1
|
Bavel NV, Lai P, Loebenberg R, Prenner EJ. Cholesterol enhances the negative impact of vaping additives on lung surfactant model systems. Nanomedicine (Lond) 2023; 17:2231-2243. [PMID: 36853835 DOI: 10.2217/nnm-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aims: Vaping has given rise to e-cigarette or vaping product use-associated lung injury. Model lung surfactant films were used to assess the impact of vape additives (vitamin E, vitamin E acetate, tetrahydrocannabinol, cannabidiol). This work builds upon our previous findings, by incorporating cholesterol, to understand the interplay between the additives and the sterol in surfactant function. Materials & methods: Compression-expansion cycles of lipid monofilm at the air-water interface and Brewster angle microscopy allowed elucidating the effects of vape additives. Results & conclusion: Vape additives at 5 mol% inhibited proper lipid packing and reduced film stability. Cholesterol enhanced the additive effects, resulting in significantly destabilized films and altered domains. The observed impact could signify dysfunctional lung surfactant and impaired lung function.
Collapse
Affiliation(s)
- Nicolas Van Bavel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Patrick Lai
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Current address: Rane Pharmaceuticals, Edmonton, AB, T6E 5V2, Canada
| | - Raimar Loebenberg
- Department of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
2
|
Van Bavel N, Lai P, Amrein M, Prenner EJ. Pulmonary surfactant function and molecular architecture is disrupted in the presence of vaping additives. Colloids Surf B Biointerfaces 2023; 222:113132. [PMID: 36630771 DOI: 10.1016/j.colsurfb.2023.113132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Inhalation of harmful vaping additives has led to a series of lung illnesses. Some of the selected additives such as vitamin E acetate, and related molecules like vitamin E and cannabidiol, may interfere with the function of the lung surfactant. Proper lipid organization in lung surfactant is key to maintaining low surface tensions, which provides alveolar stability and effective gas exchange throughout respiration. Physiological surfactants, such as bovine lipid extract surfactant used to treat neonatal respiratory distress syndrome, serve as a good model for examining the potential effects of vape additives on proper function. We have found that all additives impede the surfactants' ability to efficiently reach high surface pressures as these systems displayed numerous shoulders throughout compression with accompanying defects to lipid organization. Moreover, the formation of lipid bilayer stacks in the film are hindered by the additives, most notably with vitamin e acetate. Loss of these stacks leave the film prone to buckling and collapse under high compression that occurs at the end of expiration. The data suggest that the additives may interfere with both proper lipid organization and the surfactant protein function.
Collapse
Affiliation(s)
- Nicolas Van Bavel
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Patrick Lai
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada; Rane Pharmaceuticals, Edmonton, AB, Canada
| | - Matthias Amrein
- Department of Cell Biology & Anatomy, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada.
| |
Collapse
|
3
|
van Bavel N, Lai P, Loebenberg R, Prenner EJ. Vaping additives negatively impact the stability and lateral film organization of lung surfactant model systems. Nanomedicine (Lond) 2022; 17:827-843. [PMID: 35437998 DOI: 10.2217/nnm-2021-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Inhalation of vaping additives has recently been shown to impair respiratory function, leading to e-cigarette or vaping product use associated with lung injuries. This work was designed to understand the impact of additives (vitamin E, vitamin E acetate, tetrahydrocannabinol and cannabidiol) on model lung surfactants. Materials & methods: Lipid monofilms at the air-water interface and Brewster angle microscopy were used to assess the impact of vaping additives on model lung surfactant films. Results & conclusion: The addition of 5 mol % of vaping additives, and even more so mixtures of vitamins and cannabinoids, negatively impacts lipid packing and film stability, induces material loss upon cycling and significantly reduces functionally relevant lipid domains. This range of detrimental effects could affect proper lung function.
Collapse
Affiliation(s)
- Nicolas van Bavel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Patrick Lai
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raimar Loebenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
4
|
Porras-Gómez M, Shoaib T, Steer D, Espinosa-Marzal RM, Leal C. Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes. Biophys J 2022; 121:886-896. [PMID: 35176270 PMCID: PMC8943818 DOI: 10.1016/j.bpj.2022.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
Lower tract respiratory diseases such as pneumonia are pervasive, affecting millions of people every year. The stability of the air/water interface in alveoli and the mechanical performance during the breathing cycle are regulated by the structural and elastic properties of pulmonary surfactant membranes (PSMs). Respiratory dysfunctions and pathologies often result in, or are caused by, impairment of the PSMs. However, a gap remains between our knowledge of the etiology of lung diseases and the fundamental properties of PSMs. For example, bacterial pneumonia in humans and mice has been associated with aberrant levels of cardiolipin, a mitochondrial-specific, highly unsaturated 4-tailed anionic phospholipid, in lung fluid, which likely disrupts the structural and mechanical integrity of PSMs. Specifically, cardiolipin is expected to significantly alter PSM elasticity due to its intrinsic molecular properties favoring membrane folding away from a flat configuration. In this paper, we investigate the structural and mechanical properties of the lipidic components of PSMs using lipid-based models as well as bovine extracts affected by the addition of pathological cardiolipin levels. Specifically, using a combination of optical and atomic force microscopy with a surface force apparatus, we demonstrate that cardiolipin strongly promotes hemifusion of PSMs and that these local membrane contacts propagate at larger scales, resulting in global stiffening of lung membranes.
Collapse
Affiliation(s)
- Marilyn Porras-Gómez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Tooba Shoaib
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Dylan Steer
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Rosa Maria Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
5
|
Al-Rekabi Z, Contera S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc Natl Acad Sci U S A 2018; 115:2658-2663. [PMID: 29483271 PMCID: PMC5856542 DOI: 10.1073/pnas.1719065115] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The physical properties of lipid bilayers comprising the cell membrane occupy the current spotlight of membrane biology. Their traditional representation as a passive 2D fluid has gradually been abandoned in favor of a more complex picture: an anisotropic time-dependent viscoelastic biphasic material, capable of transmitting or attenuating mechanical forces that regulate biological processes. In establishing new models, quantitative experiments are necessary when attempting to develop suitable techniques for dynamic measurements. Here, we map both the elastic and viscous properties of the model system 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers using multifrequency atomic force microscopy (AFM), namely amplitude modulation-frequency modulation (AM-FM) AFM imaging in an aqueous environment. Furthermore, we investigate the effect of cholesterol (Chol) on the DPPC bilayer in concentrations from 0 to 60%. The AM-AFM quantitative maps demonstrate that at low Chol concentrations, the lipid bilayer displays a distinct phase separation and is elastic, whereas at higher Chol concentration, the bilayer appears homogenous and exhibits both elastic and viscous properties. At low-Chol contents, the Estorage modulus (elastic) dominates. As the Chol insertions increases, higher energy is dissipated; and although the bilayer stiffens (increase in Estorage), the viscous component dominates (Eloss). Our results provide evidence that the lipid bilayer exhibits both elastic and viscous properties that are modulated by the presence of Chol, which may affect the propagation (elastic) or attenuation (viscous) of mechanical signals across the cell membrane.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| |
Collapse
|
6
|
Al-Saiedy M, Tarokh A, Nelson S, Hossini K, Green F, Ling CC, Prenner EJ, Amrein M. The role of multilayers in preventing the premature buckling of the pulmonary surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1372-1380. [PMID: 28501605 DOI: 10.1016/j.bbamem.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/16/2023]
Abstract
The pulmonary surfactant is a protein-lipid mixture that spreads into a film at the air-lung interface. The highly-compacted molecules of the film keep the interface from shrinking under the influence of otherwise high surface tension and thus prevent atelectasis. We have previously shown that for the film to withstand a high film pressure without collapsing it needs to assume a specific architecture of a molecular monolayer with islands of stacks of molecular multilayers scattered over the area. Surface activity was assessed in a captive bubble surfactometer (CBS) and the role of cholesterol and oxidation on surfactant function examined. The surfactant film was conceptualized as a plate under pressure. Finite element analysis was used to evaluate the role of the multilayer stacks in preventing buckling of the plate during compression. The model of film topography was constructed from atomic force microscope (AFM) scans of surfactant films and known physical properties of dipalmitoylphosphatidylcholine (DPPC), a major constituent of surfactant, using ANSYS structural-analysis software. We report that multilayer structures increase film stability. In simulation studies, the critical load required to induce surfactant film buckling increased about two-fold in the presence of multilayers. Our in vitro surfactant studies showed that surface topography varied between functional and dysfunctional films. However, the critical factor for film stability was the anchoring of the multilayers. Furthermore, the anchoring of multilayers and mechanical stability of the film was dependent on the presence of hydrophobic surfactant protein-C. The current study expands our understanding of the mechanism of surfactant inactivation in disease.
Collapse
Affiliation(s)
- Mustafa Al-Saiedy
- Department of Cardiovascular, University of Calgary, Calgary, Alberta, Canada; Department of Respiratory Sciences, University of Calgary, Calgary, Alberta, Canada; Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ali Tarokh
- Mechanical Engineering, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.
| | - Sultan Nelson
- Department of Cardiovascular, University of Calgary, Calgary, Alberta, Canada; Department of Respiratory Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kiavash Hossini
- Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Francis Green
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Amrein
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Estrada-López ED, Murce E, Franca MPP, Pimentel AS. Prednisolone adsorption on lung surfactant models: insights on the formation of nanoaggregates, monolayer collapse and prednisolone spreading. RSC Adv 2017. [DOI: 10.1039/c6ra28422a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adsorption of prednisolone on a lung surfactant model was successfully performed using coarse grained molecular dynamics.
Collapse
Affiliation(s)
| | - Erika Murce
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Matheus P. P. Franca
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Andre S. Pimentel
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rio de Janeiro
- Brazil
| |
Collapse
|
8
|
Hane FT, Drolle E, Leonenko Z. Amyloid-β (1-40) restores adhesion properties of pulmonary surfactant, counteracting the effect of cholesterol. Phys Chem Chem Phys 2015; 16:15430-6. [PMID: 24947303 DOI: 10.1039/c4cp00040d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pulmonary surfactant (PS) is a thin lipid-protein film covering the surface of the lung alveoli at the air/liquid interface. The primary purpose of a PS is to control the surface tension of the air/liquid interface and to reduce the work of breathing. High levels of cholesterol in a PS are associated with life-threatening acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Finding therapeutics to counteract the effect of cholesterol in a PS is a matter of contemporary research. In our earlier work, we showed that the addition of amyloid-β (1-40) (Aβ40), the protein implicated in Alzheimer's disease, can reverse the detrimental effects of cholesterol in surfactants by improving multilayer formation and restoring PS surface active properties. We hypothesized that this phenomenon was due to Aβ40 improving adhesion properties of a surfactant. In this work we used atomic force spectroscopy to demonstrate that Aβ40 counteracts the adhesive properties of a PS compromised by high levels of cholesterol in a PS and helps to restore the functionality of a PS.
Collapse
Affiliation(s)
- F T Hane
- Department of Biology, University of Waterloo, 200 University Ave, Waterloo, ON N2L 3G1, Canada
| | | | | |
Collapse
|
9
|
Hagedorn S, Drolle E, Lorentz H, Srinivasan S, Leonenko Z, Jones L. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts. JOURNAL OF OPTOMETRY 2015; 8:187-199. [PMID: 25620317 PMCID: PMC4502087 DOI: 10.1016/j.optom.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). METHODS Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. RESULTS Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. CONCLUSIONS MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity.
Collapse
Affiliation(s)
- Sarah Hagedorn
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Elizabeth Drolle
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Holly Lorentz
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Sruthi Srinivasan
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Lyndon Jones
- School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
10
|
Redondo-Morata L, Giannotti MI, Sanz F. Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy. Mol Membr Biol 2013; 31:17-28. [DOI: 10.3109/09687688.2013.868940] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Finot E, Markey L, Hane F, Amrein M, Leonenko Z. Combined atomic force microscopy and spectroscopic ellipsometry applied to the analysis of lipid–protein thin films. Colloids Surf B Biointerfaces 2013; 104:289-93. [DOI: 10.1016/j.colsurfb.2012.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/11/2012] [Accepted: 12/15/2012] [Indexed: 12/14/2022]
|
12
|
Jiao X, Keating E, Tadayyon S, Possmayer F, Zuo YY, Veldhuizen RA. Atomic force microscopy analysis of rat pulmonary surfactant films. Biophys Chem 2011; 158:119-25. [DOI: 10.1016/j.bpc.2011.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/03/2011] [Accepted: 06/04/2011] [Indexed: 01/14/2023]
|
13
|
Zhang H, Fan Q, Wang YE, Neal CR, Zuo YY. Comparative study of clinical pulmonary surfactants using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1832-42. [PMID: 21439262 DOI: 10.1016/j.bbamem.2011.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 12/21/2022]
Abstract
Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
14
|
Hane F, Drolle E, Leonenko Z. Effect of cholesterol and amyloid-β peptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:808-14. [DOI: 10.1016/j.nano.2010.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/22/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|
15
|
Keating E, Waring AJ, Walther FJ, Possmayer F, Veldhuizen RAW, Petersen NO. A ToF-SIMS study of the lateral organization of lipids and proteins in pulmonary surfactant systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:614-21. [PMID: 21110942 DOI: 10.1016/j.bbamem.2010.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/27/2010] [Accepted: 11/12/2010] [Indexed: 01/11/2023]
Abstract
Pulmonary surfactant is a complex lipid-protein mixture whose main function is to reduce the surface tension at the air-liquid interface of alveoli to minimize the work of breathing. The exact mechanism by which surfactant monolayers and multilayers are formed and how they lower surface tension to very low values during lateral compression remains uncertain. We used time-of-flight secondary ion mass spectrometry to study the lateral organization of lipids and peptide in surfactant preparations ranging in complexity. We show that we can successfully determine the location of phospholipids, cholesterol and a peptide in surfactant Langmuir-Blodgett films and we can determine the effect of cholesterol and peptide addition. A thorough understanding of the lateral organization of PS interfacial films will aid in our understanding of the role of each component as well as different lipid-lipid and lipid-protein interactions. This may further our understanding of pulmonary surfactant function.
Collapse
|
16
|
Chimote G, Banerjee R. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. J Biomed Mater Res B Appl Biomater 2010; 94:1-10. [PMID: 20524179 DOI: 10.1002/jbm.b.31608] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, exogenous pulmonary surfactant was evaluated as an inhalable drug carrier for antitubercular drug isoniazid (INH). Isoniazid-entrapped liposomes of dipalmitoylphosphatidylcholine (DPPC) (the most abundant lipid of lung surfactant and exogenous surfactant) were developed and evaluated for size, drug entrapment, release, in vitro alveolar deposition, biocompatibility, antimycobacterial activity, and pulmonary surfactant action. Isoniazid-entrapped DPPC liposomes were about 750 nm in diameter and had entrapment efficiency of 36.7% +/- 1.8%. Sustained release of INH from DPPC liposomes was observed over 24 h. In vitro alveolar deposition efficiency using the twin impinger exhibited approximately 25-27% INH deposition in the alveolar chamber upon one minute nebulization using a jet nebulizer. At 37 degrees C, the formulation had better pulmonary surfactant function with quicker reduction of surface tension on adsorption (36.7 +/- 0.4 mN/m) than DPPC liposomes (44.7 +/- 0.6 mN/m) and 87% airway patency was exhibited by the formulation in a capillary surfactometer. The formulation was biocompatible and had antimycobacterial activity. The isoniazid-entrapped DPPC liposomes could fulfill the dual purpose of pulmonary drug delivery and alveolar stabilization due to antiatelectatic effect of the surfactant action which can improve the reach of antitubercular drug INH to the alveoli.
Collapse
Affiliation(s)
- G Chimote
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | |
Collapse
|
17
|
Vockeroth D, Gunasekara L, Amrein M, Possmayer F, Lewis JF, Veldhuizen RAW. Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 298:L117-25. [DOI: 10.1152/ajplung.00218.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mechanical ventilation may lead to an impairment of the endogenous surfactant system, which is one of the mechanisms by which this intervention contributes to the progression of acute lung injury. The most extensively studied mechanism of surfactant dysfunction is serum protein inhibition. However, recent studies indicate that hydrophobic components of surfactant may also contribute. It was hypothesized that elevated levels of cholesterol significantly contribute to surfactant dysfunction in ventilation-induced lung injury. Sprague-Dawley rats ( n = 30) were randomized to either high-tidal volume or low-tidal volume ventilation and monitored for 2 h. Subsequently, the lungs were lavaged, surfactant was isolated, and the biophysical properties of this isolated surfactant were analyzed on a captive bubble surfactometer with and without the removal of cholesterol using methyl-β-cyclodextrin. The results showed lower oxygenation values in the high-tidal volume group during the last 30 min of ventilation compared with the low-tidal volume group. Surfactant obtained from the high-tidal volume animals had a significant impairment in function compared with material from the low-tidal volume group. Removal of cholesterol from the high-tidal volume group improved the ability of the surfactant to reduce the surface tension to low values. Subsequent reconstitution of high-cholesterol values led to an impairment in surface activity. It is concluded that increased levels of cholesterol associated with endogenous surfactant represent a major contributor to the inhibition of surfactant function in ventilation-induced lung injury.
Collapse
Affiliation(s)
| | - Lasantha Gunasekara
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fred Possmayer
- Obstetrics and Gynecology, and
- Lawson Health Research Institute, University of Western Ontario, London, Ontario; and
| | - James F. Lewis
- Departments of 1Physiology and Pharmacology,
- Medicine, and
- Lawson Health Research Institute, University of Western Ontario, London, Ontario; and
| | - Ruud A. W. Veldhuizen
- Departments of 1Physiology and Pharmacology,
- Medicine, and
- Lawson Health Research Institute, University of Western Ontario, London, Ontario; and
| |
Collapse
|
18
|
Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H. Assessment methods of inhaled aerosols: technical aspects and applications. Expert Opin Drug Deliv 2009; 6:941-59. [PMID: 19637979 DOI: 10.1517/17425240903117244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The pulmonary route has been used with success for the treatment of both lung (asthma) and systemic diseases (diabetes). The fate of an inhaled drug (absorption and deposition) within human lungs has great importance, particularly in drug development and quality control. This article focuses on the various methods that are now applied for aerosol fate investigation. Several assessment methods, ranging from in vitro assays (impaction and optical systems) to in vivo experiments (imaging and pharmacological methods), are described. In vitro assays measure particle size distribution and emitted drug dose, which could be predictive of lung deposition pattern in vivo. However, in vivo methods provide direct information about the concentration and the location of inhaled drug within lung. Advantages and limitations of the different techniques are identified. In addition to these experimental techniques, mathematical deposition models, elaborated in more realistic conditions and designed to predict the fate of inhaled particles, are also illustrated.
Collapse
Affiliation(s)
- Chiraz Jaafar-Maalej
- Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), Lyon, France
| | | | | | | |
Collapse
|
19
|
Hane F, Moores B, Amrein M, Leonenko Z. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study. Ultramicroscopy 2009; 109:968-73. [DOI: 10.1016/j.ultramic.2009.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Saad SMI, Policova Z, Dang A, Acosta EJ, Hair ML, Neumann AW. A double injection ADSA-CSD methodology for lung surfactant inhibition and reversal studies. Colloids Surf B Biointerfaces 2009; 73:365-75. [PMID: 19586757 DOI: 10.1016/j.colsurfb.2009.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/25/2022]
Abstract
This paper presents a continuation of the development of a drop shape method for film studies, ADSA-CSD (Axisymmetric Drop Shape Analysis-Constrained Sessile Drop). ADSA-CSD has certain advantages over conventional methods. The development presented here allows complete exchange of the subphase of a spread or adsorbed film. This feature allows certain studies relevant to lung surfactant research that cannot be readily performed by other means. The key feature of the design is a second capillary into the bulk of the drop to facilitate addition or removal of a secondary liquid. The development will be illustrated through studies concerning lung surfactant inhibition. After forming a sessile drop of a basic lung surfactant preparation, the bulk phase can be removed and exchanged for one containing different inhibitors. Such studies mimic the leakage of plasma and blood proteins into the alveolar spaces altering the surface activity of lung surfactant in a phenomenon called surfactant inhibition. The resistance of the lung surfactant to specific inhibitors can be readily evaluated using the method. The new method is also useful for surfactant reversal studies, i.e. the ability to restore the normal surface activity of an inhibited lung surfactant film by using special additives. Results show a distinctive difference between the inhibition when an inhibitor is mixed with and when it is injected under a preformed surfactant film. None of the inhibitors studied (serum, albumin, fibrinogen, and cholesterol) were able to penetrate a preexisting film formed by the basic preparation (BLES and protasan), while all of them can alter the surface activity of such preparation when mixed with the preparation. Preliminary results show that reversal of serum inhibition can be easily achieved and evaluated using the modified methodology.
Collapse
Affiliation(s)
- Sameh M I Saad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Chimote G, Banerjee R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J Biomed Mater Res A 2009; 89:281-92. [PMID: 18431766 DOI: 10.1002/jbm.a.31959] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulmonary tuberculosis is associated with a year-long chemotherapy, poor alveolar drug levels, drug-related systemic toxicity, and patient noncompliance. In this study, exogenous pulmonary surfactant is proposed as a drug carrier for antitubercular drugs. Dipalmitoylphosphatidylcholine (DPPC), the major lung-surfactant lipid, has been combined with antitubercular drugs isoniazid (INH), rifampicin (RFM), and ethambutol (ETH) in 1:1 ratio by weight, in which drugs had a ratio of 1:2:3 by weight. At 37 degrees C, the formulation had better surfactant function with quicker reduction of surface tension on adsorption (32.71 +/- 0.65 mN/m) than DPPC liposomes (44.67 +/- 0.57 mN/m) and maintained 100% airway patency in a capillary surfactometer. Drug-loaded surfactant liposomes were about 2 microm and had entrapment efficiency of 30.04% +/- 2.05%, 18.85% +/- 2.92%, and 61.47% +/- 3.32% for INH, RFM, and ETH, respectively. Sustained release of the drugs from surfactants was observed over 24 h. In vitro alveolar deposition efficiency using the twin impinger showed 12.06% +/- 1.87% of INH, 43.30% +/- 0.87% of RFM, and 22.07% +/- 2.02% of ETH deposited in the alveolar chamber upon nebulization for a minute using a jet nebulizer. The formulation was biocompatible and stable with physicochemical properties being retained even after storage for a month at 4 degrees C. Antitubercular drug-loaded surfactants developed could serve dual purposes of alveolar stabilization due to surfactant action and better reach of these drugs to the alveoli due to antiatelectatic effect of the surfactant.
Collapse
Affiliation(s)
- G Chimote
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | |
Collapse
|
22
|
McCrae KC, Weltman B, Alyward S, Shaw RA, Sowa MG, Unruh HW, Rand TG, Thliveris JA, Scott JE. The effect of elevated dietary cholesterol on pulmonary surfactant function in adolescent mice. Pediatr Pulmonol 2008; 43:426-34. [PMID: 18366117 DOI: 10.1002/ppul.20772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been established that phospholipids and cholesterol interact in films of pulmonary surfactant (PS). Generally it is thought that phospholipids increase film stability whereas cholesterol increases film fluidity. To study this further, we modified dietary cholesterol in mice which received either standard rodent lacking cholesterol (sd), or high cholesterol (2%) diet (hc) for 1 month. Phospholipid stability was investigated by a capillary surfactometer (CS), which measures airflow resistance and patency. PS was collected by bronchiolar lavage and centrifuged to obtain the surface-active film (SAF). Results showed that the hc-SAF had significantly more cholesterol than sd-SAF. CS analyses at 37 degrees C showed no significance differences in airflow resistance between hc-SAF and sd-SAF. However, at 37 degrees C, sd-SAF showed greater ability to maintain patency compared to hc-SAF, whereas at 42 degrees C hc-SAF showed patency ability similar to sd-SAF. The results suggested that increased cholesterol in hc-SAF induced less stability in the SAF possibly due to cholesterol's fluidizing effect on phospholipids at physiological temperatures.
Collapse
Affiliation(s)
- K C McCrae
- Department of Oral Biology, Faculties of Dentistry and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|