1
|
Bauer TJ, Gombocz E, Krüger M, Sahana J, Corydon TJ, Bauer J, Infanger M, Grimm D. Augmenting cancer cell proteomics with cellular images - A semantic approach to understand focal adhesion. J Biomed Inform 2019; 100:103320. [PMID: 31669288 DOI: 10.1016/j.jbi.2019.103320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/13/2023]
Abstract
If monolayers of cancer cells are exposed to microgravity, some of the cells cease adhering to the bottom of a culture flask and join three-dimensional aggregates floating in the culture medium. Searching reasons for this change in phenotype, we performed proteome analyses and learnt that accumulation and posttranslational modification of proteins involved in cell-matrix and cell-cell adhesion are affected. To further investigate these proteins, we developed a methodology to find histological images about focal adhesion complex (FA) proteins. Selecting proteins expressed by human FTC-133 and MCF-7 cancer cells and known to be incorporated in FA, we transformed the experimental data to RDF to establish a core semantic knowledgebase. Applying iterative SPARQL queries to Linked Open Databases, we augmented these data with additional functional, transformation- and aggregation-related relationships. Using reasoning, we retrieved publications with images about the spatial arrangement of proteins incorporated in FA. Contextualizing those images enabled us to gain insights about FA of cells changing their site of growth, and to independently validate our experimental results. This new way to link experimental proteome data to biomedical knowledge from various sources via searching images may generally be applied in science when images are a tool of knowledge dissemination.
Collapse
Affiliation(s)
- Thomas J Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA, USA.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University-Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Mezzenga R, Mitsi M. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2018; 20:55-72. [PMID: 30403862 DOI: 10.1021/acs.biomac.8b01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibronectin, a large multimodular protein and one of the major fibrillar components of the extracellular matrix, has been the subject of study for many decades and plays critical roles in embryonic development and tissue homeostasis. Moreover, fibronectin has been implicated in the pathology of many diseases, including cancer, and abnormal depositions of fibronectin have been identified in a number of amyloid and nonamyloid lesions. The ability of fibronectin to carry all these diverse functionalities depends on interactions with a large number of molecules, including adhesive and signaling cell surface receptors, other components of the extracellular matrix, and growth factors and cytokines. The regulation and integration of such large number of interactions depends on the modular architecture of fibronectin, which allows a large number of conformations, exposing or destroying different binding sites. In this Review, we summarize the current knowledge regarding the conformational flexibility of fibronectin, with an emphasis on how it regulates the ability of fibronectin to interact with various signaling molecules and cell-surface receptors and to form supramolecular assemblies and fibrillar structures.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| | - Maria Mitsi
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
3
|
Choi S, Hong Y, Lee I, Huh D, Jeon TJ, Kim SM. Effects of various extracellular matrix proteins on the growth of HL-1 cardiomyocytes. Cells Tissues Organs 2014; 198:349-56. [PMID: 24662367 DOI: 10.1159/000358755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
We present the physical and biochemical effects of extracellular matrixes (ECMs) on HL-1 cardiomyocytes. ECMs play major roles in cell growth, adhesion and the maintenance of native cell functions. We investigated the effects of 6 different cell culture systems: 5 different ECM-treated surfaces (fibronectin, laminin, collagen I, gelatin and a gelatin/fibronectin mixture) and 1 nontreated surface. Surface morphology was scanned and analyzed using atomic force microscopy in order to investigate the physical effects of ECMs. The attachment, growth, viability, proliferation and phenotype of the cells were analyzed using phase-contrast microscopy and immunocytochemistry to elucidate the biochemical effects of ECMs. Our study provides basic information for understanding cell-ECM interactions and should be utilized in future cardiac cell research and tissue engineering.
Collapse
Affiliation(s)
- Seongkyun Choi
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|