans by HPLC/DAD/MS from Lamiaceae species. Microchem J 2017. [DOI: 10.1016/j.microc.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Gautier J, Munnier E, Soucé M, Chourpa I, Douziech Eyrolles L. Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis. Anal Bioanal Chem 2015; 407:3425-35. [PMID: 25749791 DOI: 10.1007/s00216-015-8566-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/23/2023]
Abstract
The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments. On the other hand, capillary electrophoresis with fluorescence detection (CE-LIF) is a quantitative method capable of separating doxorubicin and its metabolites. In this paper, we propose a method for determining drug and metabolite concentration in enriched nuclear and cytosolic fractions of cancer cells by CE-LIF, and we compare these data with those of FCSI. Significant differences in the subcellular distribution of DOX are observed between the drug administered as a molecular solution or as a suspension of drug-loaded iron oxide nanoparticles coated with polyethylene glycol. Comparative analysis of the CE-LIF vs FCSI data may lead to a tentative calibration of this latter method in terms of DOX fluorescence quantum yields in the nucleus and more or less polar regions of the cytosol.
Collapse
Affiliation(s)
- Juliette Gautier
- Universite Francois-Rabelais de Tours, EA6295 "Nanomedicaments et Nanosondes", 31 Avenue Monge, 37200, Tours, France
| | | | | | | | | |
Collapse
|
8
|
Li L, Abraham AD, Zhou Q, Ali H, O'Brien JV, Hamill BD, Arcaroli JJ, Messersmith WA, LaBarbera DV. An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent. Mar Drugs 2014; 12:4833-50. [PMID: 25244109 PMCID: PMC4178486 DOI: 10.3390/md12094833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
Recently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (≤6%). In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values) in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM). We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adedoyin D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Hadi Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Jeremy V O'Brien
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Brayden D Hamill
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Zagotto G, Gianoncelli A, Sissi C, Marzano C, Gandin V, Pasquale R, Capranico G, Ribaudo G, Palumbo M. Novel ametantrone-amsacrine related hybrids as topoisomerase IIβ poisons and cytotoxic agents. Arch Pharm (Weinheim) 2014; 347:728-37. [PMID: 25042690 DOI: 10.1002/ardp.201400111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/07/2014] [Accepted: 05/28/2014] [Indexed: 11/09/2022]
Abstract
The precise definition of the structural requirements for effective topoisomerase II poisoning by drug molecules is still an elusive issue. In the attempt to better define a pharmacophoric pattern, we prepared several conjugates combining the chemical features of two well-known topoisomerase II poisons, amsacrine and ametantrone. Indeed, an appropriate fusion geometry, which entails the anthracenedione moiety of ametantrone appropriately connected to the methanesulfonamidoaniline side chain of amsacrine, elicits DNA-intercalating properties, the capacity to inhibit the human topoisomerase IIβ isoform, and cytotoxic activity resembling that of the parent compounds. In addition, the properties of the lateral groups linked to the anthracenedione group play an important role in modulating DNA binding and cell cytotoxicity. Among the compounds tested, 10, 11, and 19 appear to be promising for further development.
Collapse
Affiliation(s)
- Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saadati R, Dadashzadeh S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Int J Pharm 2014; 464:135-44. [PMID: 24451238 DOI: 10.1016/j.ijpharm.2014.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate the effect of d-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) alone or in combination with other emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles for in vivo applications. Nanoparticles were prepared by nanoprecipitation or single-emulsion solvent evaporation method using TPGS alone or in combination with other surfactants. These nanoparticles were fully characterized by different techniques. For nanoprecipitation preparations, by adding 0.1% TPGS to polyvinyl alcohol in the aqueous phase, encapsulation efficiency markedly increased (up to 82%); moreover, drug release was readily controlled up to 3 days. Regarding emulsion solvent evaporation method, the highest encapsulation efficiency was obtained for nanoparticles emulsified with polyvinyl alcohol or TPGS; however, the burst release was high. When the combination of TPGS and polyvinyl alcohol was applied a marked increase in encapsulation efficiency (∼ 90%) was observed and the drug release was extended to more than one week. Pharmacokinetic measurements showed that the optimum formulation generated 14.4 times higher AUC and lasted 5.1 times longer when compared to free drug. Overall, using TPGS in combination with polyvinyl alcohol as an emulsifier in preparing etoposide loaded PLGA-PEG nanoparticles markedly increased the encapsulation efficiency, sustained drug release and resulted in nanoparticles with noticeable sustainable in vivo disposition.
Collapse
Affiliation(s)
- Roonak Saadati
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Chakrabarty S, Croft MS, Marko MG, Moyna G. Synthesis and evaluation as potential anticancer agents of novel tetracyclic indenoquinoline derivatives. Bioorg Med Chem 2013; 21:1143-9. [DOI: 10.1016/j.bmc.2012.12.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/17/2012] [Accepted: 12/25/2012] [Indexed: 11/24/2022]
|
12
|
Vanderbeeken MC, Aftimos PG, Awada A. Topoisomerase Inhibitors in Metastatic Breast Cancer: Overview of Current Practice and Future Development. CURRENT BREAST CANCER REPORTS 2013. [DOI: 10.1007/s12609-012-0098-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Kretzer IF, Maria DA, Maranhão RC. Drug-targeting in combined cancer chemotherapy: tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell Oncol (Dordr) 2012; 35:451-60. [DOI: 10.1007/s13402-012-0104-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 01/29/2023] Open
|
14
|
Nateewattana J, Saeeng R, Kasemsook S, Suksen K, Dutta S, Jariyawat S, Chairoungdua A, Suksamrarn A, Piyachaturawat P. Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues. Invest New Drugs 2012; 31:320-32. [PMID: 22899371 DOI: 10.1007/s10637-012-9868-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Topoisomerase II α enzyme plays a critical role in DNA replication process. It controls the topologic states of DNA during transcription and is essential for cell proliferation. Human DNA topoisomerase II α (hTopo II α) is a promising chemotherapeutic target for anticancer agents against a variety of cancer types. In the present study, andrographolide and its structurally modified analogues were investigated for their inhibitory activities on hTopo II α enzyme. Five out of nine andrographolide analogues potently reduced hTopo II α activity and inhibited cell proliferation in four mammalian cell lines (Hela, CHO, BCA-1 and HepG2 cells). IC50 values for cytotoxicity of analogues 3A.1, 3A.2, 3A.3, 1B and 2C were 4 to 7 μM. Structure-activity relationship studies revealed that both core structure of andrographolide and silicon based molecule of functional group were important for the inhibition of hTopo II α activity whereas position C-19 of analogues was required for anti-proliferation. In addition, the analogue 2C at 10 μM concentration inhibited hTopo II α, and induced apoptosis with nuclear fragmentation and formation of apoptotic bodies in HepG2 cells. The analogue 2C may, therefore, have a therapeutic potential as effective anticancer agent targeting the hTopo II α functions.
Collapse
Affiliation(s)
- Jintapat Nateewattana
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm 2012; 423:16-25. [DOI: 10.1016/j.ijpharm.2011.06.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022]
|
16
|
Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 2011; 44:310-20. [DOI: 10.1016/j.ejps.2011.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
17
|
Updated biotechnological approaches developed for 2,7′-cyclolignan production. Biotechnol Appl Biochem 2010; 55:139-53. [DOI: 10.1042/ba20090253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Thapa P, Karki R, Choi H, Choi JH, Yun M, Jeong BS, Jung MJ, Nam JM, Na Y, Cho WJ, Kwon Y, Lee ES. Synthesis of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship. Bioorg Med Chem 2010; 18:2245-2254. [DOI: 10.1016/j.bmc.2010.01.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 10/19/2022]
|
19
|
Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells. Toxicol Lett 2009; 193:108-14. [PMID: 20026395 PMCID: PMC2828539 DOI: 10.1016/j.toxlet.2009.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/30/2022]
Abstract
Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4 h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1 h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
Collapse
|
20
|
Wang J, Zhang Y, Guan T, Lin X, Tang X, Xu H. Determination of teniposide in rat plasma by ultra performance liquid chromatography electrospray ionization tandem mass spectrometry after intravenous administration. Biomed Chromatogr 2009; 23:999-1006. [DOI: 10.1002/bmc.1214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Thompson CM, Quinn CA, Hergenrother PJ. Total Synthesis and Cytoprotective Properties of Dykellic Acid. J Med Chem 2008; 52:117-25. [DOI: 10.1021/jm801169s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christina M. Thompson
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
| | - Catherine A. Quinn
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
22
|
Lamblin F, Hano C, Fliniaux O, Mesnard F, Fliniaux MA, Lainé E. [Interest of lignans in prevention and treatment of cancers]. Med Sci (Paris) 2008; 24:511-9. [PMID: 18466729 DOI: 10.1051/medsci/2008245511] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lignans are diphenolic compounds widely distributed in the plant kingdom. They are mainly localised in lignified tissues, seeds and roots. These molecules are involved in plant defence mechanisms, but are also interesting for human health. Flax lignans belonging to the phytoestrogens are metabolised after ingestion into enterolignans that may offer a protection against the onset and development of hormono-dependant cancers. In vitro studies based on mammalian cellular models tend to confirm their beneficial effects observed during epidemiological studies and give us insights about their mechanisms of action. The most studied lignan, podophyllotoxin, and its semi-synthetic derivatives (etoposide, teniposide, etoposide phosphate), are particularly interesting at a curative level due to their cytotoxic properties. These semi-synthetic derivatives are used in chemotherapy of lung cancer for example. However, the extensive use of these anticancer drugs will lead to the problem of podophyllotoxin supply. This molecule is currently extracted from the rhizomes and roots of an Indian species Podophyllum hexandrum which has subsequently become endangered. Strategies are investigated to obtain economically viable alternative sources of Podophyllotoxin from plants and in vitro cultures of several species. Among them, north american Podophyllum peltatum, Linum wild species, Hyptis, Anthriscus, Juniperus or Dysosma species which accumulate Podophyllotoxin or closely related derivatives, are good candidates. double dagger.
Collapse
Affiliation(s)
- Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Centre Universitaire de Chartres, 21, rue de Loigny la Bataille, 28000 Chartres, France.
| | | | | | | | | | | |
Collapse
|
23
|
Setzer WN. Non-Intercalative Triterpenoid Inhibitors of Topoisomerase II: A Molecular Docking Study. ACTA ACUST UNITED AC 2008. [DOI: 10.2174/1874847300801010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Gomez-Monterrey I, Campiglia P, Carotenuto A, Stiuso P, Bertamino A, Sala M, Aquino C, Grieco P, Morello S, Pinto A, Ianelli P, Novellino E. Spiro[(dihydropyrazin-2,5-dione)-6,3′-(2′,3′-dihydrothieno[2,3-b]naphtho-4′,9′-dione)]-Based Cytotoxic Agents: Structure–Activity Relationship Studies on the Substituent at N4-Position of the Diketopiperazine Domain. J Med Chem 2008; 51:2924-32. [PMID: 18429610 DOI: 10.1021/jm7013056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isabel Gomez-Monterrey
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Pietro Campiglia
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Alfonso Carotenuto
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Paola Stiuso
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Alessia Bertamino
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Marina Sala
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Claudio Aquino
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Paolo Grieco
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Silvana Morello
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Aldo Pinto
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Pio Ianelli
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, University of Naples “Federico II”, 80131 Napoli, Dipartimento di Scienze Farmaceutica, Università di Salerno, I-84084, Fisciano, Salerno, and Dipartimento di Biochimica e Biofisica “Francesco Cetrangolo”, Seconda Università di Napoli, 80138 Napoli
| |
Collapse
|